Longitudinal Polarization of $\Lambda/\bar{\Lambda}$ Hyperons in Lepton-Nucleon SIDIS

Dmitry V. Naumov

JINR

JLAB Seminar. April 10 2009

Basic conclusions of our work:

- We demonstrate that new COMPASS data can sharpen two free parameters of our model.
- An accurate measurement of $\Lambda, \bar{\Lambda}$ longitudinal polarization in COMPASS and HERA gives a new method to measure $s(x), \bar{s}(x)$ in the nucleon.
- The spin structure of $\Lambda, \bar{\Lambda}$ hyperons could be extracted from the same data (SU(6) \tilde{N} BJ models).
- Finally, we emphasize that the nucleon polarized strangeness is reflected in a longitudinal polarization of Λ hyperons which can be measured in COMPASS, HERA, JLAB.
What do we know about the proton?

- Non relativistic description
- Probing inside of the proton
- Nucleon strangeness
- Why \(\Lambda/\bar{\Lambda} \)?

What say experiments and theories?

- Experiments with charged particles
- Neutrino experiments

Our modelling

Results

- What are the source of \(\Lambda/\bar{\Lambda} \)
- Spin transfer to \(\Lambda/\bar{\Lambda} \)
- What about \(\Delta s \)?
- “Fit” of \(\bar{s}(x) \)

Conclusions

Backup slides
Outline

1. What do we know about the proton?
 - Non relativistic description
 - Probing inside of the proton
 - Nucleon strangeness
 - Why $\Lambda/\bar{\Lambda}$?

2. What say experiments and theories?
 - Experiments with charged particles
 - Neutrino experiments

3. Our modelling

4. Results
 - What are the source of $\Lambda/\bar{\Lambda}$
 - Spin transfer to $\Lambda/\bar{\Lambda}$
 - What about Δs?
 - “Fit“ of $\bar{s}(x)$

5. Conclusions

6. Backup slides
What is a proton?

- A particle of matter with mass 938 MeV
- Electric charge +1
- Consists of three (valence) quarks: uud
- Spin 1/2

$SU(3)$ model is able to host 8 baryons with $J^P = 1/2^+$:

$p(uud), n(udd), \Sigma^+(uus), \Sigma^0(uds), \Sigma^-(dds), \Lambda^0(uds), \Xi^0(uss), \Xi^-(dss)$,

and 10 excited baryonds with $J^P = 3/2^+$:

$\Delta, \Sigma^*, \Xi^*, \Omega^-$.
Octet and decuplet of baryons

\[SU(3) \text{-octet} \]

\[SU(3) \text{-decuplet} \]
SU(3) × SU(2) wave functions of baryons

\[p^\uparrow = \frac{1}{\sqrt{18}} (2u^\uparrow u^\downarrow d^\downarrow - u^\uparrow u^\downarrow d^\uparrow - u^\downarrow u^\uparrow d^\uparrow + \text{cycl. permutations}) \]

\[n^\uparrow = \frac{1}{\sqrt{18}} (2d^\uparrow d^\downarrow u^\downarrow - d^\uparrow d^\downarrow u^\uparrow - d^\downarrow d^\uparrow u^\uparrow + \ldots) \]

\[\Sigma^{+\uparrow} = \frac{1}{\sqrt{18}} (2u^\uparrow u^\downarrow s^\downarrow - u^\uparrow u^\downarrow s^\uparrow - u^\downarrow u^\uparrow s^\uparrow + \ldots) \]

\[\Sigma^{0\uparrow} = \frac{1}{6} \left(2(u^\uparrow d^\downarrow + d^\uparrow u^\downarrow) s^\downarrow - s^\uparrow (u^\downarrow d^\uparrow + d^\downarrow u^\uparrow) - d^\downarrow s^\uparrow u^\uparrow - u^\downarrow s^\uparrow d^\uparrow + \ldots \right) \]

\[\Sigma^{-\uparrow} = \frac{1}{\sqrt{18}} (2d^\uparrow d^\downarrow s^\downarrow - d^\uparrow d^\downarrow s^\uparrow - d^\downarrow d^\uparrow s^\uparrow + \ldots) \]

\[\Lambda^{0\uparrow} = \frac{1}{\sqrt{12}} \left(u^\uparrow d^\downarrow s^\uparrow - u^\uparrow d^\uparrow s^\uparrow - d^\uparrow u^\downarrow s^\uparrow + d^\uparrow u^\uparrow s^\uparrow + \ldots \right) \]

\[\Xi^{0\uparrow} = \frac{1}{\sqrt{18}} \left(2s^\uparrow s^\downarrow u^\downarrow - s^\uparrow s^\downarrow u^\uparrow - s^\downarrow s^\uparrow u^\uparrow + \ldots \right) \]

\[\Xi^{-\uparrow} = \frac{1}{\sqrt{18}} \left(2s^\uparrow s^\downarrow d^\downarrow - s^\uparrow s^\downarrow d^\uparrow - s^\downarrow s^\uparrow d^\uparrow + \ldots \right) \]
Magnetic moments of baryons

Static magnetic-dipole moments of baryons are defined by:

\[\mu_B = \sum_q \mu_q \sigma_q, \]

where \(\mu_q = e_q/2m_q \) — magnetic dipole moment of quark \(q \). Magnetic moment of a baryon \(B \), described by a ket-vector \(|B\rangle \), can be computed as:

\[\mu(B) = \langle B|\mu_B|B\rangle. \]
Magnetic moments of baryons

<table>
<thead>
<tr>
<th>Magnetic moment</th>
<th>formula</th>
<th>value (in μ_N)</th>
<th>Experiment (in μ_N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu(p)$</td>
<td>$\frac{4}{3}\mu_u - \frac{1}{3}\mu_d$</td>
<td>(input)</td>
<td>2.793</td>
</tr>
<tr>
<td>$\mu(n)$</td>
<td>$\frac{4}{3}\mu_d - \frac{1}{3}\mu_u$</td>
<td>-1.86</td>
<td>-1.913</td>
</tr>
<tr>
<td>$\mu(\Lambda^0)$</td>
<td>μ_s (input)</td>
<td></td>
<td>-0.613 ± 0.004</td>
</tr>
<tr>
<td>$\mu(\Sigma^+)$</td>
<td>$\frac{4}{3}\mu_u - \frac{1}{3}\mu_s$</td>
<td>2.69</td>
<td>2.458 ± 0.010</td>
</tr>
<tr>
<td>$\mu(\Sigma^-)$</td>
<td>$\frac{3}{2}\mu_d - \frac{1}{3}\mu_s$</td>
<td>-1.04</td>
<td>-1.16 ± 0.025</td>
</tr>
<tr>
<td>$\mu(\Xi^0)$</td>
<td>$\frac{4}{3}\mu_s - \frac{1}{3}\mu_u$</td>
<td>-1.44</td>
<td>-1.25 ± 0.014</td>
</tr>
<tr>
<td>$\mu(\Xi^-)$</td>
<td>$\frac{4}{3}\mu_s - \frac{1}{3}\mu_d$</td>
<td>-0.51</td>
<td>-0.679 ± 0.031</td>
</tr>
<tr>
<td>$\mu(\Omega^-)$</td>
<td>$3\mu_s$</td>
<td>-1.84</td>
<td>-1.94 ± 0.22</td>
</tr>
</tbody>
</table>
Scatter high energy leptons off protons

Measuring polarized cross-sections we can access the proton structure:

\[
\frac{d^2 \sigma^{\uparrow \uparrow}}{d\Omega dE'} + \frac{d^2 \sigma^{\uparrow \downarrow}}{d\Omega dE'} = \frac{8\alpha^2 E'^2}{MQ^4} \left[2\sin^2 \theta / 2 \ F^\text{em}_1(x, Q^2) + \frac{M}{\nu} \cos^2 \theta / 2 \ F^\text{em}_2(x, Q^2) \right]
\]

\[
\frac{d^2 \sigma^{\uparrow \downarrow}}{d\Omega dE'} - \frac{d^2 \sigma^{\uparrow \uparrow}}{d\Omega dE'} = \frac{4\alpha^2 E'}{Q^2 EM\nu} \left[(E + E' \cos \theta) \ g_1(x, Q^2) - 2xM \ g_2(x, Q^2) \right].
\]

- \(F^\text{em}_1(x) = \frac{1}{2} \sum q e_q^2 q(x) \)
- \(F^\text{em}_2(x) = 2x F^\text{em}_1(x) \)
- \(g_1(x) = \frac{1}{2} \sum q e_q^2 \Delta q(x) \)
What do we know about the proton?

Probing inside of the proton

Structure of proton

\[Q = \sum_i \int dx x q_i(x) \sim 0.5 \]
SLAC ('70s)

\[S = \int dx x s(x) \sim 1\% \]

\[\Delta S = \int dx \Delta s(x) \sim -10\% \]

\[\nu_l s \rightarrow l^- c \]

from global fits

\[\Delta \Sigma = \sum_i \int dx \Delta q_i(x) \sim 0.3 \]
EMC, SMC, HERMES, JLAB ('80-now)

SU_F(3) \times SU_S(2) w.f.

Dmitry V. Naumov (JINR)

\[\Lambda = \frac{\nu_{NC} - \bar{\nu}_{NC}}{\nu_{CC} - \bar{\nu}_{CC}} \]

Spin structure of \(\Lambda \)

Longitudinal \(P_\Lambda, P_{\bar{\Lambda}} \)

Quark fragmentation functions

(Di)quark fracture functions

10/04/2009
What do we know about the proton?

Probing inside of the proton

Structure of proton

\[Q = \sum_i \int dx x q_i(x) \sim 0.5 \]

\[S = \int dx x s(x) \sim 1\% \]

\[\Delta \Sigma = \sum_i \int dx \Delta q_i(x) \sim 0.3 \]

\[S U_F(3) \times S U_S(2) \text{ w.f.} \]

\[\Delta S = \int dx \Delta s(x) \sim -10\% \]

\[\mathcal{A} = \frac{\nu_{NC} - \bar{\nu}_{NC}}{\nu_{CC} - \bar{\nu}_{CC}} \]

\[\nu_{l}s \rightarrow l^- c \]

from global fits

Longitudinal \(P_{\Lambda}, P_{\bar{\Lambda}} \)

Spin structure of \(\Lambda \)

(Di)quark fracture functions

Quark fragmentation functions

Dmitry V. Naumov (JINR)
\(\Lambda/\bar{\Lambda} \) polarization
10/04/2009 11 / 86
What do we know about the proton?

Structure of proton

\[Q = \sum_i \int dx x q_i(x) \sim 0.5 \]

SLAC ('70s)

\[S = \int dx x s(x) \sim 1\% \]

EMC, SMC, HERMES, JLAB ('80-now)

\[\Delta \Sigma = \sum_i \int dx \Delta q_i(x) \sim 0.3 \]

\[S_{UF}(3) \times S_{US}(2) \text{ w.f.} \]

\[\Delta S = \int dx \Delta s(x) \sim -10\% \]

\[\mathcal{A} = \frac{\nu_{NC}-\bar{\nu}_{NC}}{\nu_{CC}-\bar{\nu}_{CC}} \]

\[\nu_{lS} \rightarrow l^- c \]

from global fits

Longitudinal \(P_\Lambda, P_{\bar{\Lambda}} \)

Spin structure of \(\Lambda \)

(di)quark fracture functions

Quark fragmentation functions

\[\nu_{lS} \rightarrow l^- c \]

from global fits

Longitudinal \(P_\Lambda, P_{\bar{\Lambda}} \)

Spin structure of \(\Lambda \)

(di)quark fracture functions

Quark fragmentation functions
What do we know about the proton?

Structure of proton

- \[Q = \sum_i \int dx x q_i(x) \sim 0.5 \]
 - SLAC ('70s)

- \[S = \int dx x s(x) \sim 1\% \]

- \[\Delta S = \int dx \Delta s(x) \sim -10\% \]

- \[\Delta \Sigma = \sum_i \int dx \Delta q_i(x) \sim 0.3 \]
 - EMC, SMC, HERMES, JLAB ('80-now)

Longitudinal \(P_\Lambda, P_{\bar{\Lambda}} \)

Spin structure of \(\Lambda \)

(Di)quark fracture functions

Quark fragmentation functions

From global fits

\(\nu^l S \rightarrow l^- c \)

\(\mathcal{A} = \frac{\nu_{NC} - \bar{\nu}_{NC}}{\nu_{CC} - \bar{\nu}_{CC}} \)
What do we know about the proton?

Probing inside of the proton

Structure of proton

- \[Q = \sum_i \int dx x q_i(x) \sim 0.5 \]
 - SLAC ('70s)

- \[S = \int dx x s(x) \sim 1\% \]

- \[\Delta \Sigma = \sum_i \int dx \Delta q_i(x) \sim 0.3 \]
 - EMC, SMC, HERMES, JLAB ('80-now)

- \[\Delta S = \int dx \Delta s(x) \sim -10\% \]

\[\Delta \Sigma = \sum_i \int dx \Delta q_i(x) \sim 0.3 \]

SU_F(3) \times SU_S(2)

\[A = \frac{\nu_{NC} - \bar{\nu}_{NC}}{\nu_{CC} - \bar{\nu}_{CC}} \]

- From global fits

- Longitudinal \(P_\Lambda, P_\bar{\Lambda} \)

- Spin structure of \(\Lambda \)

- (Di)quark fracture functions

- Quark fragmentation functions

- \(\nu_\ell s \rightarrow l^\pm c \)

Dmitry V. Naumov (JINR)
\(\Lambda/\bar{\Lambda} \) polarization
10/04/2009
11 / 86
What do we know about the proton?

Probing inside of the proton

Structure of proton

\[Q = \sum_i \int dx x q_i(x) \sim 0.5 \]
SLAC ('70s)

\[S = \int dx x s(x) \sim 1\% \]

\[\Delta\Sigma = \sum_i \int dx \Delta q_i(x) \sim 0.3 \]
EMC, SMC, HERMES, JLAB ('80-now)

\[\Delta S = \int dx \Delta s(x) \sim -10\% \]

SU_F(3) \times SU_S(2) w.f.

ν_l s \rightarrow l^- c
from global fits

Longitudinal \(P_\Lambda, P_{\bar{\Lambda}} \)

Spin structure of \(\Lambda \)

(Di)quark fracture functions

Quark fragmentation functions

\[A = \frac{\nu_{NC} - \bar{\nu}_{NC}}{\nu_{CC} - \bar{\nu}_{CC}} \]
What do we know about the proton?

Probing inside of the proton

Structure of proton

$Q = \sum_i \int dx x q_i(x) \sim 0.5$

SLAC (’70s)

$S = \int dx x s(x) \sim 1%$

EMC, SMC, HERMES, JLAB (’80-now)

$\Delta S = \int dx \Delta s(x) \sim -10%$

$\Delta \Sigma = \sum_i \int dx \Delta q_i(x) \sim 0.3$

$SU_F(3) \times SU_S(2)$ w.f.

$\nu_l s \rightarrow l^- c$

from global fits

Longitudinal $P_\Lambda, P_{\bar{\Lambda}}$

Spin structure of Λ

(Di)quark fracture functions

Quark fragmentation functions

$A = \frac{\nu_{NC} - \bar{\nu}_{NC}}{\nu_{CC} - \bar{\nu}_{CC}}$

Dmitry V. Naumov (JINR)

$\Lambda/\bar{\Lambda}$ polarization

10/04/2009

11 / 86
What do we know about the proton?

Structure of proton

\[Q = \sum_i \int dx x q_i(x) \sim 0.5 \]

SLAC ('70s)

\[S = \int dx x s(x) \sim 1\% \]

\[\Delta \Sigma = \sum_i \int dx \Delta q_i(x) \sim 0.3 \]

EMC, SMC, HERMES, JLAB ('80-now)

\[\Delta S = \int dx \Delta s(x) \sim -10\% \]

SU_F(3) \times SU_S(2) w.f.

\[\nu_l s \rightarrow l^- c \]

from global fits

\[\mathcal{A} = \frac{\nu_{NC} - \bar{\nu}_{NC}}{\nu_{CC} - \bar{\nu}_{CC}} \]

Longitudinal \(P_\Lambda, P_{\bar{\Lambda}} \)

\[\Lambda/\bar{\Lambda} \text{ polarization} \]

Spin structure of \(\Lambda \)

(Di)quark fracture functions

Quark fragmentation functions

Dmitry V. Naumov (JINR)
What do we know about the proton?

Probing inside of the proton

Structure of proton

\[Q = \sum_i \int dx x q_i(x) \sim 0.5 \]
SLAC (’70s)

\[S = \int dx x s(x) \sim 1\% \]

\[\Delta \Sigma = \sum_i \int dx \Delta q_i(x) \sim 0.3 \]
EMC, SMC, HERMES, JLAB (’80-now)

\[\Delta S = \int dx \Delta s(x) \sim -10\% \]

\[SU_F(3) \times SU_S(2) \text{ w.f.} \]

\[\nu l_s \rightarrow l^- c \text{ from global fits} \]

Longitudinal \(P_\Lambda, P_{\bar{\Lambda}} \)

Spin structure of \(\Lambda \)

(Di)quark fracture functions

Quark fragmentation functions
What do we know about the proton?

Probing inside of the proton

Structure of proton

\[Q = \sum_i \int dx x q_i(x) \sim 0.5 \]
SLAC ('70s)

\[S = \int dx x s(x) \sim 1\% \]

\[\Delta \Sigma = \sum_i \int dx \Delta q_i(x) \sim 0.3 \]
EMC, SMC, HERMES, JLAB ('80-now)

\[\Delta S = \int dx \Delta s(x) \sim -10\% \]

\[S_{UF}(3) \times S_{US}(2) \text{ w.f.} \]

\[\Lambda = \frac{\nu_{NC} - \bar{\nu}_{NC}}{\nu_{CC} - \bar{\nu}_{CC}} \]

Longitudinal \(P_\Lambda, P_{\bar{\Lambda}} \)

Spin structure of \(\Lambda \)

(Di)quark fracture functions

Quark fragmentation functions

\[\nu l s \rightarrow l^- c \]
from global fits

10/04/2009
What do we know about the proton?

Structure of proton

\[Q = \sum_i \int dx x q_i(x) \sim 0.5 \]

SLAC ('70s)

\[S = \int dx x s(x) \sim 1\% \]

\[\Delta S = \int dx \Delta s(x) \sim -10\% \]

EMC, SMC, HERMES, JLAB ('80-now)

Longitudinal \(P_\Lambda, P_{\bar{\Lambda}} \)

Spin structure of \(\Lambda \)

(Di)quark fracture functions

Quark fragmentation functions

\[\Delta \Sigma = \sum_i \int dx \Delta q_i(x) \sim 0.3 \]

\[S U_F(3) \times S U_S(2) \text{ w.f.} \]

\[\Delta S = \int dx \Delta s(x) \sim -10\% \]

\[\mathcal{A} = \frac{\nu_{NC} - \nu_{\bar{NC}}}{\nu_{CC} - \nu_{\bar{CC}}} \]

\[\nu_l s \rightarrow l^- c \] from global fits

Dmitry V. Naumov (JINR)
What do we know about the proton?

\[Q = \sum_i \int dx x q_i(x) \sim 0.5 \]
SLAC ('70s)

\[S = \int dx x s(x) \sim 1\% \]

\[\Delta S = \int dx \Delta s(x) \sim -10\% \]

\[\Delta \Sigma = \sum_i \int dx \Delta q_i(x) \sim 0.3 \]
EMC, SMC, HERMES, JLAB ('80-now)

\[SU_F(3) \times SU_S(2) \text{ w.f.} \]

\[\nu l \rightarrow l^- c \]
from global fits

Longitudinal \(P_\Lambda, P_{\bar{\Lambda}} \)

Spin structure of \(\Lambda \)

(Di)quark fracture functions

\(\lambda = \frac{\nu_{NC} - \bar{\nu}_{NC}}{\nu_{CC} - \bar{\nu}_{CC}} \)
What do we know about the proton?

Structure of proton

- $Q = \sum_i \int dx x q_i(x) \sim 0.5$
 - SLAC ('70s)

- $S = \int dx s(x) \sim 1\%$

- $\Delta S = \int dx \Delta s(x) \sim -10\%$
 - EMC, SMC, HERMES, JLAB ('80-now)

- $\Delta \Sigma = \sum_i \int dx \Delta q_i(x) \sim 0.3$
 - $SU_F(3) \times SU_S(2)$ w.f.

Longitudinal $P_\Lambda, P_{\bar{\Lambda}}$

- $\nu l s \rightarrow l^- c$
 - from global fits

- $\mathcal{A} = \frac{\nu_{NC} - \bar{\nu}_{NC}}{\nu_{CC} - \bar{\nu}_{CC}}$

Spin structure of Λ

Quark fragmentation functions

(Di)Quark fracture functions
What do we know about the proton?

Probing inside of the proton

Structure of proton

\[Q = \sum_i \int dx x q_i(x) \sim 0.5 \]

SLAC ('70s)

\[S = \int dx x s(x) \sim 1\% \]

\[\Delta \Sigma = \sum_i \int dx \Delta q_i(x) \sim 0.3 \]

EMC, SMC, HERMES, JLAB ('80-now)

\[S_{UF}(3) \times S_{US}(2) \text{ w.f.} \]

\[\Delta S = \int dx \Delta s(x) \sim -10\% \]

\[\nu_l s \rightarrow l^- c \]

from global fits

Longitudinal \(P_\Lambda, P_{\bar{\Lambda}} \)

\[A = \frac{\nu_{NC} - \bar{\nu}_{NC}}{\nu_{CC} - \bar{\nu}_{CC}} \]

Spin structure of \(\Lambda \)

(Di)quark fracture functions

Quark fragmentation functions

Dmitry V. Naumov (JINR)
What do we know about the strangeness in nucleon?

- s quarks carry about 4% of the nucleon momentum at $Q^2 = 20$ GeV ©CCFR.
- Combination of electric and magnetic form-factors is small:
 \[G_E + 0.39G_M = 0.025 \pm 0.020 \pm 0.014 \] ©HAPPEX,
 \[G_E + 0.225G_M = 0.039 \pm 0.034 \] ©A4.
- s quark contributes little to the magnetic moment of nucleon:
 $-0.1 \pm 5.1\%$ ©SAMPLE.

On the other hand:

“Spin crysis” suggests that the quarks carry only $\sim 1/3$ of the nucleon spin with $\Delta s \approx -10\%$!
How else the strangeness can be measured?

- di-muon events in (anti) neutrino
 - needs large neutrino statistics... seems doable at short time scale only with NOMAD
 - involves large uncertainties in m_c and hadronization. Not sensitive to Δs...

- neutrino and anti-neutrino cross-sections asymmetry:
 \[A = \frac{\nu_{NC} - \bar{\nu}_{NC}}{\nu_{CC} - \bar{\nu}_{CC}} \]

gives a road to strange form-factors and thus to Δs.

© W.A. Alberico, S.M. Bilenky, C. Maieron, hep-ph/0102269

- unfortunately this is VERY difficult experimentally...
What do we know about the proton? Why $\Lambda/\bar{\Lambda}$?

Λ and Δs

In SU(6) model the $\Lambda/\bar{\Lambda}$ spin is carried by s/\bar{s}, thus a possible Δs can be transferred to Λ hyperon and measured in $\Lambda \to p + K_s^0$

Idea

Measure P_Λ in lepton-nucleon DIS to feel Δs in the nucleon
Bukrhard, Jaffe noted that using SU(6) and the “spin crisis“ for the proton one gets the same “spin crisis“ for Λ:

\[\Delta u_\Lambda = \Delta d_\Lambda \approx -20\% \]
Today $s(x)/\bar{s}(x)$ are badly known

Various parametrizations differ by 100% (as GRV98 and CTEQ5L)

If $\Lambda/\bar{\Lambda}$ are produced from fragmentation of $s(x)/\bar{s}(x)$ than one can expect the final hyperon polarization to be proportional to $s(x)$ for Λ and $\bar{s}(x)$ for $\bar{\Lambda}$. The Λ polarization is a complicated issue as it involves both quark and target remnant fragmentation including the resonances (Σ^*, Σ^0, Ξ)

$$P_\Lambda = P_B D(y) \frac{\sum_q e^2_q q(x)(\Delta D^\Lambda_q(z) + \Delta F^\Lambda_{p\otimes q}(z))}{\sum_q e^2_q q(x)(D^\Lambda_q(z) + F^\Lambda_{p\otimes q}(z))}$$

Considering an anti-baryon $\bar{\Lambda}$ essentially simplifies the life:

$$P_{\bar{\Lambda}} = P_B D(y) \frac{e^2_s \bar{s}(x) \Delta D^\Lambda_{\bar{s}}(z)}{\sum_q e^2_q q(x)(D^\Lambda_q(z) + F^\Lambda_{p\otimes q}(z))}$$
What do we know about the proton?
- Non relativistic description
- Probing inside of the proton
- Nucleon strangeness
- Why $\Lambda/\bar{\Lambda}$?

What say experiments and theories?
- Experiments with charged particles
- Neutrino experiments

Our modelling

Results
- What are the source of $\Lambda/\bar{\Lambda}$
- Spin transfer to $\Lambda/\bar{\Lambda}$
- What about Δs?
- “Fit“ of $\bar{s}(x)$

Conclusions

Backup slides
What say experiments and theories?

Experiments with charged particles

Experiments in the game. HERMES

HERMES SPECTROMETER

27.6 GeV longitudinally polarized e-beam $P_e \approx 50\%$, flipped monthly; longitudinally and transversely polarized pure gaseous H, D targets $P_T \approx 80\%$, flipped every 60 sek

HERMES dipole $BL=1.3$ TM $\Delta p / p \approx 1\%$ $\Delta \theta_x, \Delta \theta_y = 1 \text{mrad}$

$-170 < \theta_x < +170 \text{mrad}$

$-140 < \theta_y < -40 \text{mrad}$

$140 > \theta_y > 40 \text{mrad}$

$40 < \theta < 220 \text{mrad}$

Very good PID!!

What say experiments and theories?

Experiments with charged particles

Experiments in the game. COMPASS
Experiments in the game. JLAB
What say experiments and theories?

Neutrino experiments

The NOMAD detector and V^0 reconstruction

- Drift chambers used as a target (2.7 tons) and for momentum measurement (3.5% resolution)
- Magnetic field: 0.4 T
- TRD and Preshower for electron identification
- ECAL and HCAL for energy measurement
- Muon chambers: detect and identify muon

Dmitry V. Naumov (JINR)
What say experiments and theories?

Neutrino experiments

Identification of K_S^0, Λ^0, $\bar{\Lambda}^0$

- Kinematic fit of V^0 like vertices for four hypotheses: $K_S^0 \rightarrow \pi^+\pi^0$, $\Lambda^0 \rightarrow p\pi^-$, $\bar{\Lambda}^0 \rightarrow \bar{p}\pi^+$, $\gamma \rightarrow e^+e^-$
- Good mass resolution

$M_{K_S^0}$: mean = 497.9, sigma = 9.7 (MeV)
M_Λ: mean = 1115.8, sigma = 3.8 (MeV)
$M_{\bar{\Lambda}}$: mean = 1116.0, sigma = 3.1 (MeV)
World data on longitudinal polarization of Λs

taken from S. Belostotski talk, Trento 2008
World data on longitudinal polarization of $\bar{\Lambda}$s
Almost all models ignore nucleon target end and deal with a quark fragmentation...

- $SU(6)$: $\Delta u_\Lambda = \Delta d_\Lambda = 0$, $\Delta s_\Lambda = 1$
- DIS-spin crisis picture (Burkardt-Jaffe): $\Delta u_\Lambda = \Delta d_\Lambda = -0.2$, $\Delta s_\Lambda = 0.6$
- B.Ma: $\Delta u_\Lambda = \Delta d_\Lambda = \Delta s_\Lambda$
- Lattice calculations: $\Delta u_\Lambda = \Delta d_\Lambda \approx 0$, $\Delta s_\Lambda = 0.68$

However it is not enough just to assume a quark polarization in Λ. The quark should fragment somehow into it and it will lose partially its original polarization.

- How much?
- Is it a dominant production mechanism?
What say experiments and theories?

Neutrino experiments

Models

Almost all models ignore nucleon target end and deal with a quark fragmentation...

- $SU(6)$: $\Delta u_\Lambda = \Delta d_\Lambda = 0, \Delta s_\Lambda = 1$
- DIS-spin crysis picture (Burkardt-Jaffe):
 $\Delta u_\Lambda = \Delta d_\Lambda = -0.2, \Delta s_\Lambda = 0.6$
- B.Ma: $\Delta u_\Lambda = \Delta d_\Lambda = \Delta s_\Lambda$
- Lattice calculations: $\Delta u_\Lambda = \Delta d_\Lambda \approx 0, \Delta s_\Lambda = 0.68$

However it is not enough just to assume a quark polarization in Λ. The quark should fragment somehow into it and it will lose partially its original polarization.

- How much?
- Is it a dominant production mechanism?
Models

Almost all models ignore nucleon target end and deal with a quark fragmentation...

- **SU(6):** \(\Delta u_\Lambda = \Delta d_\Lambda = 0, \Delta s_\Lambda = 1 \)
- **DIS-spin crysis picture (Burkardt-Jaffe):**
 \(\Delta u_\Lambda = \Delta d_\Lambda = -0.2, \Delta s_\Lambda = 0.6 \)
- **B.Ma:** \(\Delta u_\Lambda = \Delta d_\Lambda = \Delta s_\Lambda \)
- **Lattice calculations:** \(\Delta u_\Lambda = \Delta d_\Lambda \approx 0, \Delta s_\Lambda = 0.68 \)

However it is not enough just to assume a quark polarization in \(\Lambda \). The quark should fragment somehow into it and it will lose partially its original polarization.

- How much?
- Is it a dominant production mechanism?
Models

Almost all models ignore nucleon target end and deal with a quark fragmentation...

- \(SU(6) \): \(\Delta u_\Lambda = \Delta d_\Lambda = 0, \Delta s_\Lambda = 1 \)
- \(DIS \)-spin crysis picture (Burkardt-Jaffe):
 \(\Delta u_\Lambda = \Delta d_\Lambda = -0.2, \Delta s_\Lambda = 0.6 \)
- B.Ma: \(\Delta u_\Lambda = \Delta d_\Lambda = \Delta s_\Lambda \)
- Lattice calculations: \(\Delta u_\Lambda = \Delta d_\Lambda \approx 0, \Delta s_\Lambda = 0.68 \)

However it is not enough just to assume a quark polarization in \(\Lambda \). The quark should fragment somehow into it and it will lose partially its original polarization.

- How much?
- Is it a dominant production mechanism?
Unfortunately not. The situation is much more complicated and requires a lot of work:

- Target nucleon remnant is in most cases the **dominant process** (Factorization “theorem“ is not working)
 - a model pretending to describe polarized data must describe \(\Lambda, \bar{\Lambda} \) unpolarized properties because they are defined by production mechanisms (di-quark, string, quark)
 - difficult to make a realistic model for the di-quark fragmentation. [Needs to develop a theory for it which should be confronted to data and tuned if needed]

- Heavy resonances contribute significantly
 - to understand the data many unpolarized measurements are needed (yields of \(\Sigma^*, \Xi, \Sigma^0 \)
Outline

1. What do we know about the proton?
 - Non relativistic description
 - Probing inside of the proton
 - Nucleon strangeness
 - Why $\Lambda/\bar{\Lambda}$?

2. What say experiments and theories?
 - Experiments with charged particles
 - Neutrino experiments

3. Our modelling

4. Results
 - What are the source of $\Lambda/\bar{\Lambda}$
 - Spin transfer to $\Lambda/\bar{\Lambda}$
 - What about Δs?
 - “Fit“ of $s(x)$

5. Conclusions

6. Backup slides
Ingredients

- Interaction of lepton with nucleon
- Hadron fragmentation
- What is the mother of a hadron?
- Polarization of hadrons
- Uncertainties
We use LEPTO 6.1 package to model interactions of lepton (charged or neutrino) with nucleon. The following bugs were corrected by us:

- In LEPTO 6.1 it was missing the lepton scattering off sea u, d quarks
 - the bug was corrected and the author of LEPTO 6.1 was informed
- To model a nucleus LEPTO 6.1 “reweight“ quark distributions of protons and neutrons according to their fractions. This is OK for unpolarized case but wrong for polarized physics.
 - We first generate samples with protons and neutrons targets, perform polarization analyses and then mix events proportionally to the cross-sections.
We use JETSET7.4 package to model hadron fragmentation of quarks, di-quarks. JETSET has many free parameters tunable from experiments:

- we used the parameters tuned by the NOMAD Collaboration, which describe yields of Λ and $\bar{\Lambda}$ hyperons, produced promptly or from decays of $(\Sigma^*, \Sigma^0, \Xi)$. ©Artem Chukanov
Our modelling

Hadron rank or what is the hadron mother

In order to assign a polarization to the hadron one has to order hadrons in the hadrons string: decide is the considered hadron close to fragmenting quark or close to the target nucleon remnant. To account this we introduce two ranks:

- R_q - hadron number from the quark end of the string
- R_{qq} - hadron number from the target nucleon remnant
Our modelling

Hadron rank or what is the hadron mother

We consider two extreme cases to get an estimate of theory uncertainty.

- **Model A:** Restrict spin transfer in (di)quark fragmentation to hyperons with \(R_{qq} = 1, R_q \neq 1 \) \(R_{qq} \neq 1, R_q = 1 \);

- **Model B:** Allow spin transfer in (di)quark fragmentation to hyperons with \(R_{qq} > R_q \) \(R_{qq} < R_q \).
Polarization of hadrons. Quarks fragmentation

If a hadron is produced from the quark fragmentation (promptly or via heavier resonance), it could be polarized. The spin transfer is computed for SU(6) and “spin crysis“ BJ models:

<table>
<thead>
<tr>
<th>Λ’s parent</th>
<th>$C^Λ_u$</th>
<th>$C^Λ_d$</th>
<th>$C^Λ_s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>quark</td>
<td>SU(6)</td>
<td>BJ</td>
<td>SU(6)</td>
</tr>
<tr>
<td>Σ0</td>
<td>0</td>
<td>-0.18</td>
<td>0</td>
</tr>
<tr>
<td>Ξ0</td>
<td>-2/9</td>
<td>-0.12</td>
<td>-2/9</td>
</tr>
<tr>
<td>Ξ$^-$</td>
<td>-0.15</td>
<td>0.07</td>
<td>0</td>
</tr>
</tbody>
</table>
Our modelling

Polarization of hadrons. Di-quarks fragmentation

Model of polarized strangeness

1. small mass of pseudo scalar mesons π, K, η means strong attraction with quantum numbers $J^P = 0^-$.
2. Vacuum density of strange pairs is quite large

$$\langle 0|\bar{u}u|0\rangle \approx \langle 0|\bar{d}d|0\rangle \approx (250\text{MeV})^3,$$

$$\langle 0|\bar{s}s|0\rangle \approx (0.8 \pm 0.1)\langle 0|\bar{u}u|0\rangle.$$

This model was suggested in works of Ellis, Sapozhnikov, Kotzinian and Kharzeev
Polarization of hadrons. Di-quarks fragmentation

We do not know how strong is the correlation between spins of struch quark and sea strange (anti)quark. We introduce two free parameters $C_{sq\text{sea}}, C_{sq\text{val}}$. We fit these parameters from the NOMAD data:

Model A: $C_{sq\text{val}} = -0.35 \pm 0.05, C_{sq\text{sea}} = -0.95 \pm 0.05$.

Model B: $C_{sq\text{val}} = -0.25 \pm 0.05, C_{sq\text{sea}} = 0.15 \pm 0.05$.

Spin transfer to Λ is computed as:

\[
\begin{align*}
C_{\Lambda}^{l\text{u}}(\text{prompt}; N) &= C_{\Lambda}^{l\text{d}}(\text{prompt}; N) = C_{sq}, \\
C_{\Lambda}^{l\text{u}}(\Sigma^0; p) &= C_{\Lambda}^{l\text{d}}(\Sigma^0; n) = \frac{1}{3} \cdot \frac{2 + C_{sq}}{3 + 2C_{sq}}, \\
C_{\Lambda}^{l\text{u}}(\Sigma^{*0}; p) &= C_{\Lambda}^{l\text{d}}(\Sigma^{*0}; n) = C_{\Lambda}^{l\text{d}}(\Sigma^{*+}; p) = \\
C_{\Lambda}^{l\text{u}}(\Sigma^{*-}; n) &= -\frac{5}{3} \cdot \frac{1 - C_{sq}}{3 - C_{sq}}.
\end{align*}
\]
Description of the NOMAD data

Assigning ranks (close to a quark or di-quark end) by construction displays two extreme cases - however nobody knows which way is correct - this is a source of uncertainty.

Related to this the spin correlation coefficients C_{sq} fitted from the NOMAD data at moderate $x_{Bj} \sim 0.1$ could not be accurate enough for electromagnetic interaction for which $x_{Bj} \sim 10^{-3}$ is typical.

This implies that a new data in previously not explored domains can better fix only two parameters of our model.
What is our aim in this work 5 years later?

1. Predictions for $\bar{\Lambda}$ for COMPASS, HERA
2. Predictions for Λ for JLAB, COMPASS, HERA
 - The NOMAD data are restricted to $x > 0.05$. We need smaller x to better fix $C_{sq_{sea}}, C_{sq_{val}}$. For this purpose the COMPASS data is essential.
3. Study a dependence of spin transfer to $s(x)/\bar{s}(x)$ ДМС COMPASS, HERA
Outline

1. What do we know about the proton?
 - Non relativistic description
 - Probing inside of the proton
 - Nucleon strangeness
 - Why $\Lambda/\bar{\Lambda}$?

2. What say experiments and theories?
 - Experiments with charged particles
 - Neutrino experiments

3. Our modelling

4. Results
 - What are the source of $\Lambda/\bar{\Lambda}$
 - Spin transfer to $\Lambda/\bar{\Lambda}$
 - What about Δs?
 - “Fit“ of $\bar{s}(x)$

5. Conclusions

6. Backup slides
Distributions of x_F for $\Lambda/\bar{\Lambda}$

- Let us examine distributions of x_F for $\Lambda/\bar{\Lambda}$ in different kinematic domains.
- What is the fraction of $\Lambda/\bar{\Lambda}$ produced from fragmentation of quark, di-quark, or resonance?
Distributions of x_F for Λ in COMPASS

Model B
- all
- light-quark-prompt
- resonances from struck quark
- resonances from target
- s-prompt
- target nucleon end
Distributions of x_F for $\bar{\Lambda}$ in COMPASS

Model B
- **all**
- light-quark-prompt
- resonances from struck quark
- resonances from target
- sbar-prompt
- target nucleon end

Entries, a.u.

x_F

- 10^{-1}
- 10^{-2}
- 10^{-3}
For the COMPASS energy the dominant mechanism of Λ production is the di-quark fragmentation. $\bar{\Lambda}$ are produced mainly from \bar{s} fragmentation.

For the HERA energy quark and diquark mechanisms are well separated, however a new mechanism becomes effective - quark-antiquark string fragmentation, like in $e^+ - e^-$ collisions. Thus it is not instructive to require really very large energies for such studies (pictures moved to backup slides).
Spin transfer to $\Lambda/\bar{\Lambda}$

- How it depends on kinematics?
- How large it is?
- What are the main sources?
Spin transfer to Λ in COMPASS

SU(6), Model B

Model B
- all
- light-quarks-transfer-off
- strange-quark-transfer-off
- strangeness-transfer-off
Spin transfer to $\bar{\Lambda}$ in COMPASS

SU(6), Model B
Resume

- Apparent domains in x_F, x - sources of $\Lambda/\bar{\Lambda}$ polarization - due to di-quark (only for Λ) and quark fragmentations.
- Polarization of $\bar{\Lambda}$ is essentially defined by \bar{s} fragmentation. Thus it could be an instrument to study $\bar{s}(x)$.
Spin transfer to Λ in COMPASS for various $s(x)$, BJ, SU6

- GRV98, SU(6)
- GRV98, BJ
- CTEQ5L, SU(6)
- CTEQ5L, BJ

Dmitry V. Naumov (JINR)
Spin transfer to $\bar{\Lambda}$ in COMPASS for various $\bar{s}(x)$, BJ, SU6

![Graph showing spin transfer to $\bar{\Lambda}$](image)

Dmitry V. Naumov (JINR)
Comparison of SU(6) and BJ for Λ in HERA

Spin transfer vs. x_F for $\Lambda / \bar{\Lambda}$ polarization.

- **GRV98, SU(6)**
- **GRV98, BJ**
Comparison of SU(6) and BJ for $\bar{\Lambda}$ in HERA

Spin transfer

$\bar{\Lambda}/\Lambda$ polarization

Dmitry V. Naumov (JINR)

10/04/2009
An accurate measurement of spin transfer to $\Lambda/\bar{\Lambda}$ gives a possibility to study the spin structure of $\Lambda/\bar{\Lambda}$.
Sensitivity to polarized strangeness of Λ

- What will change if we switch off the spin transfer from nucleon strangeness, i.e. $C_{sq} = 0$?
What about Δs?

Sensitivity to polarized strangeness of Λ in JLAB

Model B

- all
- light-quarks-transfer-off
- strange-quark-transfer-off
- strangeness-transfer-off

Spin transfer vs. x_F
Results

What about Δs?

Sensitivity to polarized strangeness of Λ in JLAB (Projection for 1000 hours)

![Graph showing sensitivity to polarized strangeness of Λ in JLAB](image)

- CLAS12
- HERMES
- NOMAD
- WA59

Dmitry V. Naumov (JINR)
$\Lambda/\bar{\Lambda}$ polarization
10/04/2009
55 / 86
Spin transfer to Λ in JLAB is defined by polarized strangeness. Thus JLAB could be essential to define C_{sq}.
"Fit" of $\bar{s}(x)$

- Examine: MRST04, CTEQ06M, ALEKHIN02, GRV98
- We can "reweight" $s(x), \bar{s}(x)$ by hand trying to fit predictions to PRELIMINARY COMPASS DATA (could be done in a more consistent way fitting COMPASS results with all the world data by authors of distributions)
Spin transfer to $\bar{\Lambda}$ in COMPASS for various $\bar{s}(x)$

![Graph showing spin transfer to $\bar{\Lambda}$ in COMPASS for various $\bar{s}(x)$]
Spin transfer to Λ in COMPASS for various $\bar{s}(x)$
Spin transfer to $\bar{\Lambda}$ in COMPASS. MRST 04

Results

"Fit" of $\bar{s}(x)$

Spin transfer to $\bar{\Lambda}$ in COMPASS. MRST 04

- $s(x)$
- COMPASS PRELIMINARY
- mrst04 with $s(x) \times 2.00$

Dmitry V. Naumov (JINR)
Spin transfer to $\bar{\Lambda}$ in COMPASS. MRST 04

![Graph showing spin transfer to $\bar{\Lambda}$ versus x. The graph includes data points and error bars and is labeled with different curves indicating various models and fits.]

- Red curve: mrst04
- Blue curve: $\text{mrst04 with } \bar{s}(x) \times 2.00$
- Black curve: COMPASS PRELIMINARY

Legend:
- $\bar{s}(x)$
- x
Spin transfer to Λ in COMPASS. MRST 04

Results

"Fit" of $\bar{s}(x)$

Spin transfer to Λ in COMPASS. MRST 04

Dmitry V. Naumov (JINR)

$\Lambda/\bar{\Lambda}$ polarization

10/04/2009
Spin transfer to Λ in COMPASS. MRST 04

Results

"Fit" of $\bar{s}(x)$

Spin transfer to Λ in COMPASS. MRST 04

Spin transfer

-0.4 -0.2 0 0.2 0.4 0.6 0.8

xF

Spin transfer

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

mrst04

mrst04 with $s(x) \times 2.00$

COMPASS Λ PRELIMINARY

Dmitry V. Naumov (JINR)

$\Lambda/\bar{\Lambda}$ polarization

10/04/2009

63 / 86
Resume

- Spin transfer to $\bar{\Lambda}$ is sensitive to $\bar{s}(x)$ which could be fitted
- Spin transfer to Λ is less sensitive to $s(x)$ - more statistics is needed
- COMPASS with a factor X increase of statistics of $\bar{\Lambda}$ will improve our knowledge of $\bar{s}(x)$
Outline

1. What do we know about the proton?
 - Non relativistic description
 - Probing inside of the proton
 - Nucleon strangeness
 - Why \(\Lambda/\bar{\Lambda}\)?

2. What say experiments and theories?
 - Experiments with charged particles
 - Neutrino experiments

3. Our modelling

4. Results
 - What are the source of \(\Lambda/\bar{\Lambda}\)
 - Spin transfer to \(\Lambda/\bar{\Lambda}\)
 - What about \(\Delta s\)?
 - "Fit" of \(\bar{s}(x)\)

5. Conclusions

6. Backup slides
New data of COMPASS can sharpen domain of two free parameters of our model

An accurate measurement of polarization of $\Lambda, \bar{\Lambda}$ in COMPASS and HERA gives a new method to measure $s(x), \bar{s}(x)$ in nucleon

Spin structure of $\Lambda, \bar{\Lambda}$ can be extracted from the same data

Polarized nucleon strangeness can be extracted from measured Λ polarization in COMPASS, HERA, JLAB
Outline

1. What do we know about the proton?
 - Non relativistic description
 - Probing inside of the proton
 - Nucleon strangeness
 - Why $\Lambda/\bar{\Lambda}$?

2. What say experiments and theories?
 - Experiments with charged particles
 - Neutrino experiments

3. Our modelling

4. Results
 - What are the source of $\Lambda/\bar{\Lambda}$
 - Spin transfer to $\Lambda/\bar{\Lambda}$
 - What about Δs?
 - "Fit" of $\bar{s}(x)$

5. Conclusions

6. Backup slides
Distributions of x_F Λ/Λ polarization in HERA
Distributions of x_F \(\overline{\Lambda} \) in HERA

Model B
- **all**
- light-quark-prompt
- resonances from struck quark
- resonances from target
- sbar-prompt
- target nucleon end

Entries, a.u.

- 10^{-1}
- 10^{-2}
- 10^{-3}

xF

- -0.1 to 0.8
Spin transfer to Λ in COMPASS

SU(6), Model B
Spin transfer to $\bar{\Lambda}$ in COMPASS

SU(6), Model B
How sensitive are our predictions on model of tagging of particles?

Is it possible to reduce theor. uncertainty?
Models A and B for Λ in COMPASS

Spin transfer vs. x

- Model A
- Model B
Models A and B for \(\Lambda/\bar{\Lambda} \) in COMPASS

Spin transfer vs. \(x \) for models A and B.
Models A and B for Λ in COMPASS

Spin transfer vs. xF

- Model A
- Model B
Models A and B for $\bar{\Lambda}$ in COMPASS

Spin transfer

xF

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

$\Lambda/\bar{\Lambda}$ polarization

Dmitry V. Naumov (JINR)
Predictions for Λ strongly depend on models A and B. This dependence is due to much smaller x accessible in COMPASS and not accessible in NOMAD used to tune the parameters. We need the COMPASS data to fix the parameters and reduce systematics.

Predictions for $\bar{\Lambda}$ are practically insensitive to A and B tagging. This is very valuable to have a model independent probe of $\bar{s}(x)$!
Comparison of GRV98 and CTEQ5L for $\Lambda/\bar{\Lambda}$

- How sensitive our predictions on parametrizations of strange sea in the nuclen?
Comparison of GRV98 and CTEQ5L for Λ in COMPASS

- Λ/$\bar{\Lambda}$ polarization

Dmitry V. Naumov (JINR)
Comparison of GRV98 and CTEQ5L for $\bar{\Lambda}$ in COMPASS
Comparison of GRV98 and CTEQ5L for Λ in HERA

Dmitry V. Naumov (JINR)
$\Lambda/\bar{\Lambda}$ polarization
10/04/2009
Comparison of GRV98 and CTEQ5L for $\bar{\Lambda}$ in HERA

Spin transfer

xF

$GRV98, SU(6)$

$CTEQ5L, SU(6)$
An accurate measurement of spin transfer to $\Lambda/\bar{\Lambda}$ can be probes(x) $\bar{\Omega}$ $\bar{s}(x)$.

For COMPASS this effect is present for both $\Lambda/\bar{\Lambda}$, while HERA would be sensitive only with Λ.

There is no sense to require large energy because new mechanisms (like in e^+e^-) becomes more and more effective thus loosing sensitivity to $s(x)$ and $\bar{s}(x)$.
Can we learn from an experiment about the “spin crysis“ for $\Lambda/\bar{\Lambda}$?
Comparison of SU(6) and BJ for Λ in COMPASS

Spin transfer

\(x_F \)

GRV98, SU(6)
GRV98, BJ
Comparison of SU(6) and BJ for $\bar{\Lambda}$ in COMPASS