Hadron Spectroscopy from QCD

Jo Dudek

JLab Theory Center & Old Dominion University

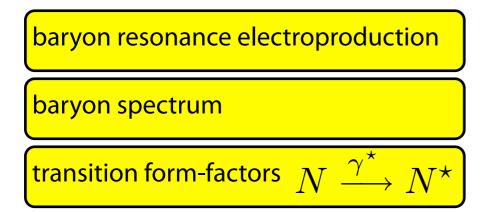
the local team :

Robert Edwards, Balint Joo, David Richards, Christopher Thomas

work under the auspices of the **Hadron Spectrum Collaboration**

<u>M.Peardon</u>, S.Ryan *Trinity, Dublin* J.Foley, C.Morningstar *Carnegie Mellon* K.Juge *U. Pacific* S.Wallace *Maryland* H-W.Lin *Washington* J.Bulava *DESY* N.Mathur *Tata*

hadron spectroscopy at JLab



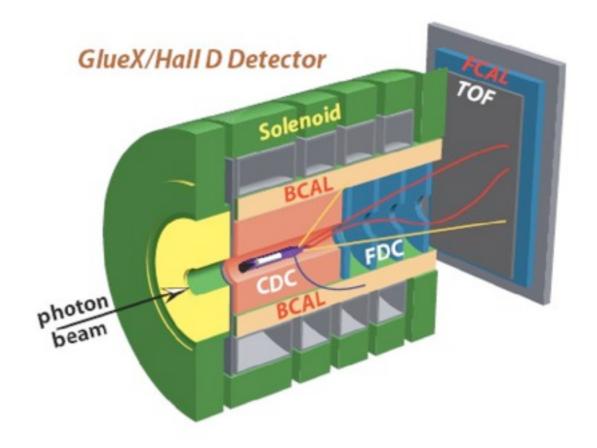
meson resonance photoproduction

g

meson spectrum

photocouplings

$$(m \xrightarrow{\gamma} m$$

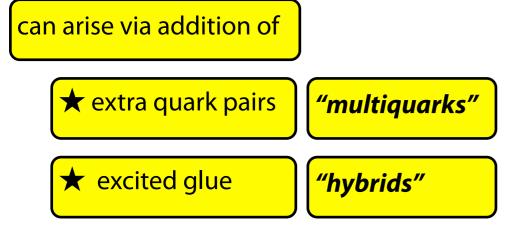


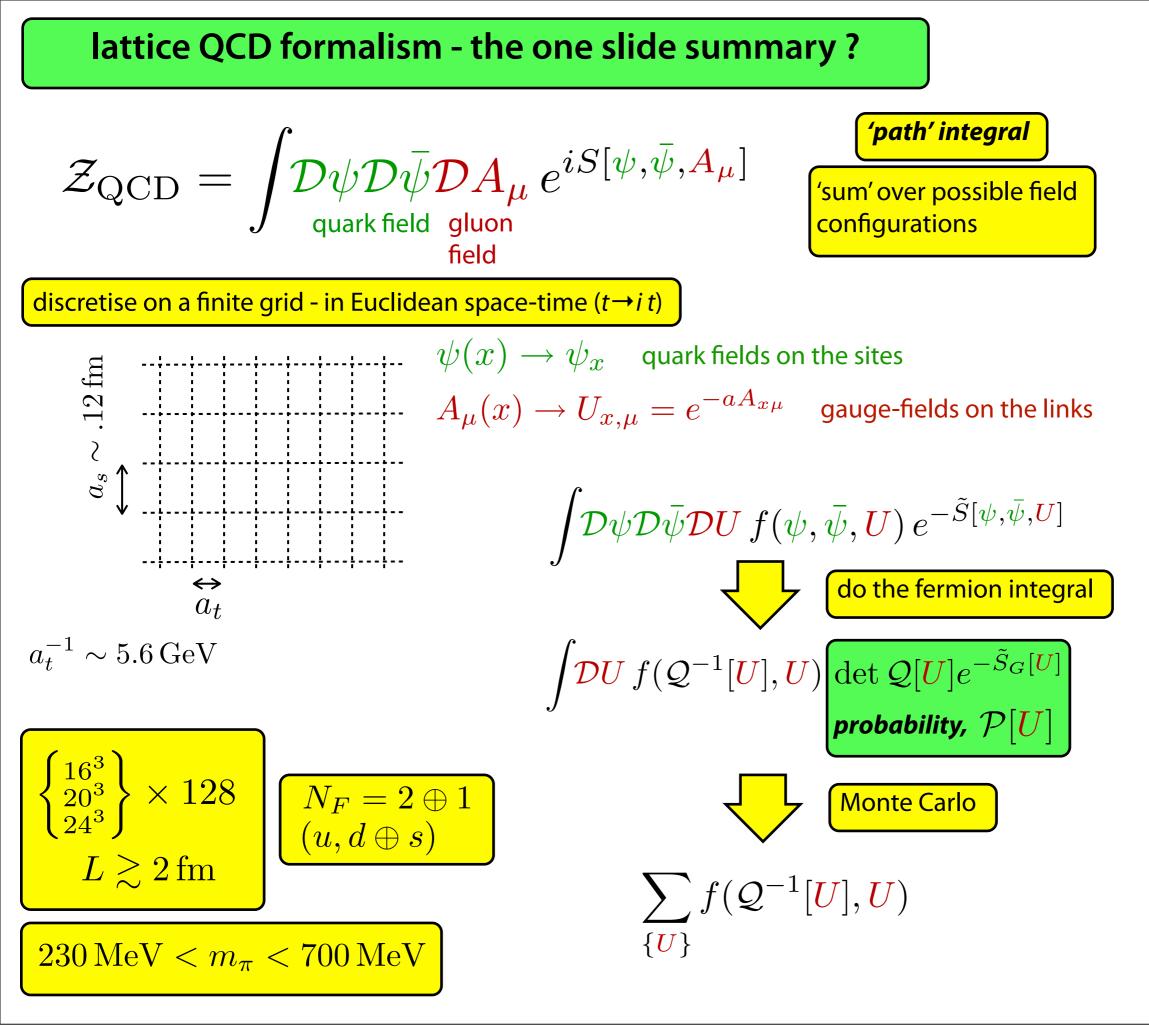
plus BES III, PANDA, Belle ...

hadron models

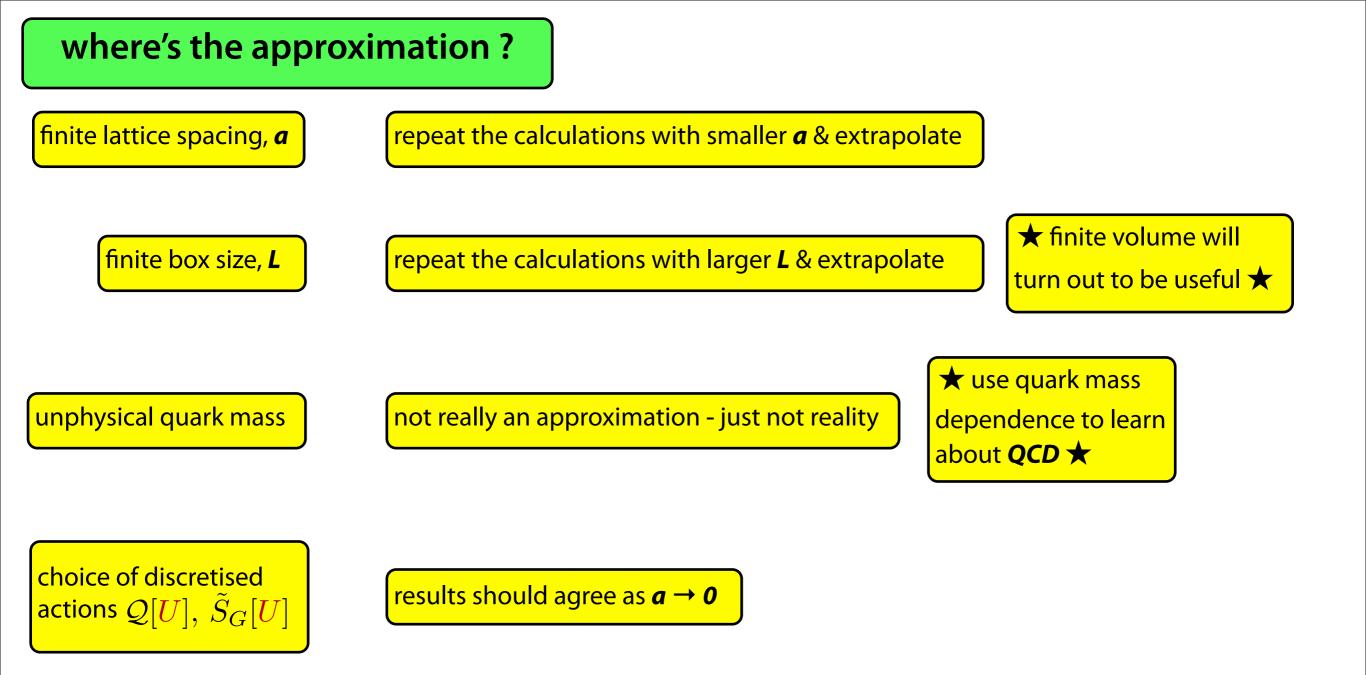
quark model - mes	sons as bound states of 'c $\left m ight angle\sim\int\!\!d^3ec q$			e.g. q $ar{q}$ in a ${}^{2S+1}L_J$ eigens $\sigma_\sigma(ec{q}); \ ar{q}_{\overline{\sigma}}(-ec{q}) ight angle$	
		$m_q \sim 3$	00 MeV	φ(q) is bound state wa from solution of Schrö with phenomenologic	dinger equation
$^{1}D_{2} \Rightarrow 2^{-+}$	$\pi_2(1670)$				
${}^{1}D_{2} \Rightarrow 2^{-+}$ ${}^{3}D_{1,2,3} \Rightarrow (1,2,3)^{}$	$ \rho_3(1690)$				
$^{1}P_{1} \Rightarrow 1^{+-}$	$b_1(1235)$				
${}^{3}\!P_{0,1,2} \Rightarrow (0,1,2)^{++}$	$a_0(980) \ a_1(1260)$	$a_2(1320)$			
$^{3}S_{1} \Rightarrow 1^{}$	ho(770)				
	$\pi(140)$ 🗶				
			? why is t	he effective degree-of-f	reedom so heavy ?

? where is the dynamical glue ?





Friday, March 12, 2010



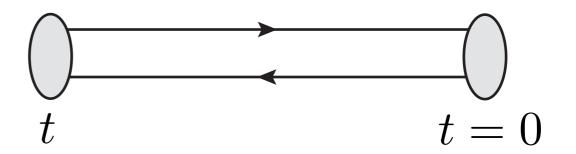
two-point functions & the energy spectrum

a two-point correlator :

$$C_{\mathbf{\Gamma},\mathbf{\Gamma}'}(\vec{p};t,0) = \langle 0 | \bar{\psi}_t \mathbf{\Gamma} \psi_t \ \bar{\psi}_0 \mathbf{\Gamma}' \psi_0 | 0 \rangle$$

$$\int \! \mathcal{D}\psi \mathcal{D}\bar{\psi} \mathcal{D}U \, \cdot \, \int \! d^3y \, e^{-i\vec{p}\cdot\vec{y}} \, \bar{\psi}_{y,t} \Gamma \psi_{y,t} \! \int \! \int \! d^3x \, e^{i\vec{p}\cdot\vec{x}} \, \bar{\psi}_{x,0} \Gamma' \psi_{x,0} \! \cdot \, e^{-\tilde{S}[\psi,\bar{\psi},U]} \\ \underset{\text{meson operator at mom } \vec{p} \quad e^{-\tilde{S}[\psi,\bar{\psi},U]}$$

$$\bar{\psi}_{y,t} \Gamma \psi_{y,t} \ \bar{\psi}_{x,0} \Gamma' \psi_{x,0}$$



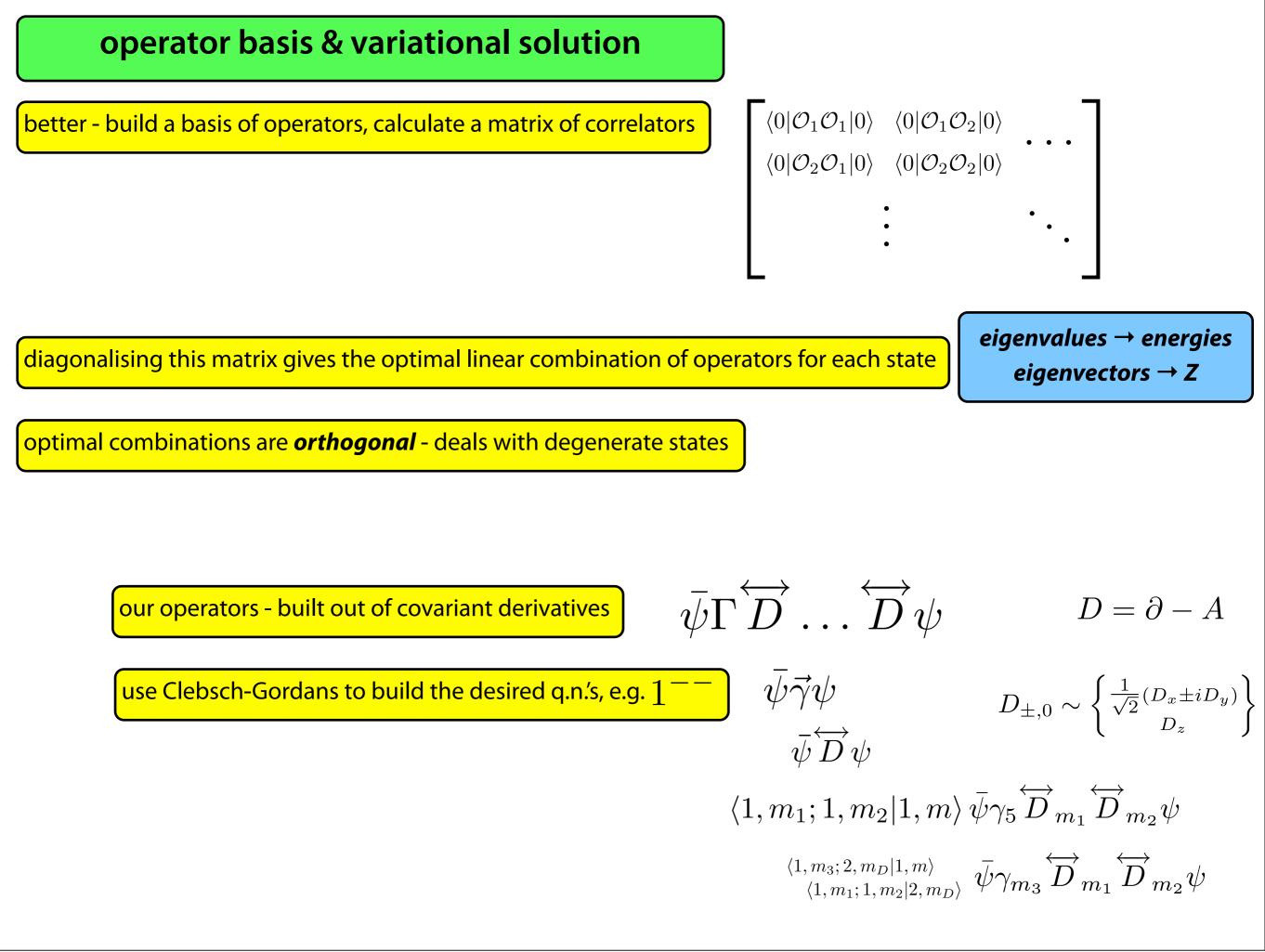
two-point functions & the energy spectrum

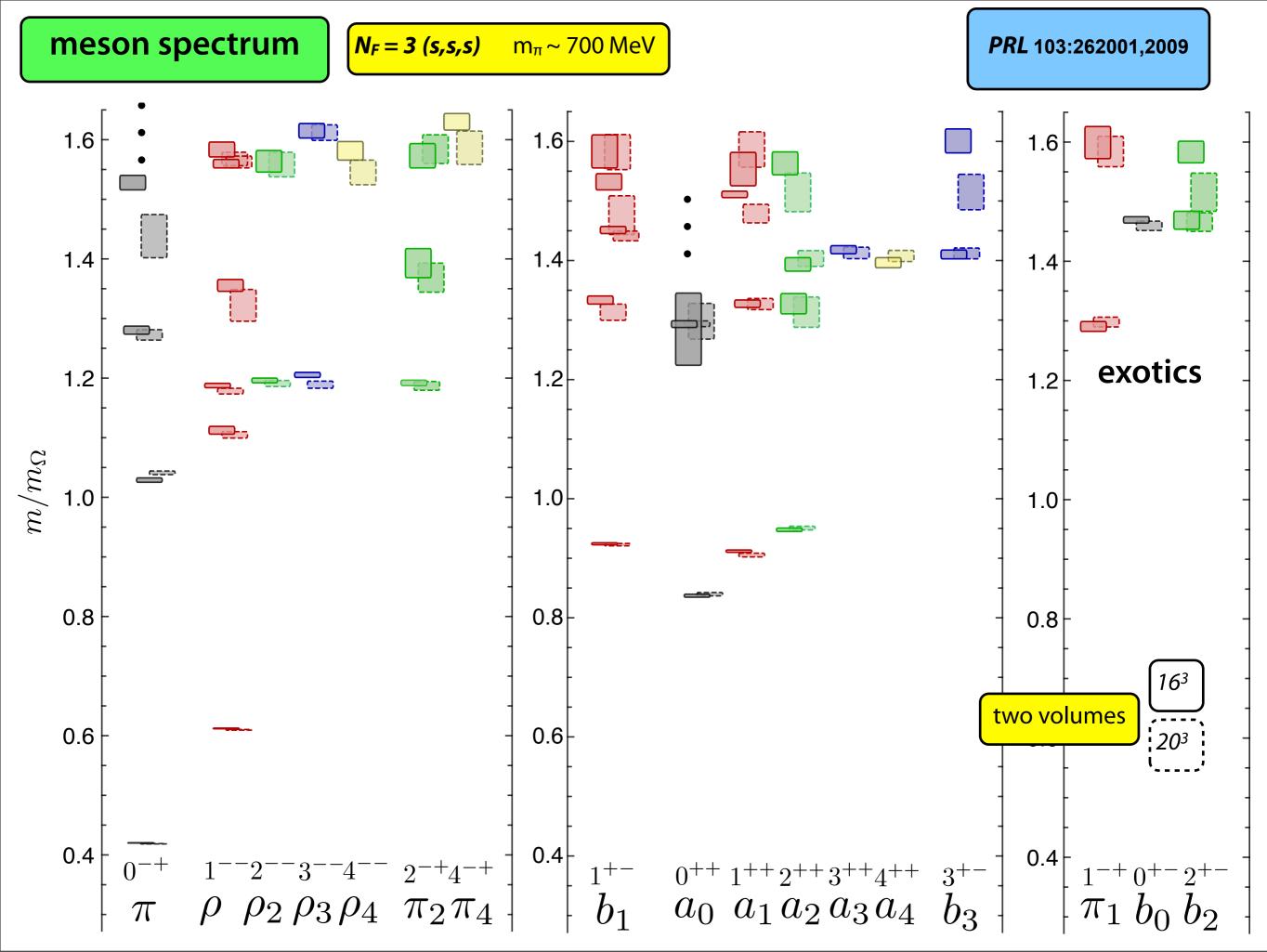
relation to the spectrum : complete set of **QCD** eigenstates* $1 = \sum \left| n \right\rangle \langle n |$ $\langle 0|\bar{\psi}_t \mathbf{\Gamma}\psi_t \; \bar{\psi}_0 \mathbf{\Gamma}'\psi_0|0\rangle$ n $= \sum \left\langle 0 | \bar{\psi}_t \mathbf{\Gamma} \psi_t | n \right\rangle \left\langle n | \bar{\psi}_0 \mathbf{\Gamma}' \psi_0 | 0 \right\rangle$ n $= \sum e^{-E_n t} \langle 0 | \bar{\psi}_0 \Gamma \psi_0 | n \rangle \langle n | \bar{\psi}_0 \Gamma' \psi_0 | 0 \rangle$ n $= \sum Z_n^{\Gamma} Z_n^{\Gamma'} e^{-E_n t}$ in principle - contribution from all states with the right q.n.'s

> fitting a sum of exponentials is unstable - noisy data

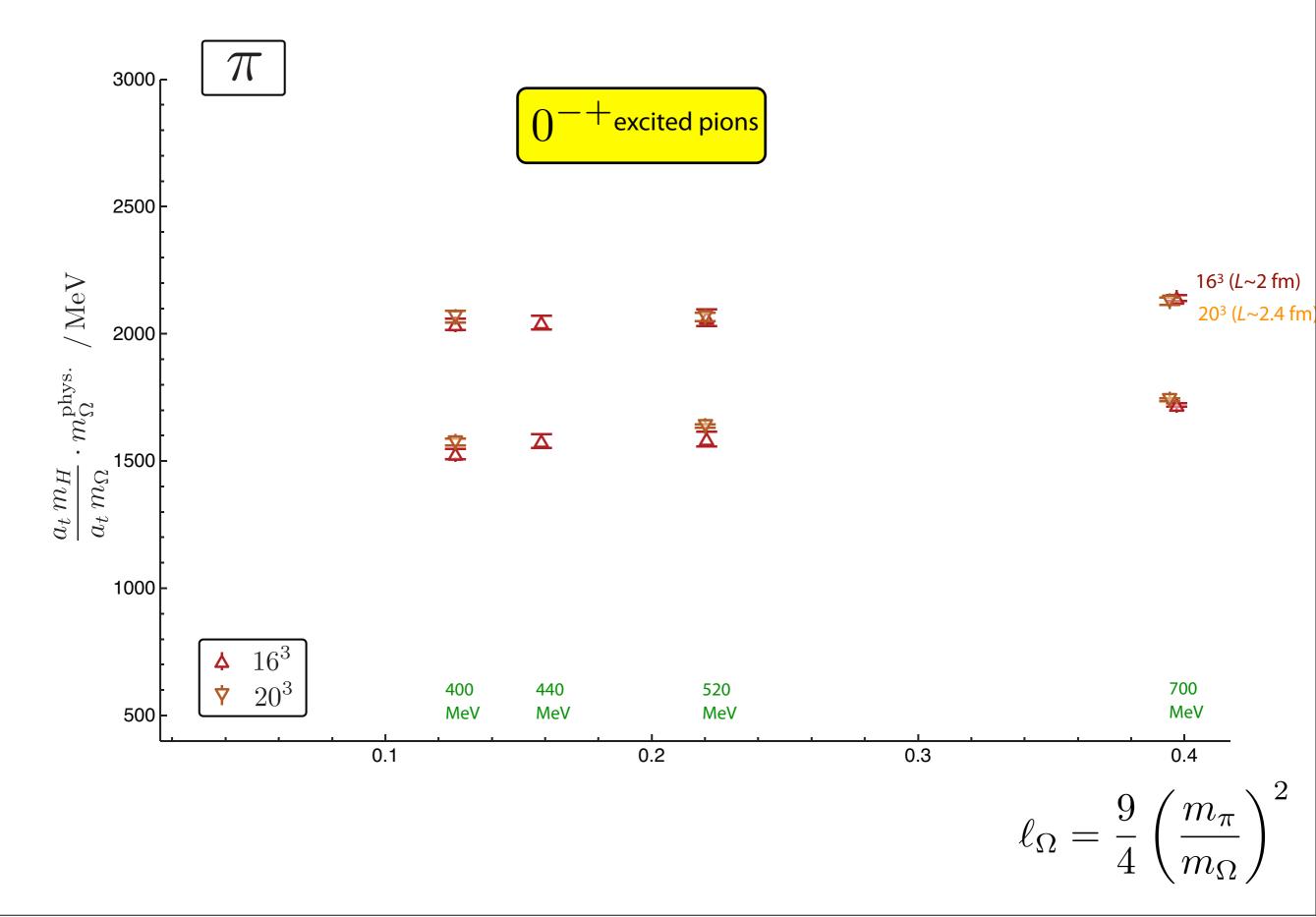
- possibly degenerate states

n

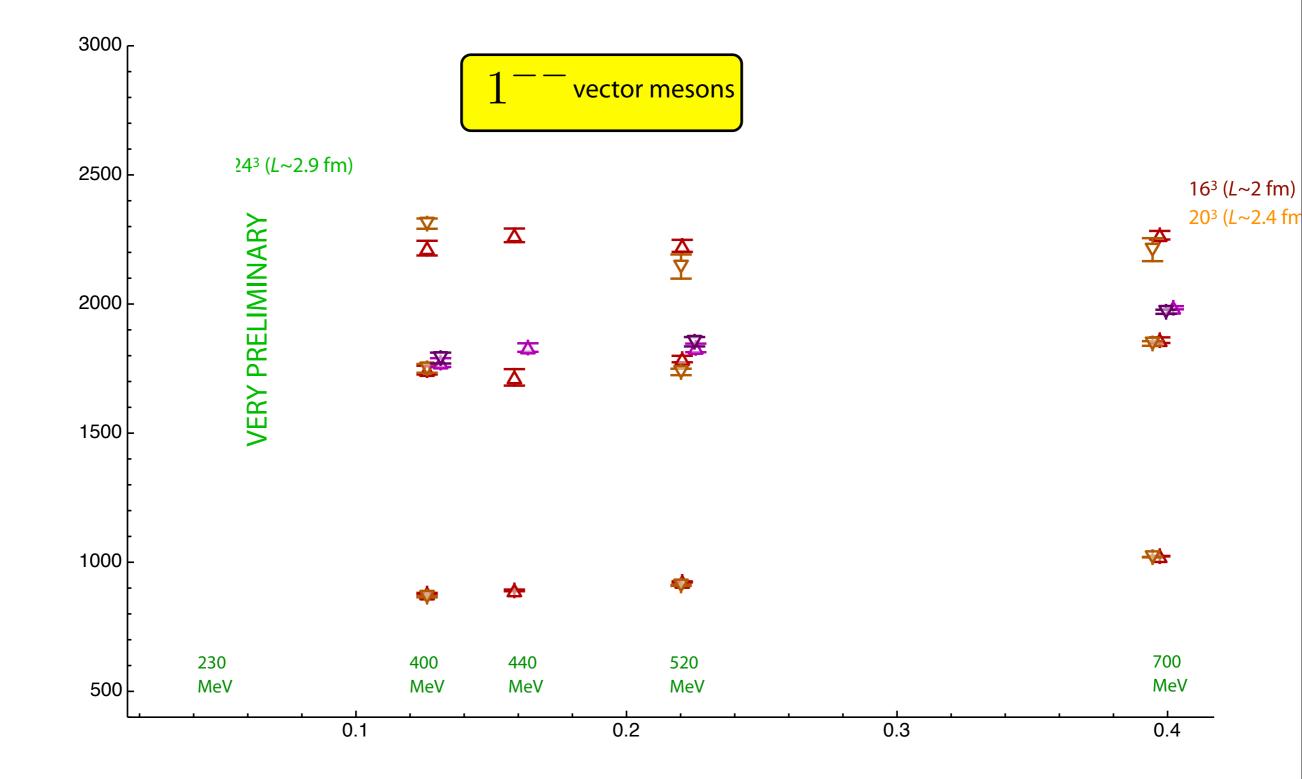




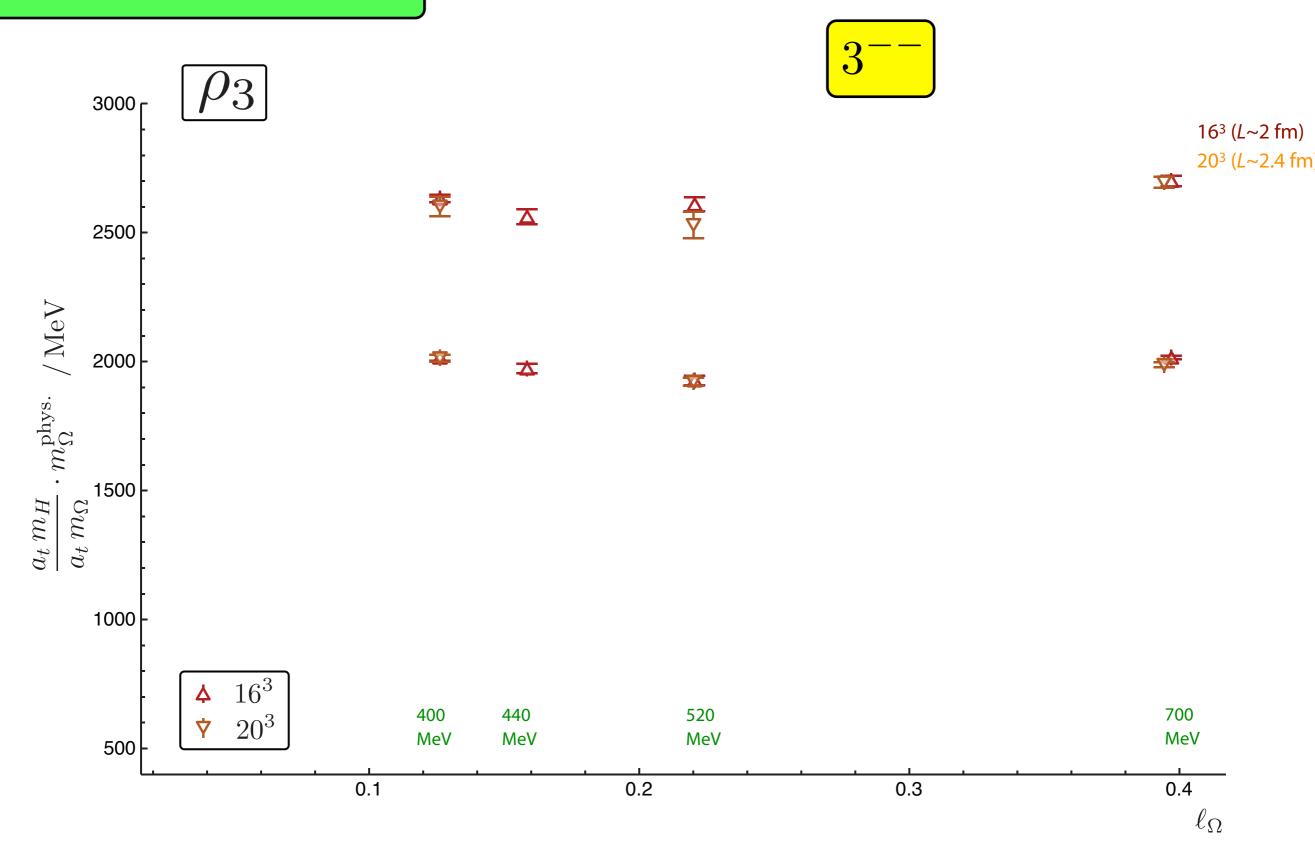
reducing the quark mass

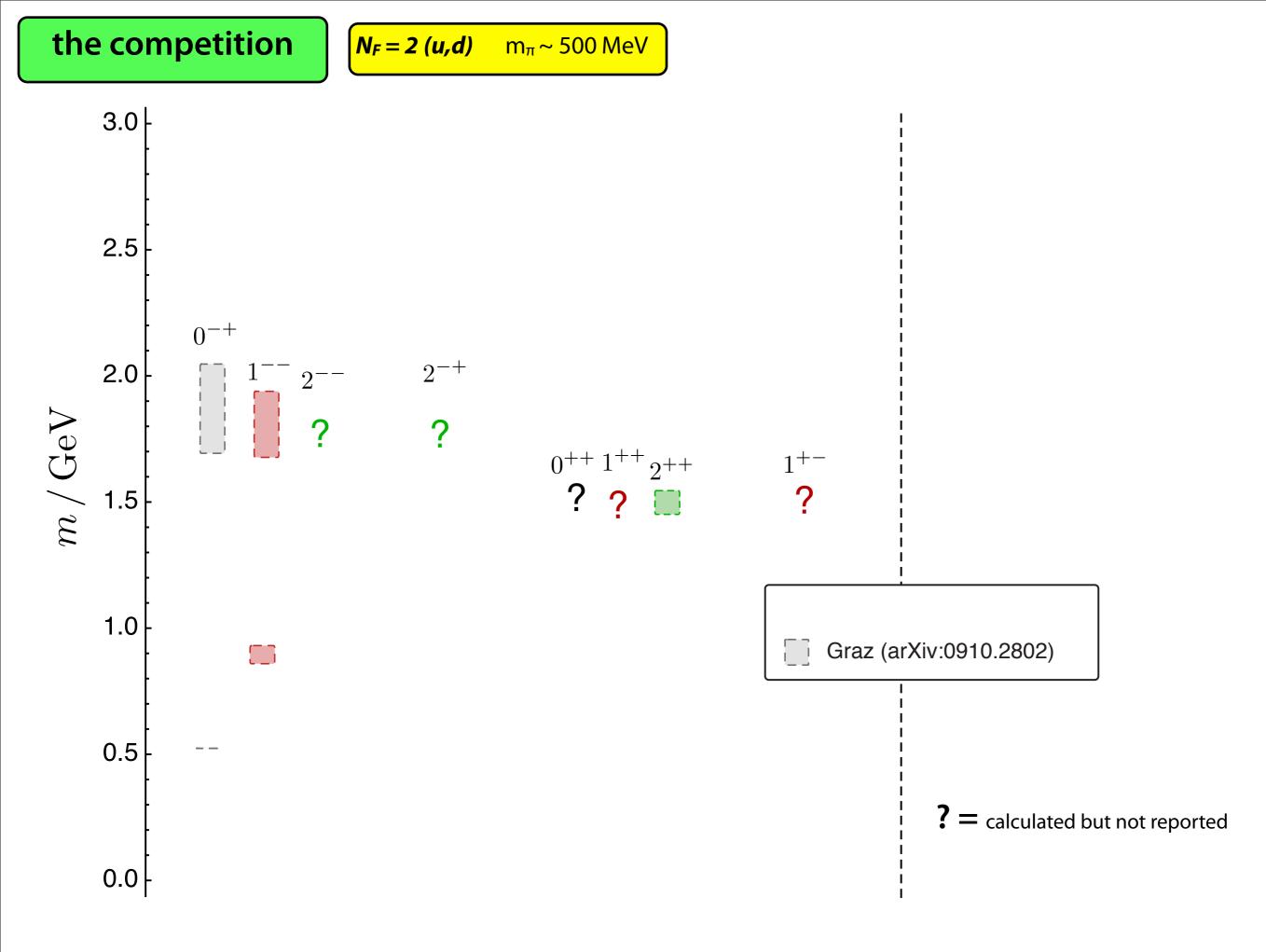


reducing the quark mass



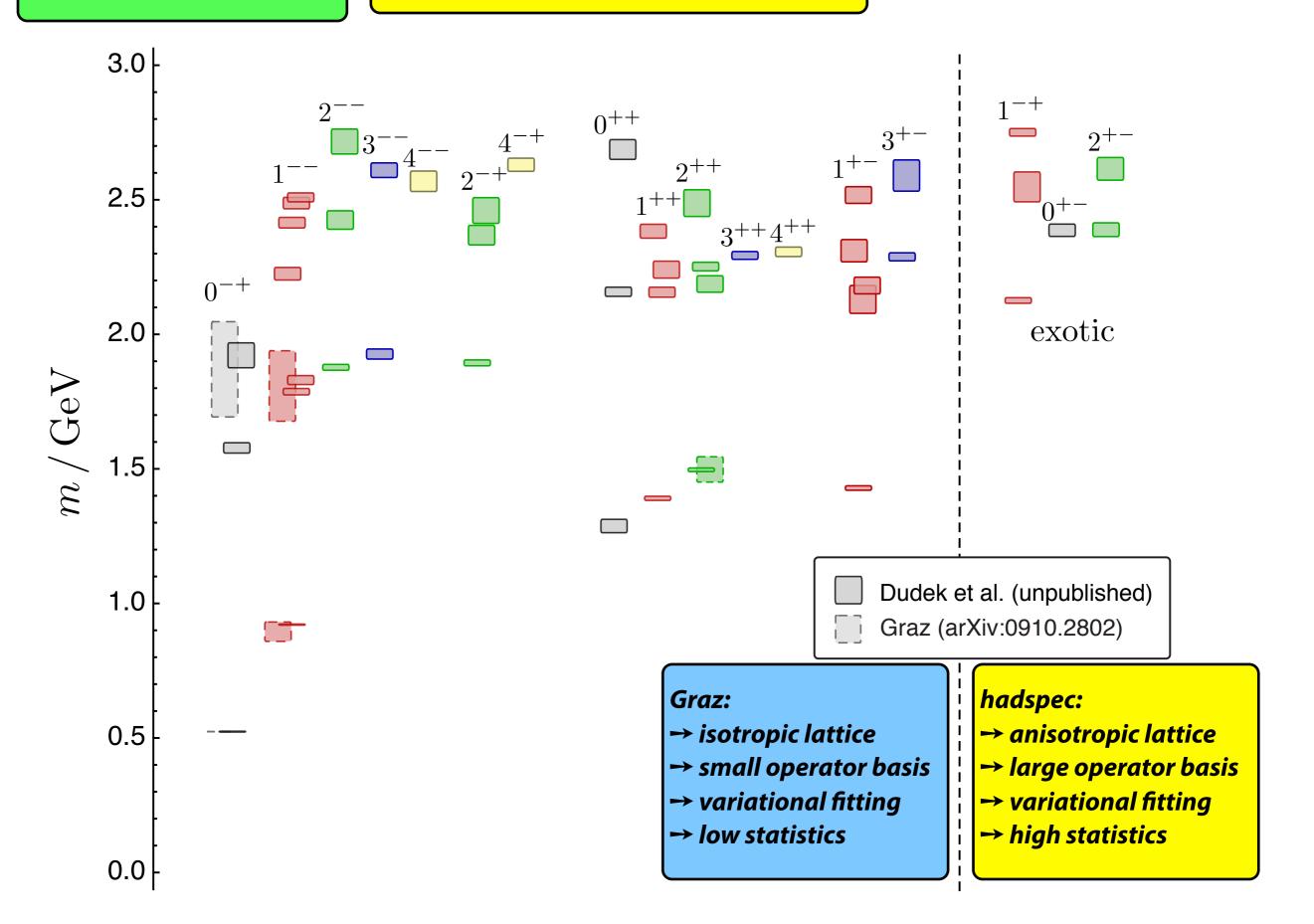
reducing the quark mass

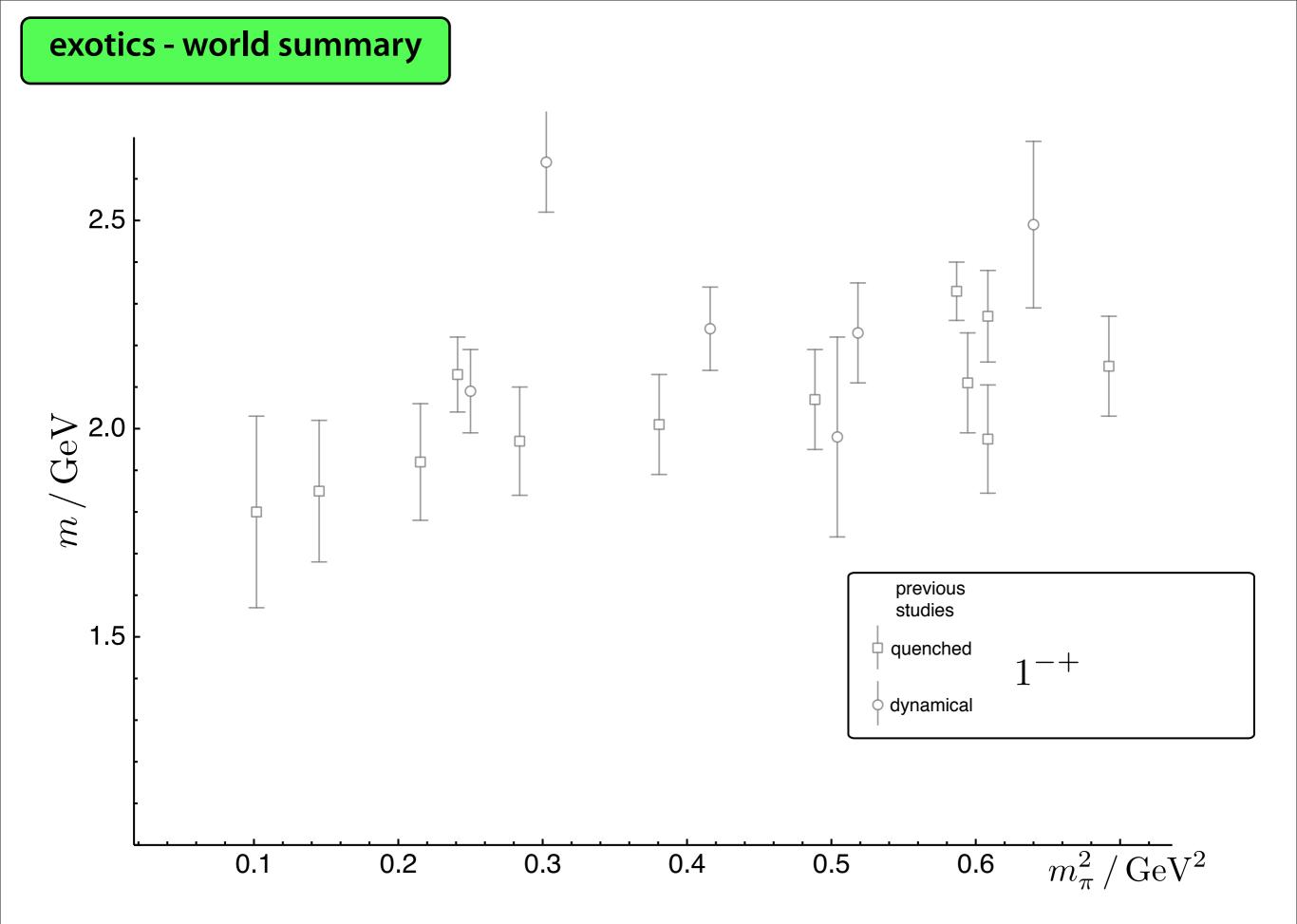




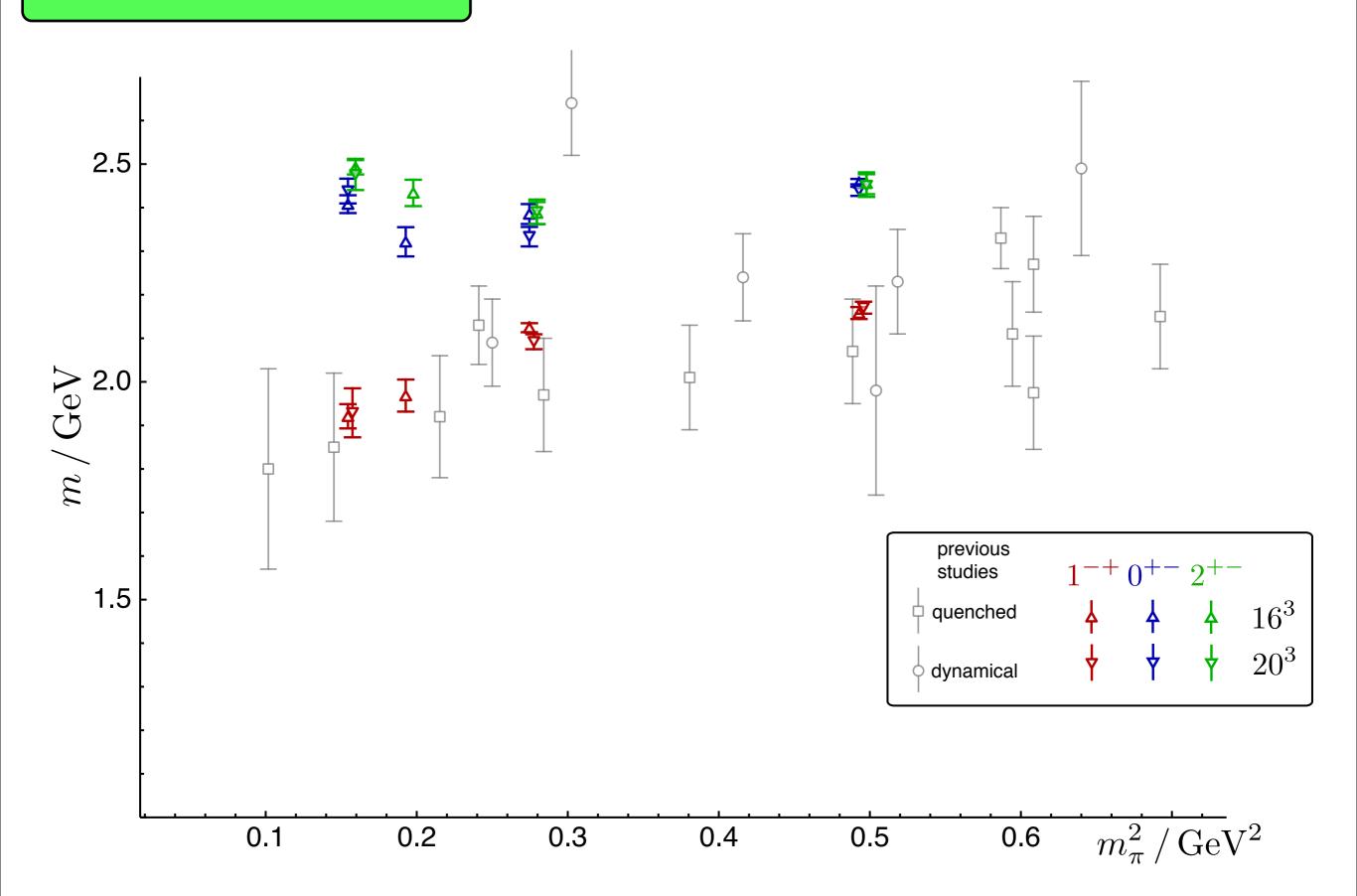
the competition

 $N_F = 2+1 (u,d,s)$ m_{π} ~ 520 MeV V = 16³





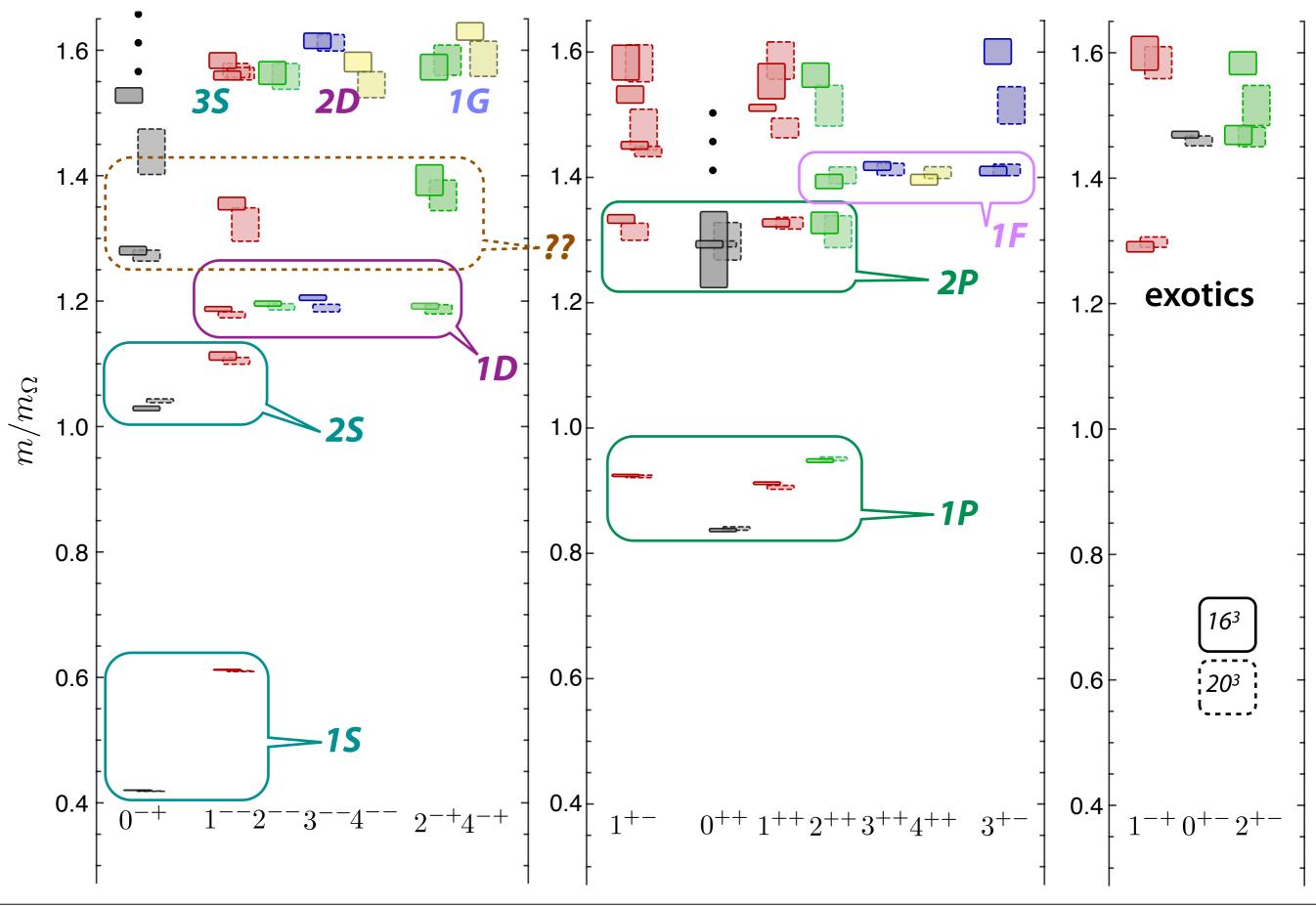
exotics - world summary

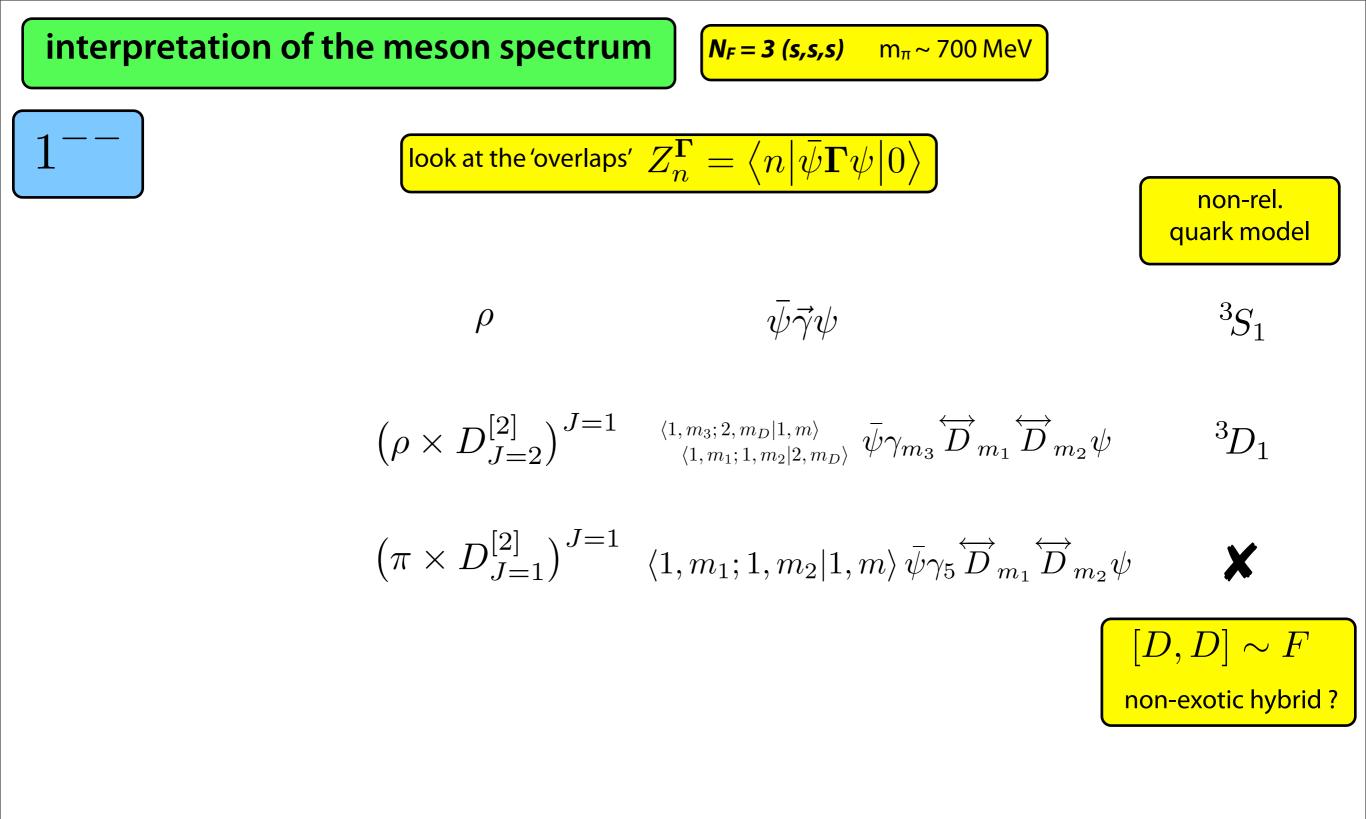


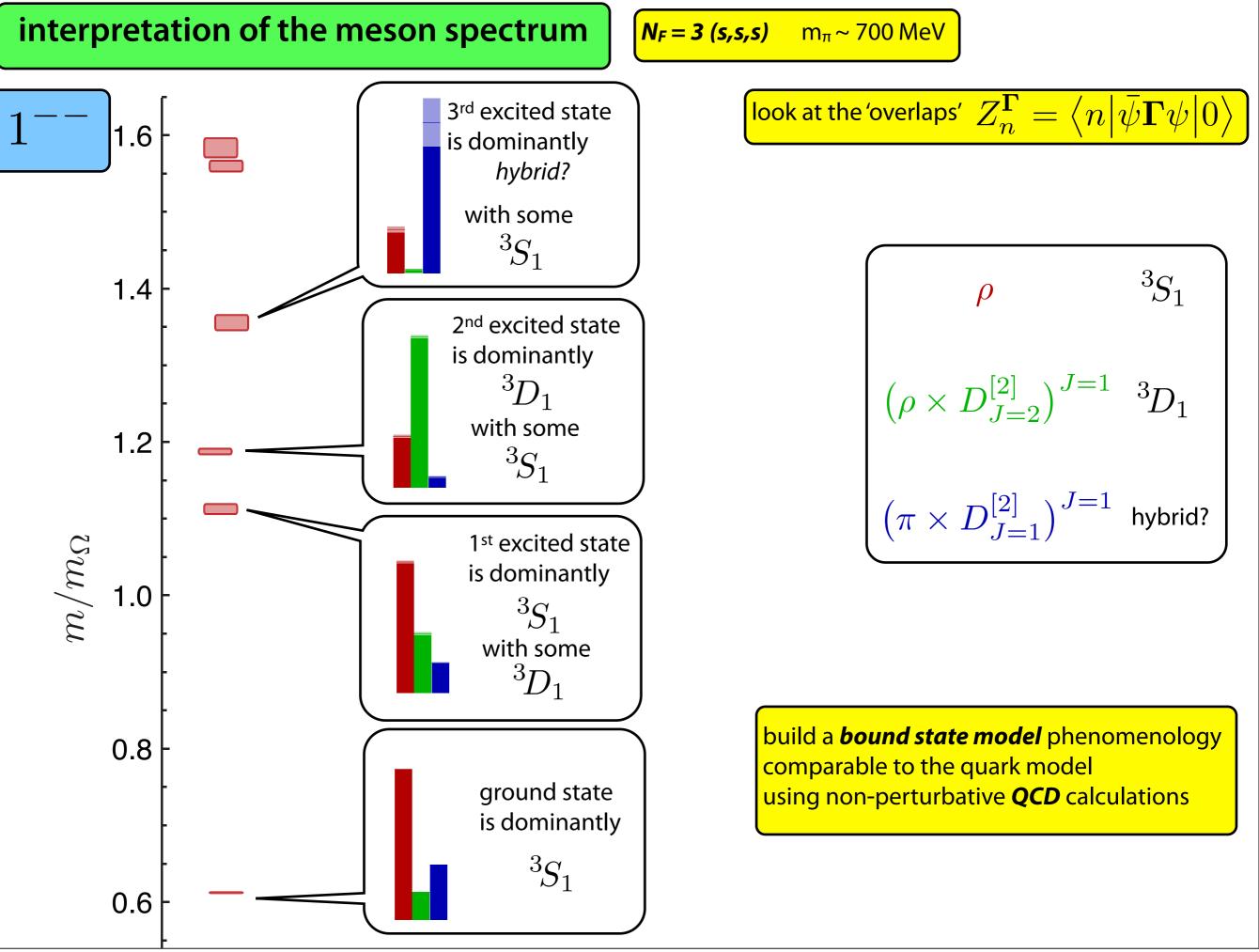
what do we learn ?

patterns in the meson spectrum?

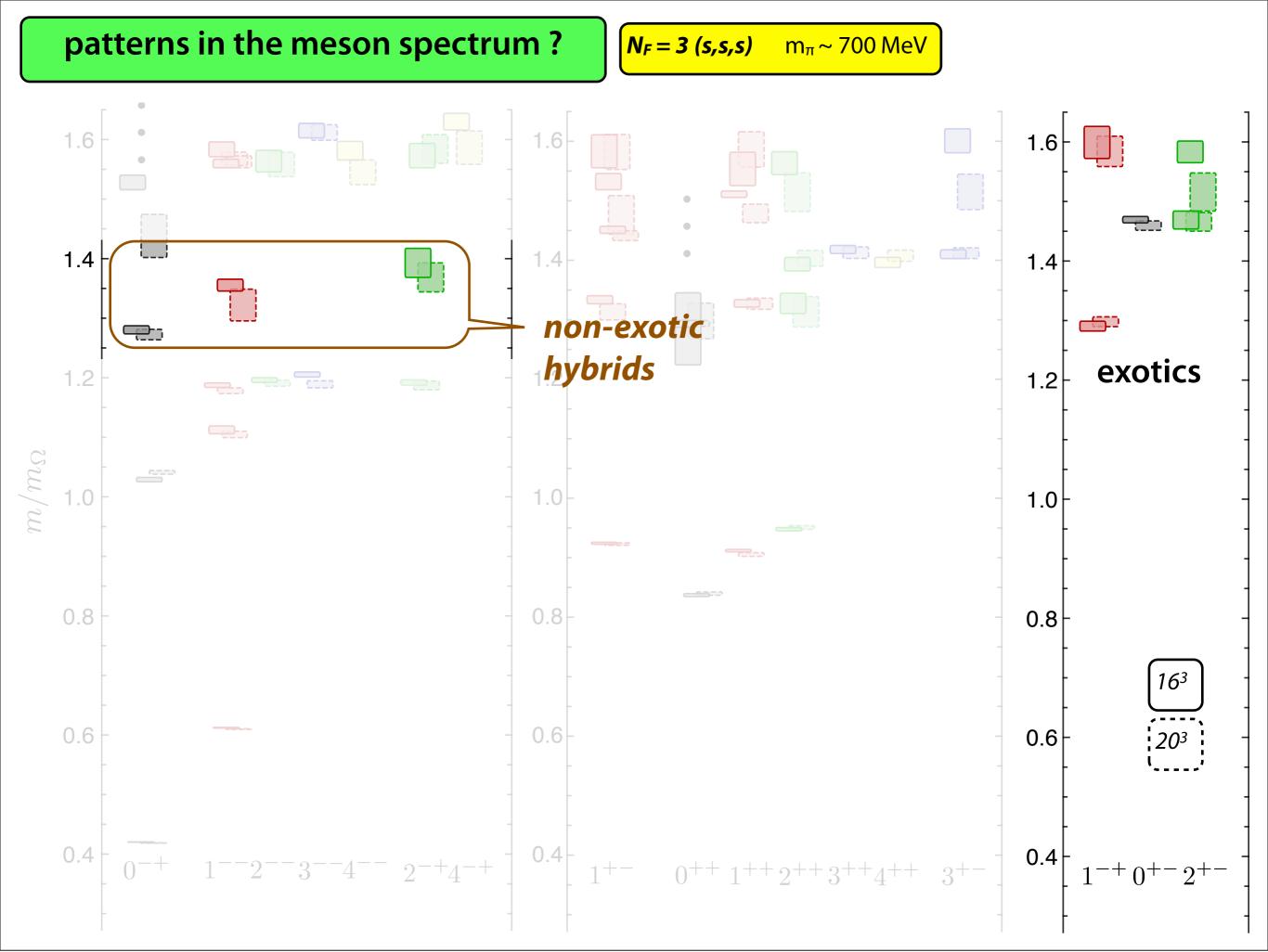
 $N_F = 3 (s, s, s) m_{\pi} \sim 700 \text{ MeV}$





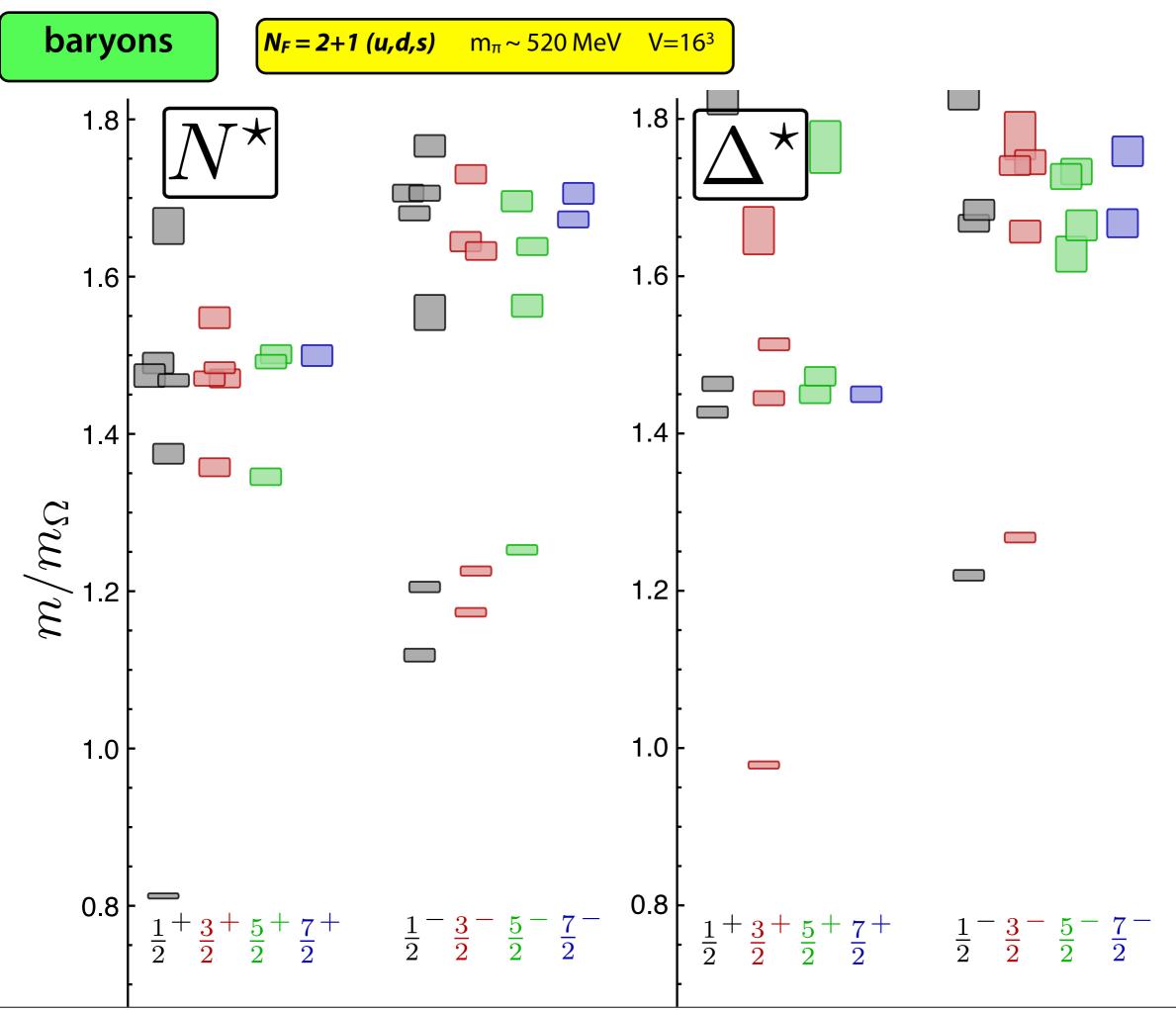


Friday, March 12, 2010

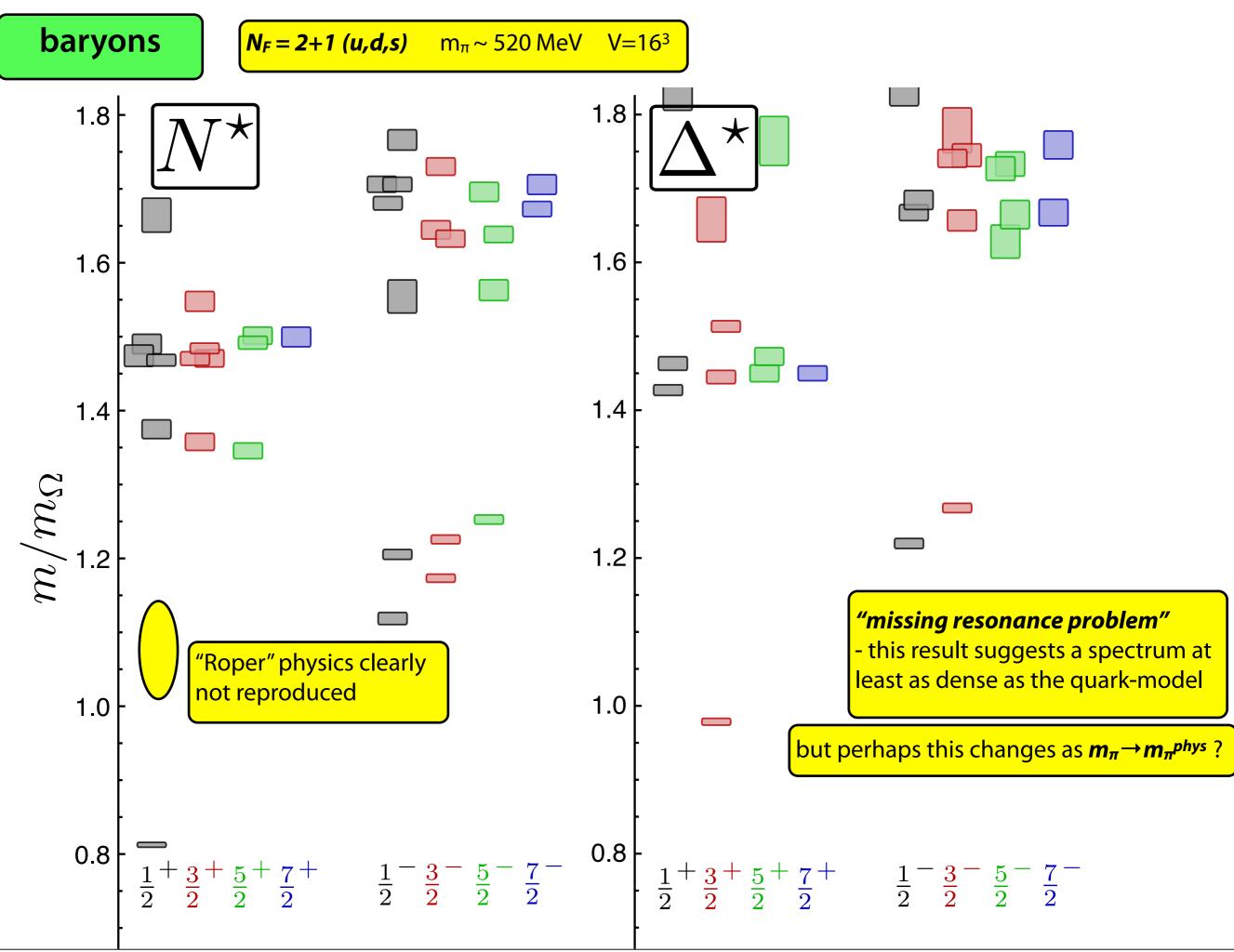


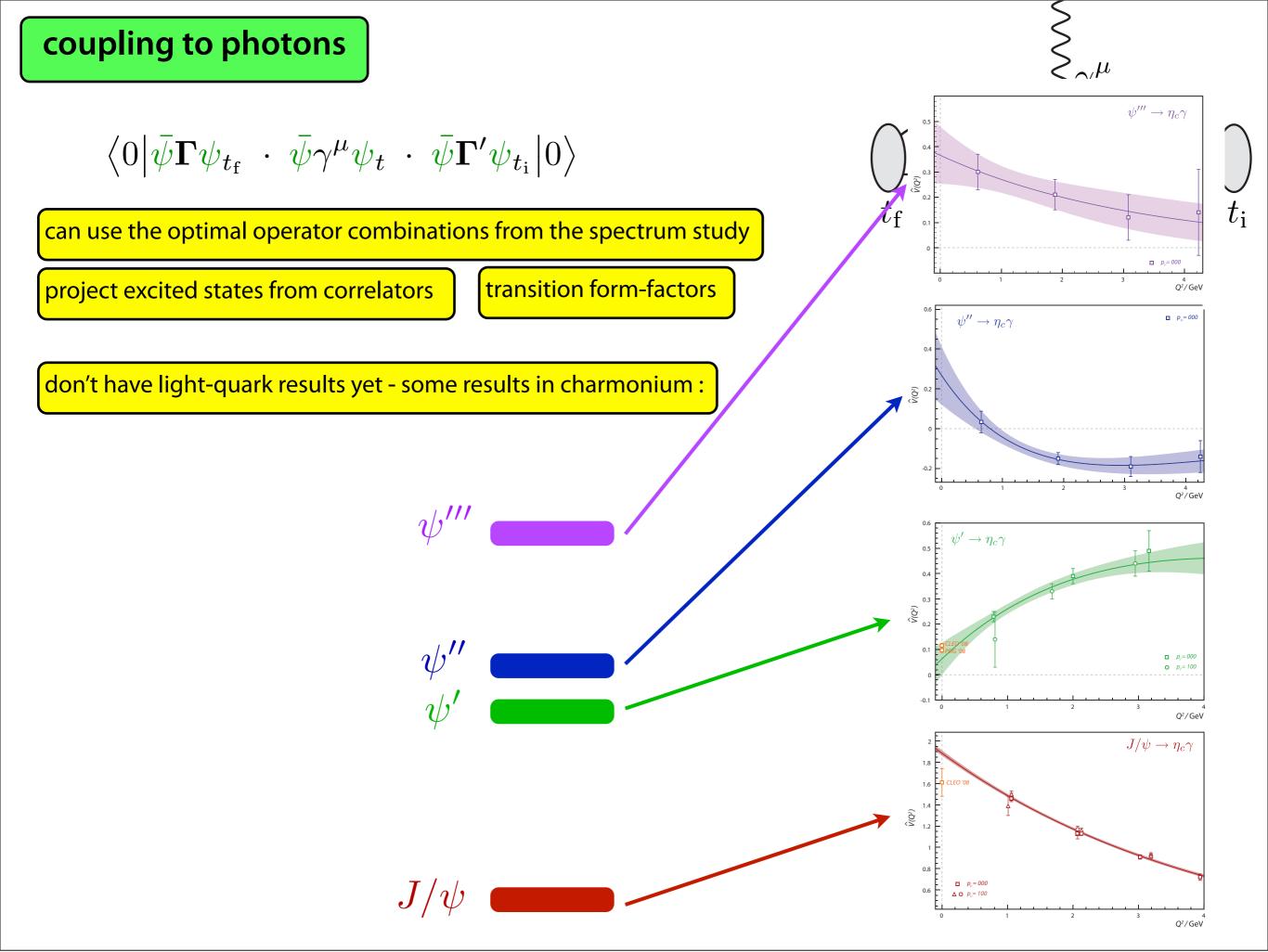
Friday, March 12, 2010

baryons?



Friday, March 12, 2010



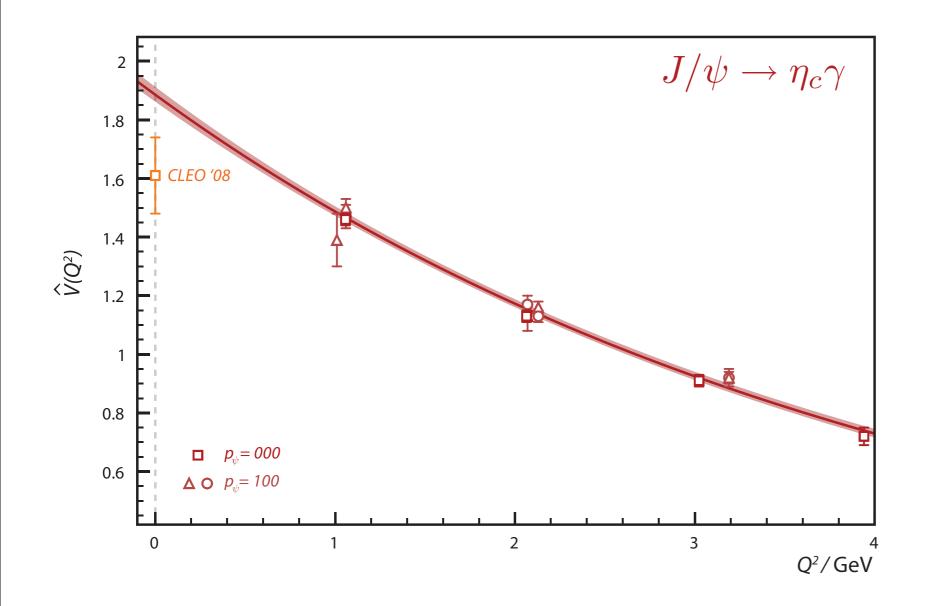


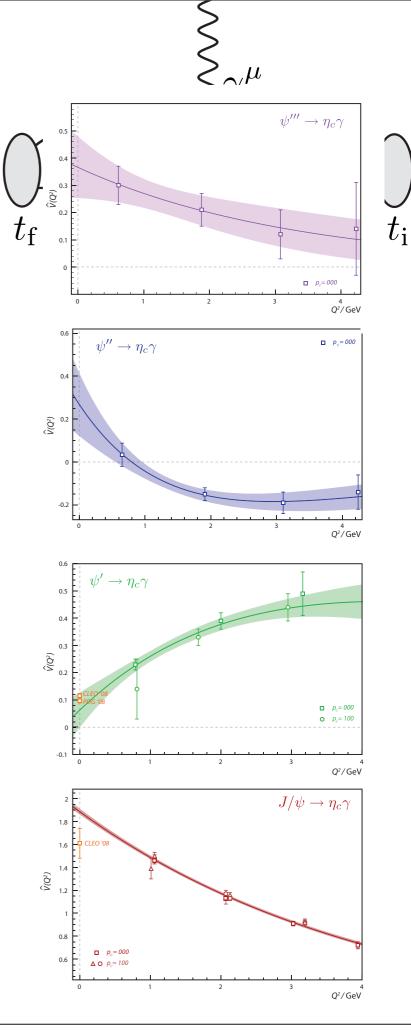
$$\left\langle 0 \left| \bar{\psi} \mathbf{\Gamma} \psi_{t_{\mathrm{f}}} \cdot \bar{\psi} \gamma^{\mu} \psi_{t} \cdot \bar{\psi} \mathbf{\Gamma}' \psi_{t_{\mathrm{i}}} \right| 0 \right\rangle$$

can use the optimal operator combinations from the spectrum study

project excited states from correlators

transition form-factors



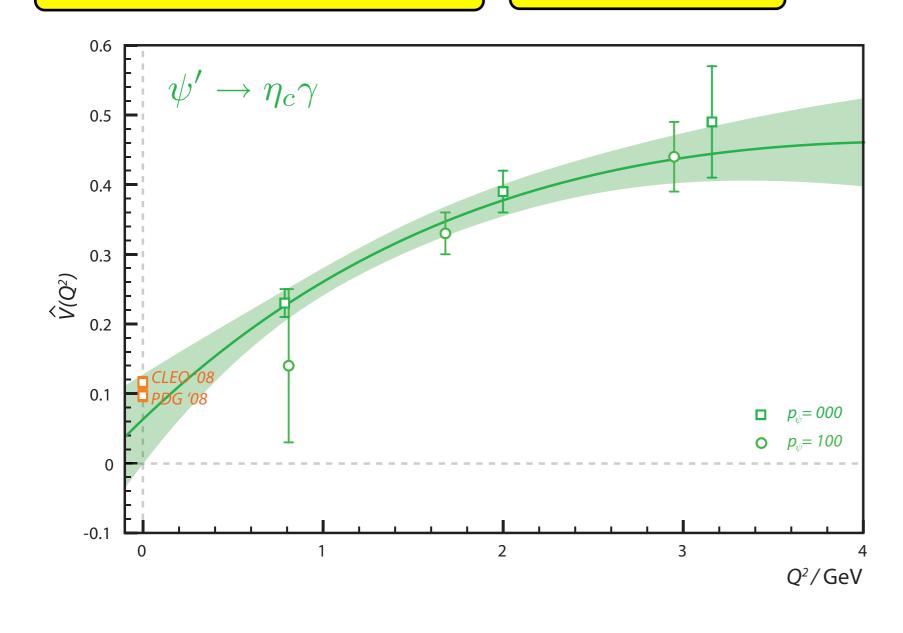


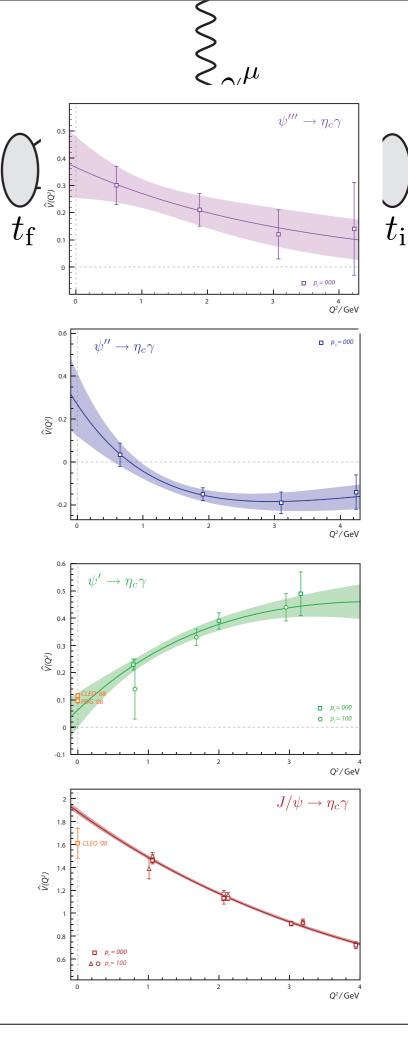
$$\left\langle 0 \left| \bar{\psi} \mathbf{\Gamma} \psi_{t_{\mathrm{f}}} \cdot \bar{\psi} \gamma^{\mu} \psi_{t} \cdot \bar{\psi} \mathbf{\Gamma}' \psi_{t_{\mathrm{i}}} \right| 0 \right\rangle$$

can use the optimal operator combinations from the spectrum study

project excited states from correlators

transition form-factors



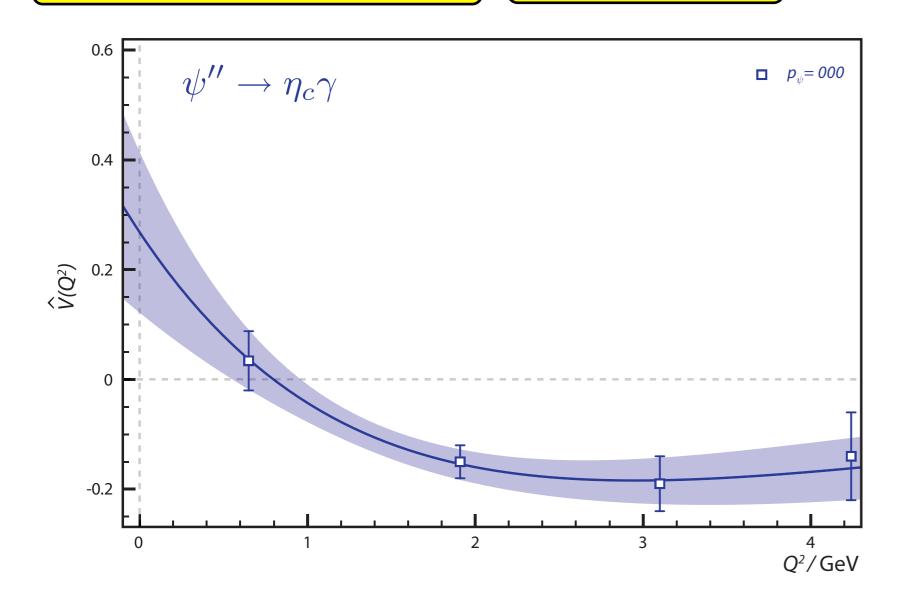


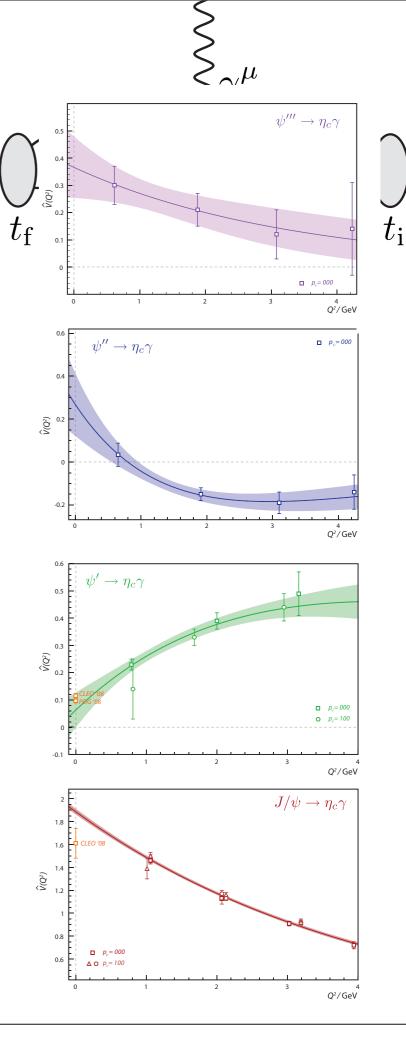
$$\left\langle 0 \left| \bar{\psi} \mathbf{\Gamma} \psi_{t_{\mathrm{f}}} \cdot \bar{\psi} \gamma^{\mu} \psi_{t} \cdot \bar{\psi} \mathbf{\Gamma}' \psi_{t_{\mathrm{i}}} \right| 0 \right\rangle$$

can use the optimal operator combinations from the spectrum study

transition form-factors

project excited states from correlators



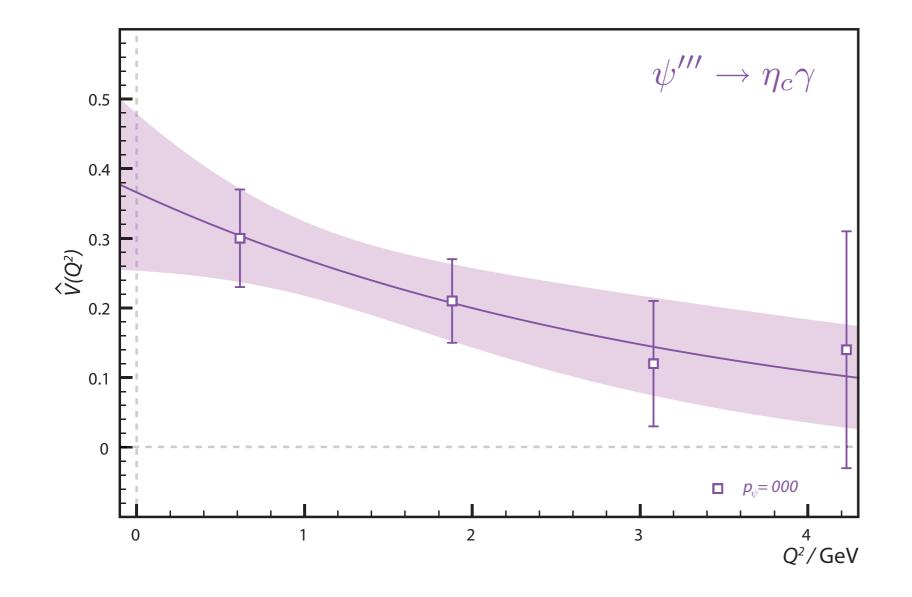


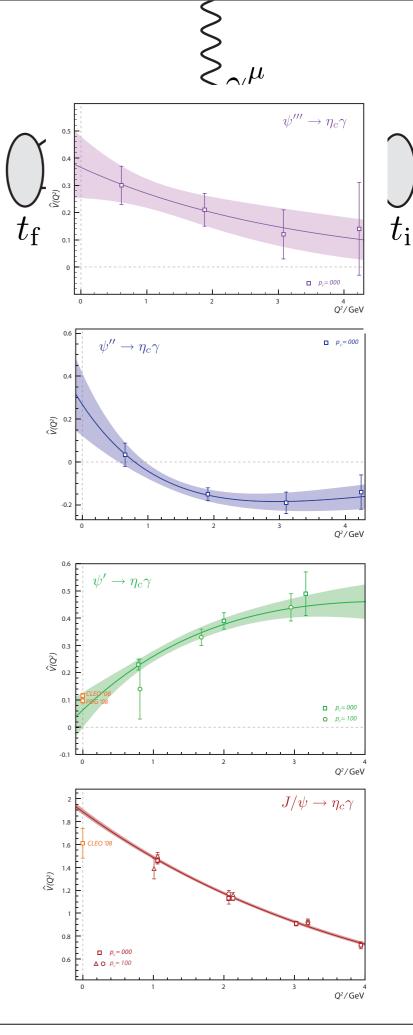
$$\left\langle 0 \left| \bar{\psi} \mathbf{\Gamma} \psi_{t_{\mathrm{f}}} \cdot \bar{\psi} \gamma^{\mu} \psi_{t} \cdot \bar{\psi} \mathbf{\Gamma}' \psi_{t_{\mathrm{i}}} \right| 0 \right\rangle$$

can use the optimal operator combinations from the spectrum study

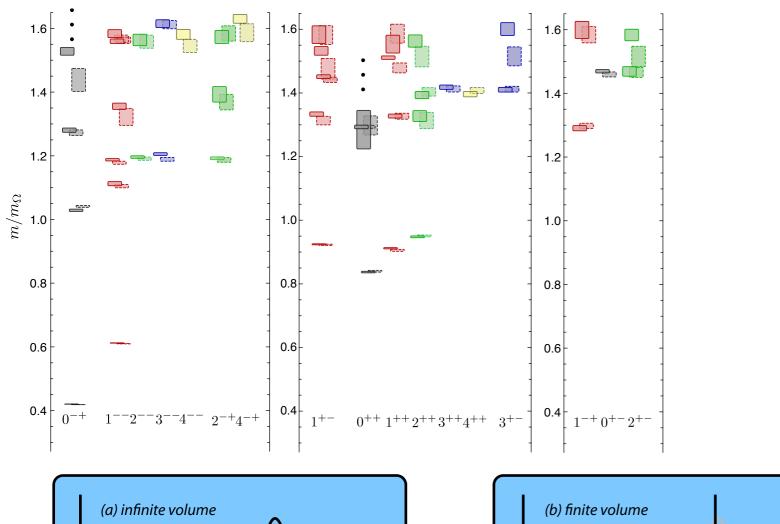
project excited states from correlators

transition form-factors





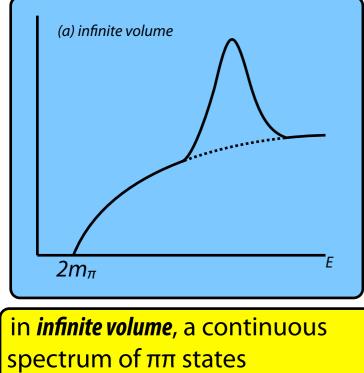
back to the spectrum



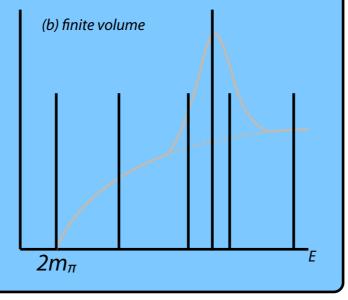
beautiful results - but we're not content

there are states missing that we know should be there

the 'continuum' of meson-meson scattering states !



 $E(p) = 2\sqrt{m_\pi^2 + p^2}$

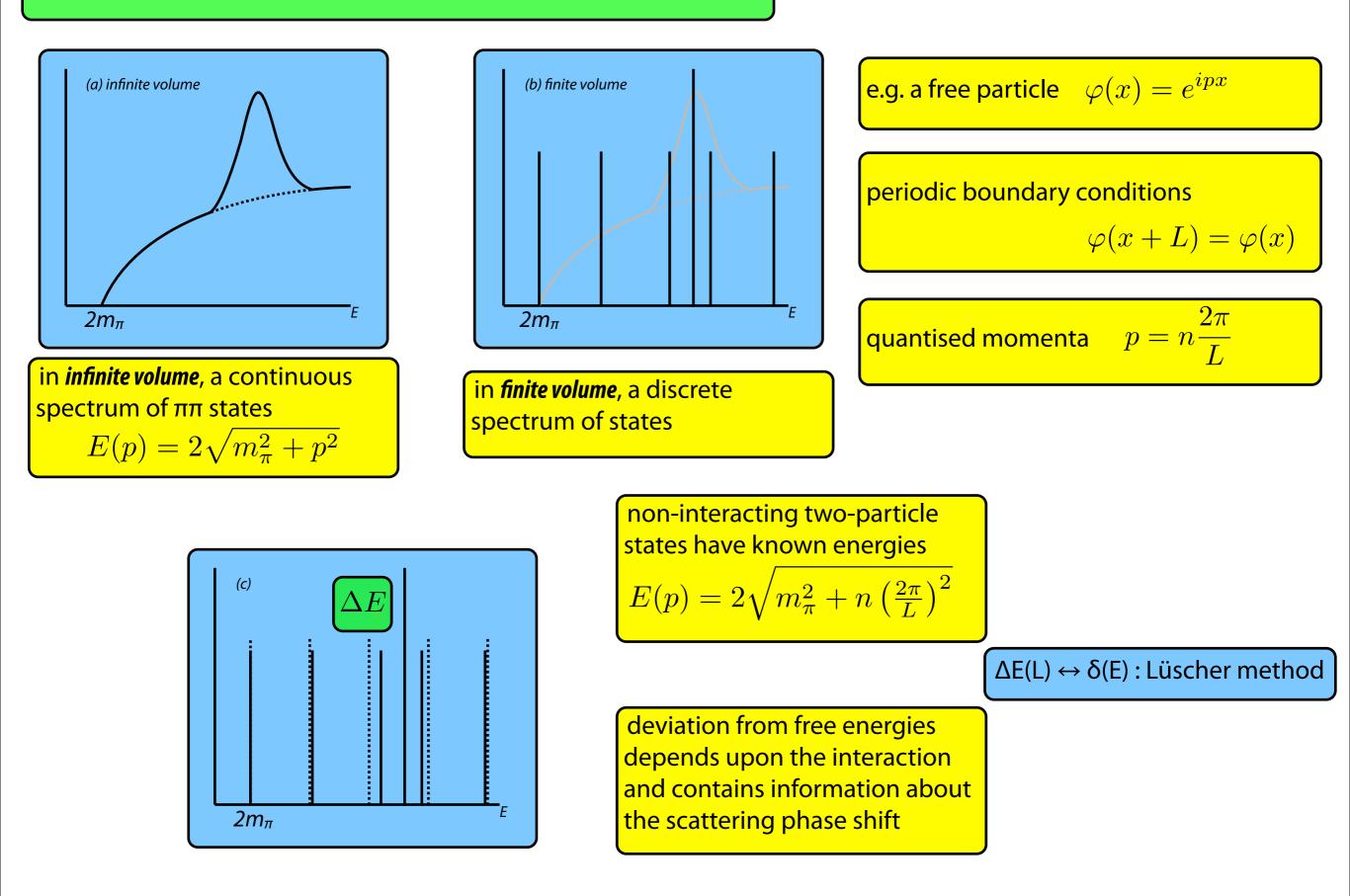


in *finite volume*, a discrete spectrum of states

e.g. a free particle	$\varphi(x) = e^{ipx}$				
periodic boundary conditions					
	$\varphi(x+L) = \varphi(x)$				
quantised moment	ta $p = n \frac{2\pi}{\tau}$				

L

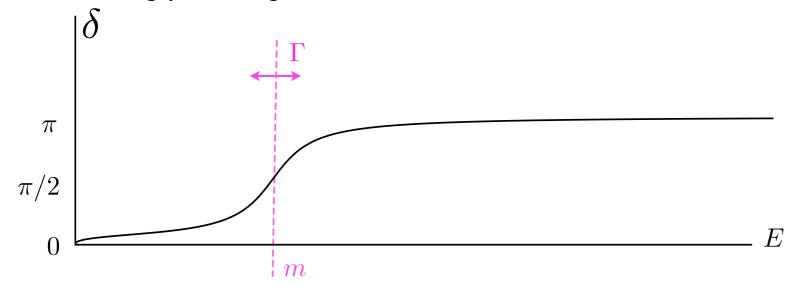
spectrum of finite volume field theory

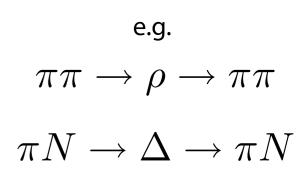


reverse engineer

use known phase shift - anticipate spectrum

e.g. just a single elastic resonance





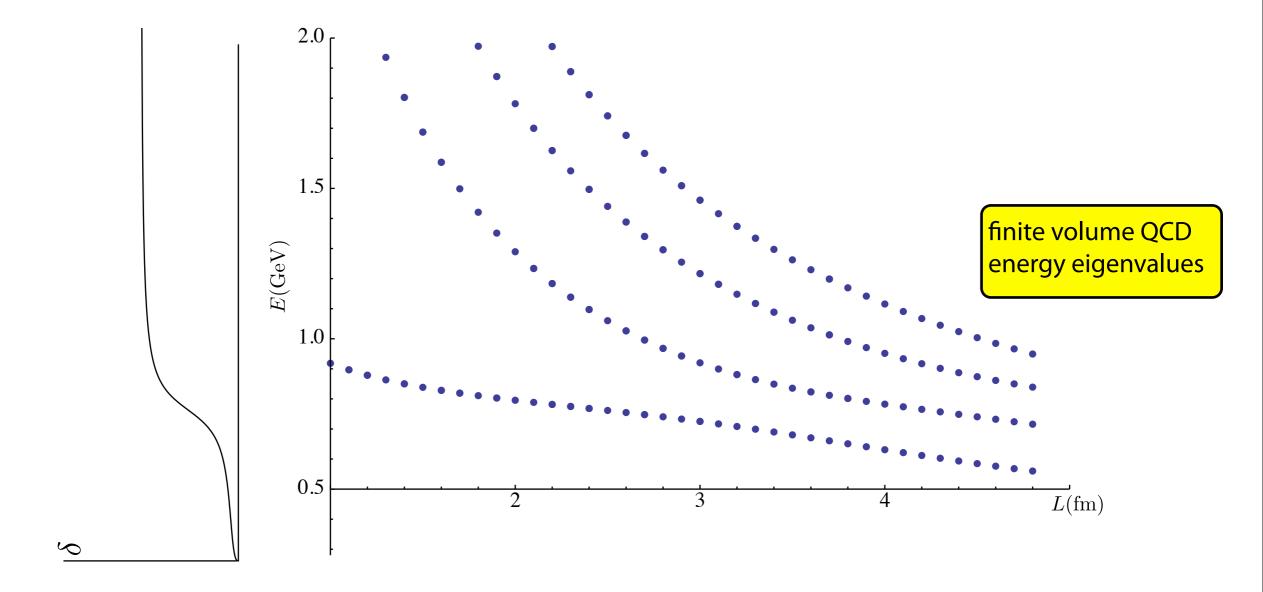
Lüscher method

- essentially scattering in a periodic cubic box (length L)

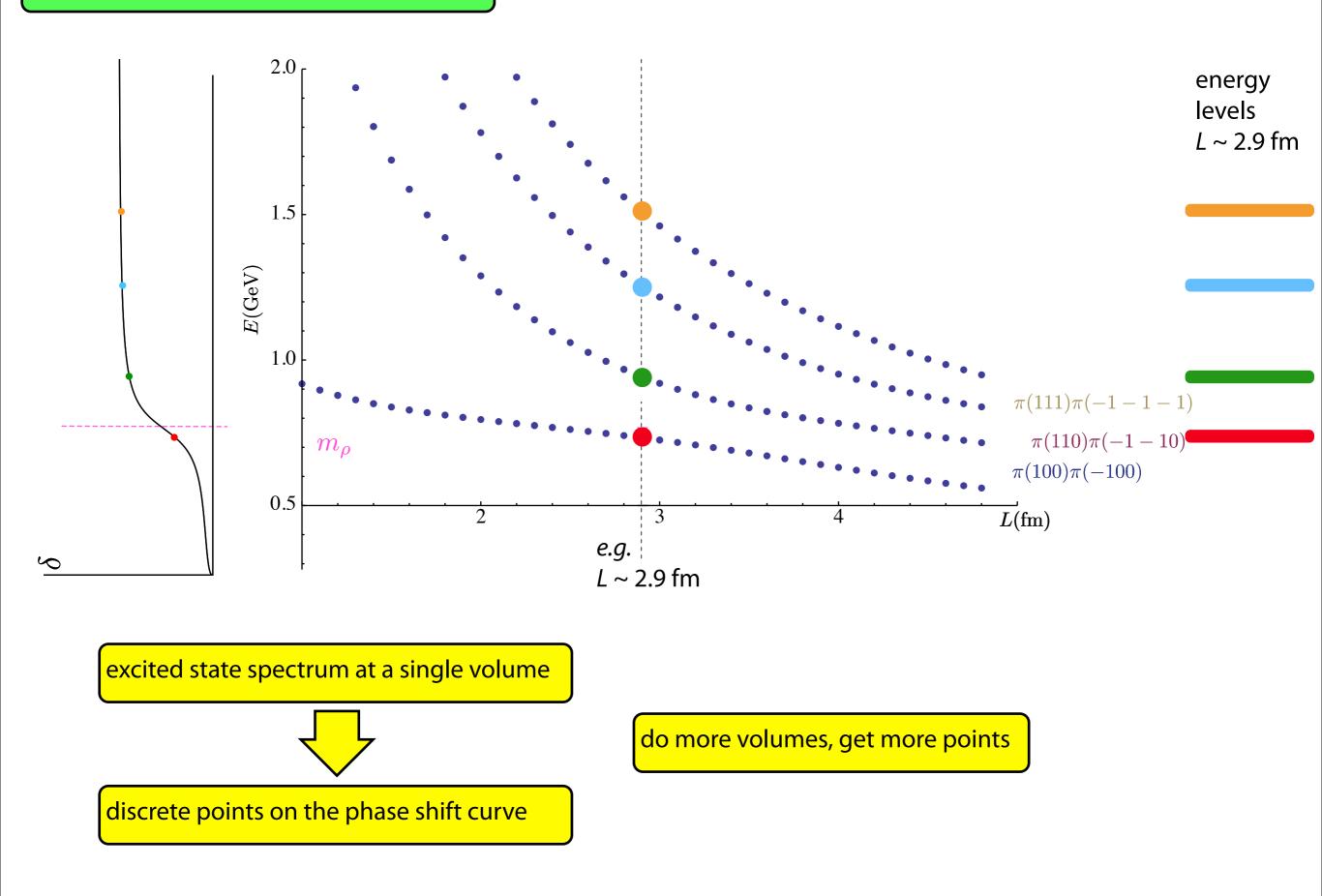
- finite volume energy levels **Ε(δ,L)**

reverse engineer

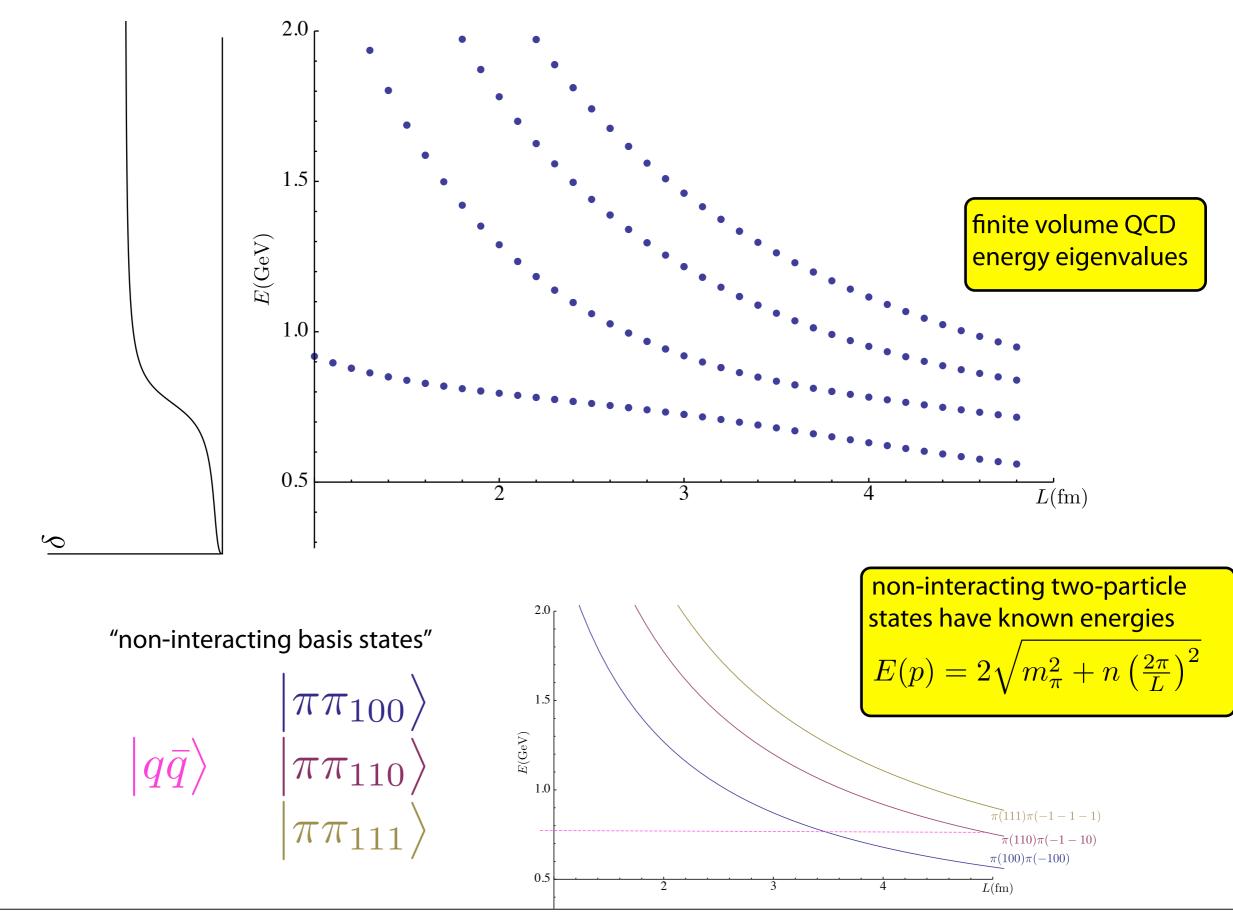
use known phase shift - anticipate spectrum



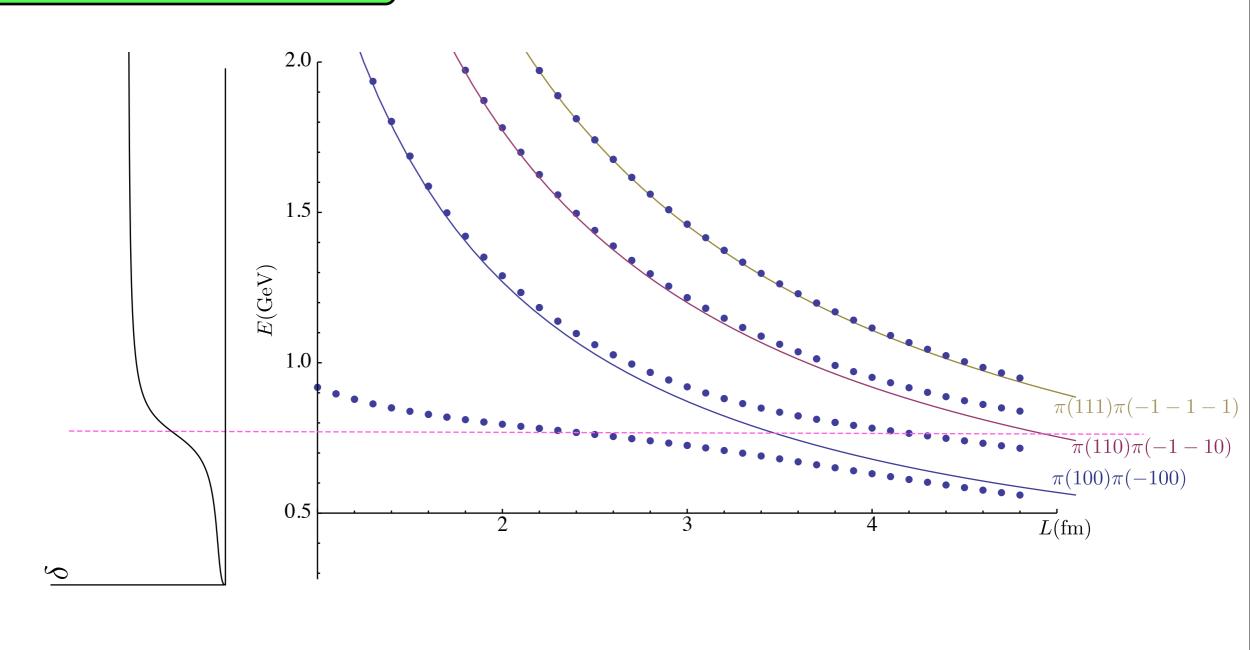
using the Lüscher method



the interpretation

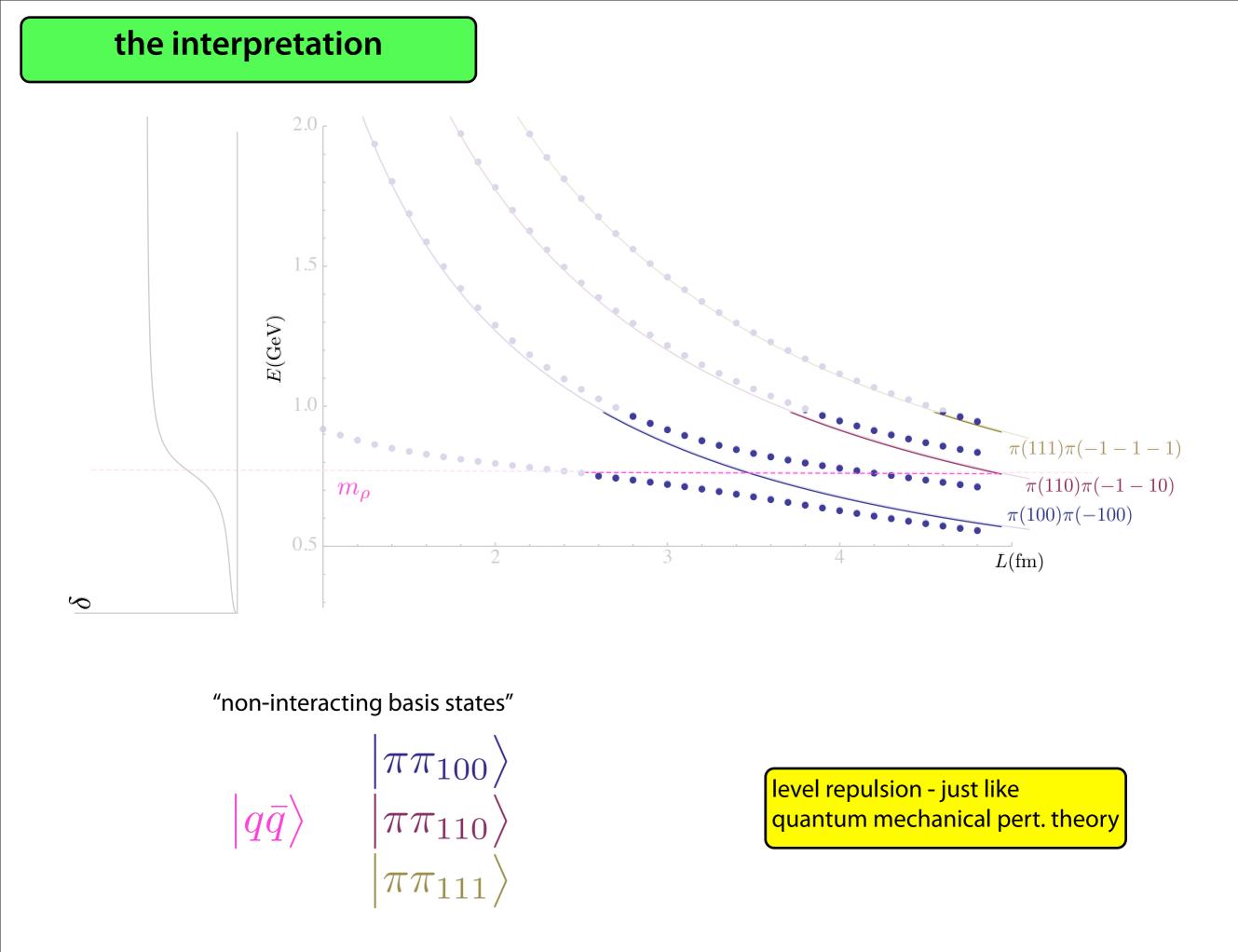


the interpretation

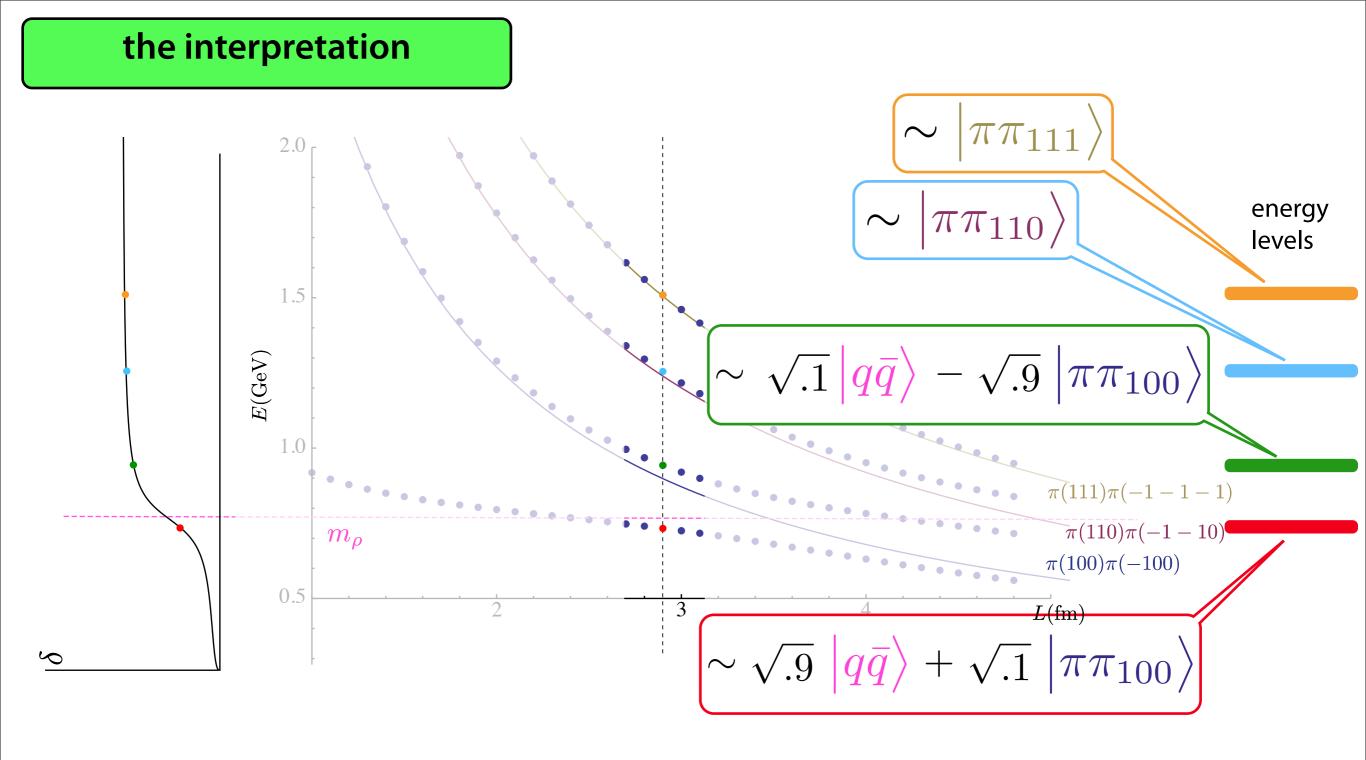


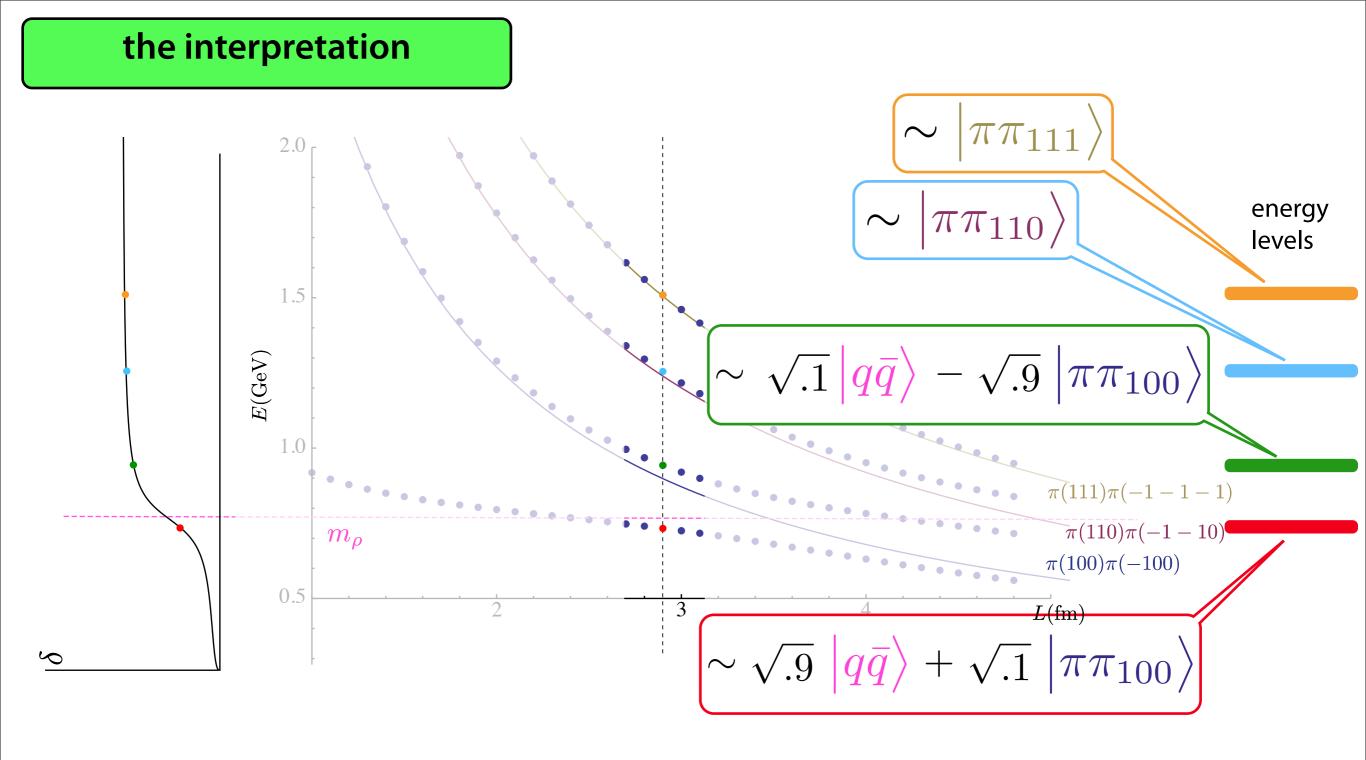
"non-interacting basis states"

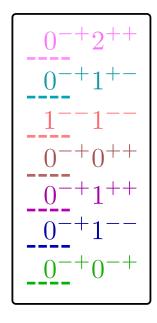
$$\begin{array}{c|c} & \pi \pi_{100} \\ \hline q \bar{q} \\ & \pi \pi_{110} \\ \hline \pi \pi_{111} \\ \end{array}$$



Friday, March 12, 2010







why aren't you seeing them ?

$$\langle 0 | \bar{\psi}_t \Gamma \psi_t \ \bar{\psi}_0 \Gamma' \psi_0 | 0 \rangle = \sum_n e^{-E_n t} \langle 0 | \bar{\psi}_0 \Gamma \psi_0 | n \rangle \langle n | \bar{\psi}_0 \Gamma' \psi_0 | 0 \rangle$$

$$\bigwedge_{\text{all finite-volume QCD eigenstates ?}}$$

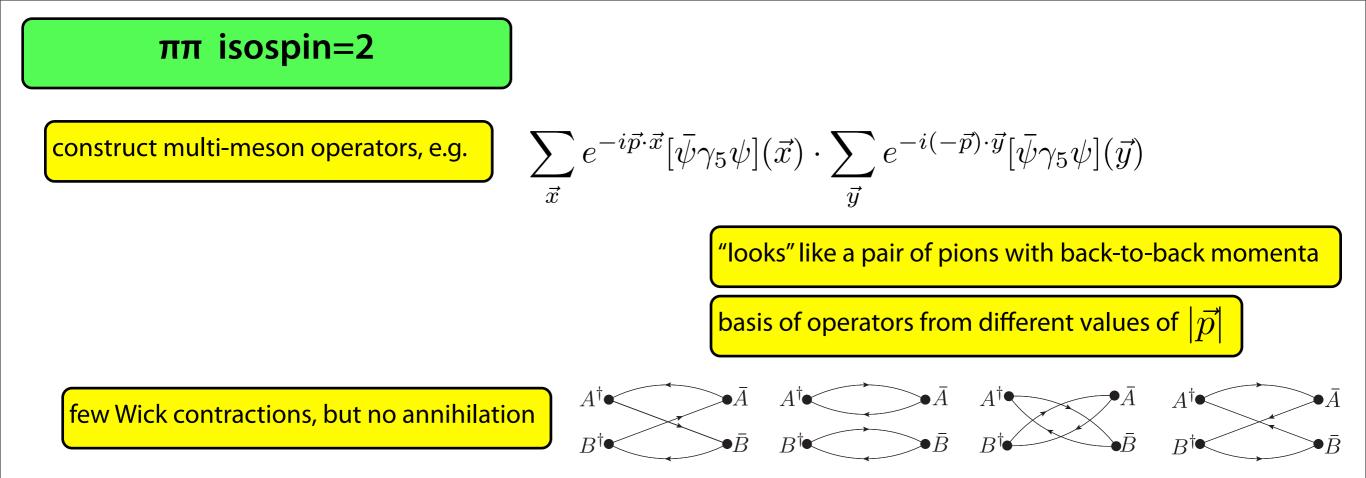
yes, but what if the operator can't make part of the eigenstate?

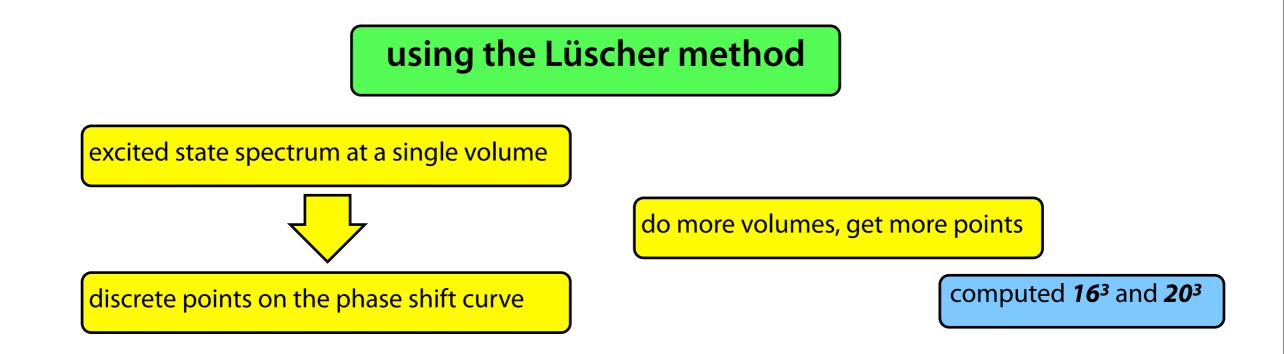
$$\left\langle q\bar{q} \left| \bar{\psi}_{0} \mathbf{\Gamma} \psi_{0} \right| 0 \right\rangle \neq 0$$
$$\left\langle MM \left| \bar{\psi}_{0} \mathbf{\Gamma} \psi_{0} \right| 0 \right\rangle \sim \left\langle q\bar{q}q\bar{q} \left| \bar{\psi}_{0} \mathbf{\Gamma} \psi_{0} \right| 0 \right\rangle = 0$$

don't have orthogonal overlap onto multi-meson states

solution is to compute correlators including meson-meson like operators

i.e.
$$ar{\psi}_0 \Gamma_a \psi_0 \; ar{\psi}_0 \Gamma_b \psi_0$$





ππ isospin=2

