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Overview

Motivation or: Why BLAST?
Electromagnetic structure of nucleons and light nucleiElectromagnetic structure of nucleons and light nuclei
with spin-dependent electron scattering
from internal polarized targets at low Q2

Some Results or: Why BLAST was a BLAST!
Nucleon Form Factors:
Proton and neutron electric and magnetic form factors

Deuteron Structure:
Charge, quadrupole, and magnetic form factor
Polarized quasi-elastic electrodisintegration

Pi l t d ti
3

Pion electroproduction:
N-Delta transition in inclusive and exclusive response



EM Studies with Polarized H and D

Exploit single and double polarization observables to 
keep systematic errors lowp y

Exploit internal target in storage ring to provide highly 
polarized, isotopically pure (background free) target

Exploit large angular and energy acceptance to provide
simultaneous measurement of all reaction channels over 

l t Q2complete Q2 range

Exploit field free region at target to allow orientation of
target polarization in any direction Toroidtarget polarization in any direction → Toroid

4
Bates Large Acceptance Spectrometer Toroid



MIT-Bates Linear Accel. Center

40 m

Beam: Stored (SHR) 850 MeV, 200 mA, Pe = 65%
Target: Internal (ABS) 6 x 1031/(cm2s), PH/D = 80%
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Detector: Bates Large Acceptance Spectrometer Toroid



MIT-Bates South Hall Ring

Monitoring of electron
beam polarization

Compton Polarimetere-

p

Injection with longitudinal spin
at internal targetat internal target

Siberian snake to restore
l it di l l i tiInternal Target

Siberian Snake

longitudinal polarization

10 m
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Pe = 0.65 ± 0.04

In-plane spin transport



Atomic Beam Source (ABS)

HydrogenHydrogen

F=1

F=0

Separately prepare 
m = +½ -½ (hydrogen) andmI = +½, -½ (hydrogen) and 

with sextupoles and RF transitions

Switch between states
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Switch between states 
every 5 minutes



Atomic Beam Source (ABS)

HydrogenHydrogen

F=1

F=0

DeuteriumDeuterium

Separately prepare 
m = +½ -½ (hydrogen) and

F=3/2

mI = +½, -½ (hydrogen) and 
mI = +1, 0, -1 (deuterium)
with sextupoles and RF transitions

Switch between states

F=1/2
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Switch between states 
every 5 minutes



The BLAST Detector

Left-right symmetric

Large acceptance:
DRIFT CHAMBERS

TARGET
BEAM

0.1 < Q2/(GeV/c)2 < 0.8
20o < θ < 80o, -15o < φ < 15o

COILS Bmax = 3.8 kG

COILS

COILS Bmax  3.8 kG

DRIFT CHAMBERS
Tracking, PID (charge)
δp/p=3% δθ = 0 5oδp/p=3%, δθ = 0.5o

CERENKOV COUNTERS
e/π separation

CERENKOV
COUNTERS

SCINTILLATORS
Trigger, ToF, PID (π/p)

NEUTRON COUNTERS NEUTRON COUNTERS

BEAM
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NEUTRON COUNTERS
Neutron tracking (ToF)

SCINTILLATORS

NEUTRON COUNTERS



The BLAST Detector

Bates

MIT

UNH

10ASU



The BLAST Detector

BatesNeutron Detectors

Ohio University
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Target Spin Orientation

NC
1 m

Freedom of in-plane spin angle
32o (2004) / 47o (2005)( ) ( )

e- left → θ* ≈ 90o

upstream downstream
32o

“spin-perpendicular”

WC

upstream downstream

e- right → θ* ≈ 0o

“ i ll l”
TOF
CC

L20

“spin-parallel”

12NC
LADS L20 L15



BLAST Data Collection

> 3 MC accumulated charge for Hydrogen and Deuterium 2004/05 

Hydrogen 2004
θd = 47o, 290 kC (90 pb-1)
P 82%Pz = 82%

Deuterium 2004
θ = 32o 450 kC (169 pb-1)θd = 32o, 450 kC (169 pb-1)
Pz = 86%, Pzz = 68%

Deuterium 2005Deuterium 2005
θd = 47o, 550 kC (150 pb-1)
Pz = 73%, Pzz = 56%
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Identification of Elastic Events

Charge +/-

Coplanarity

e’ 1H(e,e’p)
Coplanarity

Kinematics
e- left, p+ right

Timing p,d
e- right, p+ left

2H(e,e’d) 2H(e,e’p)

2H(e,e’d)
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Identification of Neutron Events

Very clean quasielastic 2H(e,e’n) spectra

Highly efficient proton veto (drift chambers + TOF)Highly efficient proton veto (drift chambers + TOF)
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Identification of π+ Events

e-π+

Time correlation for candidate e’π+ events,
corrected for pathlength

)

e-e+ (π-π+)

TO
F 

(n
s)

e-p

π+

C / /

ADC
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Cerenkov used to discriminate π+ / e+ and π- / e- tracks.



Nucleon 
Form FactorsForm Factors
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Nucleon Elastic Form Factors
General definition of the nucleon form factor

S h F F tSachs Form Factors 

In One-photon exchange approximation above form factors are 
observables of elastic electron-nucleon scattering
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Nucleon Form Factors and Polarization

Double polarization in elastic/quasielastic ep or en scattering:
Recoil polarization or (vector) polarized target

Polarized cross section

1,2H(e,e’p),  1,2H(e,e’p), 2H(e,e’n),  2H(e,e’n)

Double spin asymmetry = spin correlation

Asymmetry ratio (“Super ratio”)Asymmetry ratio ( Super ratio )

independent of polarization or analyzing power
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Proton Form Factor Ratio μpGp
E/Gp

M
*

C.B. Crawford et al., 
PRL 98 (2007) 052301

Impact of BLAST data 
combined with cross sections 
on separation of Gp

E and Gp
M

Errors factor ~2 smaller

Reduced correlation

20
*Ph.D. work of C. Crawford (MIT) and A. Sindile (UNH)

Deviation from dipole at low Q2!



Extraction of Gn
E
*

Quasielastic 2H(e,e’n)

Full Montecarlo simulation of the 
BLAST experiment

Deuteron electrodisintegration
by H Arenhövelby H. Arenhövel

Accounted for FSI,MEC,RC,IC

Spin-perpendicular beam-target p p p g
vector asymmetry AV

ed shows 
high sensitivity to Gn

E

Compare measured AV
d

BLASTMC
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Compare measured A ed
with BLASTMC, vary Gn

E (e,e’p) (e,e’n)
*Ph.D. work of V. Ziskin (MIT) and E. Geis (ASU)



How well is the FSI effect known?

Quasielastic 2H(e,e’n)

F ll M t l i l tiFull Montecarlo simulation 
of the BLAST experiment

Deuteron electrodisintegrationg
by H. Arenhövel

Accounted for FSI,MEC,RC,IC

Spin-perpendicular beam-target 
vector asymmetry AV

ed shows 
high sensitivity to Gn

E

Use tensor asymmetry
to control FSI
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to control FSI
*Ph.D. work of V. Ziskin (MIT) and E. Geis (ASU)



Neutron Electric Form Factor Gn
E
*
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*Ph.D. work of V. Ziskin (MIT) and E. Geis (ASU)

E. Geis, M.K., V. Ziskin et al., 
PRL 101 (2008) 042501



Extraction of Gn
M

Quasielastic 2H(e,e’) inclusive

Full Montecarlo simulation of the 
BLAST experimentBLAST experiment

Deuteron electrodisintegration
by H. Arenhövel

BLASTMC

Accounted for FSI,MEC,RC,IC

Beam-target vector asymmetry 
AV spin parallel + perpendicularAV

ed spin-parallel + perpendicular 
show sensitivity to Gn

M

PWIA:
BLASTMC

24



Extraction of Gn
M

*

Enhanced sensitivity in super ratio

Independent of polarizationIndependent of polarization 

BLASTMC

25*Ph.D. work of N. Meitanis (MIT) and Ben O’Neill (ASU)



Neutron Magnetic Form Factor Gn
M

Pre-polarization era

Gn ld d t fGn
M world data from

unpolarized experiments

Cross section ratio

quasielastic

+ CLAS 2008

d(e,e’n)
d(e,e’p)

+ CLAS 2008

Polarization era

Gn
M world data  + 3He
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+ BLAST preliminary

*Ph.D. work of N. Meitanis (MIT) and B. O’Neill (ASU)



IncAs:   Inclusive Asymmetries

LOI-09-003/PAC34
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Deuteron
StructureStructure
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Elastic Electron-Deuteron Scattering
Spin 1 ↔ three elastic form factors 

Gd
C, Gd

Q, Gd
M

Quadrupole moment
*

Quadrupole moment
M2

dQd = Gd
Q(0) = 25.83

Gd
Q ↔ Tensor force, D-wave

*

Q

Unpolarized elastic cross section

Polarized cross section
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Polarized cross section



Tensor Analyzing Powers T20,T21
*
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*Ph.D. work of C. Zhang (MIT)

Final result expected soon!



A and B
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GC and GQ
*

Final result expected soon!

G
C
(Q

)

G
Q
(Q

)
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*Ph.D. work of C. Zhang (MIT)



Vector-pol. Elastic ed Scattering

Final result expected soon!

33
*Ph.D. work of P. Karpius (UNH)



Deuteron Electrodisintegration

Quasielastic breakup
e + d  → e’ + p + n
D(e,e’p), PWIA:
pm = q – pp = -pp,I

Beam-vector asymmetry
(PWIA):

Nucleon spins parallel  →                       changes sign
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*Deuteron Electrodisintegration

(Mainz, Bates, Nikhef)
D(e,e’p) momentum distribution

• D-wave dominant at pm>300 MeV/c
• FSI,MEC,IC subtle effects in cross 
section < 450 MeV/c

D(e,e’p) beam-vector asymmetry

35
*Ph.D. work of A. Maschinot and A. DeGrush (MIT)

Observing expected sign change!



Quasielastic Tensor Asymmetry *
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*Ph.D. work of A. Maschinot and A. DeGrush (MIT) M=0 M=±1



Pi P d tiPion Production
from

H & DH & D
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N-Δ transition and deformation

γ* Μ1 , Ε2 , C2
p(qqq) Δ(qqq)

u d
u

u d

u

p(qqq)

I =      J = 2
1

2
1

(qqq)

I =      J = 2
3

2
3

Μ1+ , Ε1+ , S1+ πo938 MeV 1232 MeV

Spherical   ⇒ M1

f dDeformed  ⇒ M1 , E2 , C2

Deformation signal
Role of pion cloud
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Role of pion cloud



H(e,e’)Δ+, H(e,e’π+)n, H(e,e’p)π0

•Trigger 1: 
(Charged)

e-0π+→Δ+ p e
p

π+→Δ p
++ +→Δ πn

π+

•Trigger 7:
(Inclusive)

•Trigger 2:p n

π

e-

•Trigger 2:
(Neutral)

e-

p n 

n
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π0,π+



H(e,e’)Δ+ inclusive *

∗∗∗ +=
⋅

= φθθ cossincos '' TLTT
Z

meas AA
Ph

A
A)sin(

sinsin
' 〉〈+〉〈

〉〈+〉〈
= ∗∗

∗∗

RL

LRRL
TT

AAA
θθ

θθ

〉〈〉〈 ∗∗ AA θθ sincos
〉〈〉〈+〉〈
〉〈−〉〈

= ∗∗∗
LRL

LRRL
TL

AAA
φθθ
θθ

cos)sin(
sincos

'

500k ev. / 299 kC
+ 3.7M elastic
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*Ph.D. work of O. Filoti (UNH)



H(e,e’)Δ+ inclusive *

)sin(
sinsin

' 〉〈+〉〈
〉〈+〉〈

= ∗∗

∗∗

RL

LRRL
TT

AAA
θθ

θθ

〉〈〉〈 ∗∗ AA θθ i

BLAST
MAID
Sato/Lee

〉〈〉〈+〉〈
〉〈−〉〈

= ∗∗∗

∗∗

LRL

LRRL
TL

AAA
φθθ
θθ

cos)sin(
sincos

'

500k ev. / 299 kC
+ 3.7M elastic
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*Ph.D. work of O. Filoti (UNH)



H(e,e’π+)n and H(e,e’p)π0 exclusive *

cut cut cut π+ channel

neutron mass

cut
40k ev. / 299 kC

elastic radiative tail π0 mass

cut cut cut cut

101k ev. / 299 kC
π0 channel

42
*Analysis by A. Shinozaki (MIT);
Ph.D. work of Y. Xiao (MIT)



H(e,e’π+)n and H(e,e’p)π0 exclusive *

π+ channel

π0 channel
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*Analysis by A. Shinozaki (MIT); Ph.D. work of Y. Xiao (MIT)  



D(e,e’π±)nn,pp Double Asymmetries *

D(e,e’π+) channel
Models: π+ from free pModels: π+ from free p

D(e,e’π-) channel
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*Analysis by A. Shinozaki (MIT)

( , )
Models: π- from free n



Pion Electroproduction from Deuterium
R.J. Loucks, V.R. Pandharipande, R. Schiavilla, PRC49 (1994) 342

Strong FSI effect to explain g p
quenching of ~80% in ratio of 
d(e,e'π+)nn / p(e,e'π+)n
observed at Saclay

R. Gilman et al., PRL64 (1989) 622

Large tensor asymmetry (<0)
predicted for scattering into 
quasibound singlet 2N state

pp pn nn |T 1 S 0>

Two-nucleon term scheme:
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pp p |T=1,S=0>

|T=0,S=1>
d



D(e,e’π±)nn,pp Tensor Asymmetries *
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1.8 1.9 2 2.1 2.2 2.3 2.4-1

*Analysis by A. Shinozaki (MIT)
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F t f BLASTFuture of BLAST: 
OLYMPUS
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Proton Form Factor Ratio

Jefferson 
Lab

Dramatic discrepancy!

All Rosenbluth data from SLAC and Jlab in agreement
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All Rosenbluth data from SLAC and Jlab in agreement 
Dramatic discrepancy between Rosenbluth and recoil polarization technique
Multi-photon exchange considered best candidate



Two-photon exchange

Elastic electron-proton to
positron-proton ratio (P. Blunden) 
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Two-photon exchange

Elastic electron-proton to
positron-proton ratio (P. Blunden) 

BLAST @ 2.0 GeV

50



Two-photon exchange
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Projected Results for OLYMPUS

1000 h h1000 hours each
for e+ and e-

Lumi=2x1033 cm-2s-1

500 hours each
for e+ and e-

Lumi=2x1033 cm-2s-1



OLYMPUS

pOsitron-proton and

eLectron-proton elastic scattering to test the

hYpothesis of

Multi-

Photon exchangeg

Using

DoriSDoriS

2008 – Full proposal

53

p p
2009/10 – Transfer of BLAST
2011/12 – OLYMPUS Running



Summary
Proton, neutron, and deuteron spin observables with BLAST

High precision, excellent control of systematics

Nucleon structure:
Consistent and precise determination of 
elastic nucleon form factors at low momentum transfer

Deuteron structure:
elastic nucleon form factors at low momentum transfer

Precision measurement of T20 allows to separate Gd
C and Gd

Q

First measurement of T11 allows to determine Gd
M at low Q2

Electrodisintegration probing D-state

Pion production from H and D
N-Δ single and double spin asymmetries
Double and tensor asymmetries from deuterium

54OLYMPUS @ DESY: Precise determination of two-photon exchange

Double and tensor asymmetries from deuterium



Collaboration

• BLAST A GREAT SUCCESS!!!

• First class single and double 
polarization data on H and D inpolarization data on H and D in 
elastic, quasielastic and Delta region

• Produced 9 Ph.D.’s, + 3 to come,
and 3 Junior Faculty
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BACKUP lidBACKUP slides
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Neutron Electric Form Factor Gn
E
*

57
*Ph.D. work of V. Ziskin (MIT) and E. Geis (ASU)

E. Geis et al., nucl-ex/0803.3872v2
Submitted to Phys. Rev. Lett.



Neutron Electric Form Factor Gn
E
*
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*Ph.D. work of V. Ziskin (MIT) and E. Geis (ASU)



Pion Production Asymmetries 

1. Dilution factors are determined from elastic analysis and the 
compton polarimeter

2 Single Asymmetry Ah

%81  %,68  ,  ,  , 
zzzz hS

exp.
hSSz

exp.
Sh

exp.
S ≈≈=== pepepe PPAPPAAPAAPA

2. Single Asymmetry, Ah.

h

h
h

e
h Q

YR
RR
RR

P
A =

+
−

=
−+

−+    ,1

3. Single Asymmetry, ASz.

z

z

S
S Q

Y
R

RR
RR

P
A =

+
−

= −+    ,1
zS

4. Double Asymmetry, AhSz

hSYRRRRA +−+ ++++ )()(1

Y : event yield
Q: electron charge
h: electron helicity
S : target spin state

zSp QRRP + −+
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hS
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pe Q
R

RRRR
RRRR

PP
A =

+++
++

=
+−−+−−++

+−−+−−++   ,
)()(
)()(1

zhS
Sz: target spin state



H(e,e’π+)n Double Asymmetry *

60
*Analyses by A. Shinozaki (MIT); Ph.D. work of Y. Xiao (MIT)  



H(e,e’p)π0 Double Asymmetry *
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*Analyses by A. Shinozaki (MIT); Ph.D. work of Y. Xiao (MIT)  



H(e,e’π+)n Target Asymmetry *
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*Analyses by A. Shinozaki (MIT); Ph.D. work of Y. Xiao (MIT)  



H(e,e’p)π0 Target Asymmetry *
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*Analyses by A. Shinozaki (MIT); Ph.D. work of Y. Xiao (MIT)


