The Proton in the Nuclear Medium: JLab Experimental Constraints on the Modeling of ⁴He(e,e'p)³H Reaction

Simona Malace

University of South Carolina

Overview

> E93-049 and E03-104 in Hall A: search for medium modifications of the proton structure in 4 He(e,e'p) 3 H

- $\left(\frac{P_{x}^{'}}{P_{z}^{'}}\right)_{_{^{4}He}} / \left(\frac{P_{x}^{'}}{P_{z}^{'}}\right)_{_{H}}$ Mike Paolone (Ph.D. in Dec. 2008): M. Paolone, S. Malace, S. Strauch *et al.*, submitted to Phys. Rev. Lett.
- Py focus of this talk
- > H(e,e'p) vs A(e,e'p)B reactions
- > A(e,e'p)B reactions: nuclear medium effects
- > E93-049: data and interpretation

> E03-104: a precise extraction of polarization transfer and induced polarization in ⁴He(e,e'p)³H

> Do theory calculations describe the most recent, precise data?

Nucleons in the Nuclear Medium

> Quarks and gluons are the building blocks of nucleons

Conventional Nuclear Physics: free nucleons and mesons as degrees of freedom; the internal / structure of hadrons ignored

> Are the subnucleonic degrees of freedom relevant for description of nuclei?

- <u>Nucleon structure function</u>: modified in the nuclear medium (EMC effect)
- Nucleon form factor: modified in the nuclear medium?
 - Coulomb Sum rule
 - y scaling
 - Polarization transfer ratio

proton neutron

Reaction: H(e,e'p)

Longitudinally polarized electron elastic scattering off a free proton: one-photon-exchange approximation (OPE)

 $\hat{\mathbf{e}} + \mathbf{p} \rightarrow \hat{\mathbf{e}} + \hat{\mathbf{p}} \rightarrow \hat{\mathbf{e}} + \hat{\mathbf{p}} \qquad \hat{z} = \frac{\vec{q}}{|\vec{q}|}, \quad \hat{y} = \frac{\vec{k} \times \vec{k}}{|\vec{k} \times \vec{k}|}, \quad \hat{x} = \hat{y} \times \hat{z}$ $P_x = P_z = P_v' = 0$ $P_v = 0$ (OPE) σ_{o} = unpolarize d cross section h = beam helicity $\frac{d\sigma}{dE_{e'}d\Omega_{e'}d\Omega_{p}} = \frac{\sigma_0}{2} [1 + h \cdot (A + P'_x \cdot \hat{S}_x + P'_z \cdot \hat{S}_z)] \quad \Rightarrow \quad$ A = analyzing power P(P') = induced polarizati on $P'_{x} = -2\sqrt{\tau(1+\tau)} \frac{\frac{G_{E_{p}}}{G_{M_{p}}}}{(\frac{G_{E_{p}}}{G_{M_{p}}})^{2} + \frac{\tau}{\epsilon}} \tan \frac{\theta_{e}}{2}$ (polarizat ion transfer) $P'_{z} = \frac{1}{m} (E_{i} + E_{f}) \sqrt{\tau (1+\tau)} \frac{1}{(\frac{G_{E_{p}}}{G_{W}})^{2} + \frac{\tau}{\epsilon}} \tan^{2} \frac{\theta_{e}}{2}$ $\frac{G_{Ep}}{G_{Mp}} = -\frac{P'_x}{P'} \frac{(E_i + E_f)}{2m} \tan \frac{\theta_e}{2}$

Polarization Transfer Ratio: H(e,e'p)

> Very precise technique: systematics cancel in the ratio

Reaction: A(e,e'p)B

From reaction to scattering plane:

$$\begin{pmatrix} P_x(P_x) \\ P_y(P_y) \\ P_z(P_z) \end{pmatrix} = \begin{pmatrix} \sin \theta_{pq} \cos \phi_x & -\sin \phi_x & \cos \theta_{pq} \cos \phi_x \\ \sin \theta_{pq} \sin \phi_x & \cos \phi_x & \cos \theta_{pq} \sin \phi_x \\ \cos \theta_{pq} & 0 & -\sin \theta_{pq} \end{pmatrix} \begin{pmatrix} P_l(P_l) \\ P_n(P_n) \\ P_s(P_s) \end{pmatrix}$$

Reaction: A(e,e'p)B

No simple relationship between polarization-transfer ratio and form-factor ratio

> Cross sections, polarizations: expressed in terms of 18 nuclear response functions (R^{L} , R^{T} , ...) constructed by taking the appropriate components of the hadronic tensor $W^{\mu\nu} \propto J_{N}^{\mu*}(q)J_{N}^{\nu}(q)$

$$\frac{1}{2}(R^{L} + R_{n}^{L}\hat{S}_{n}) = W^{00} \qquad \frac{1}{2}(R^{T} + R_{n}^{T}\hat{S}_{n}) = W^{11} + W^{22} \dots$$

$$\frac{d\sigma}{dE_{e'}d\Omega_{e'}d\Omega_{p}} \propto V_{L}(R^{L} + R_{n}^{L}\hat{S}_{n}) + V_{T}(R^{T} + R_{n}^{T}\hat{S}_{n}) + V_{LT}[(R^{TL} + R_{n}^{TL}\hat{S}_{n})\cos\phi_{x} + (R_{l}^{TL}\hat{S}_{l} + R_{s}^{TL}\hat{S}_{s})\sin\phi_{x}] + V_{TT}[(R^{TT} + R_{n}^{TT}\hat{S}_{n})\cos\phi_{x} + (R_{l}^{TT}\hat{S}_{l} + R_{s}^{TT}\hat{S}_{s})\sin\phi_{x}] + h\{V_{TT}[(R_{l}^{TT} + R_{n}^{TT}\hat{S}_{n})\cos\phi_{x} + (R_{l}^{TT}\hat{S}_{l} + R_{s}^{TT}\hat{S}_{n})\sin\phi_{x}] + V_{TT}[(R_{l}^{TL'}\hat{S}_{l} + R_{s}^{TL'}\hat{S}_{s})\cos\phi_{x} + (R_{n}^{TL'} + R_{n}^{TL'}\hat{S}_{n})\sin\phi_{x}] + V_{T'}[R_{l}^{T'}\hat{S}_{l} + R_{s}^{T'}\hat{S}_{s}]\}$$

Calculation of nuclear current inclusion/treatment of various reaction mechanisms

Proton in the Nuclear Medium: A(e,e'p)B

> Example: A(e,e'p)B in Born + Impulse Approximation

J. Udias et al., Phys. Rev. C 48, 2731 (1993)

> Nuclear effects have to be taken into account when calculating the currents for $e-p_{bound}$ as opposed to $e-p_{free}$ scattering

A(e,e'p)B: Nuclear Medium Effects

Photon-nucleon vertex current: $J_N^{\mu}(r) = \overline{\psi}_F^{N}(r) \widehat{J}_N^{\mu} \psi_R^{N}(r)$

> Off-shell effects (no unambiguous treatment): various prescriptions to impose current conservation T. De Forest, Jr. Nucl. Phys. A392, 232 (1983)

$$\hat{J}_{cc1}^{\ \mu} = G_M(Q^2)\gamma^{\mu} - \frac{\kappa}{2M}F_2(Q^2)(P_i^{\mu} + P_f^{\ \mu})$$
$$\hat{J}_{cc2}^{\ \mu} = F_1(Q^2)\gamma^{\mu} + i\frac{\kappa}{2M}F_2(Q^2)\sigma_{\mu\nu}q_{\nu}$$
$$\hat{J}_{cc3}^{\ \mu} = F_1(Q^2)\frac{\overline{P}^{\mu}}{2M} + \frac{i}{2M}G_M(Q^2)\sigma_{\mu\nu}q_{\nu}$$

 $\hat{J}_{cc1}, \hat{J}_{cc2}, \hat{J}_{cc3}$ equivalent for free nucleon but not guaranteed to produce the same result for bound nucleons

Vary prescriptions seem to converge with increasing Q², especially at low missing momentum

D. Debruyne, J. Ryckebusch, W. Van Nespen and S. Janssen, Phys. Rev. C 62, 024611 (2000)

A(e,e'p)B: Nuclear Medium Effects

Photon-nucleon vertex current: $J_N^{\mu}(r) = \overline{\psi}_F^{N}(r) \widehat{J}_N^{\mu} \psi_B^{N}(r)$

> Many-body currents: IA = "zero order approximation" but realistically we need higher-order corrections to IA

 $\begin{aligned} & 1 \text{-body current} \\ <\psi_{f} \mid \hat{J}^{\mu} \mid \psi_{i} > = <\chi(1) \mid \hat{J}^{\mu}(1b) \mid \psi_{\beta}(1) > + \sum_{\alpha=1}^{A} <\chi(1)\psi_{\alpha}(2) \mid \hat{J}^{\mu}(2b) \mid \psi_{\beta}(1)\psi_{\alpha}(2) - \psi_{\alpha}(1)\psi_{\beta}(2) > \\ & \text{A. Meucci et al., Phys. Rev. C 66, 034610 (2002)} \\ & \text{R. Schiavilla et al., Phys. Rev. Lett. 94, 072303 (2005)} \end{aligned}$

 \succ Final-State Interactions: the nucleon can interact with its neighbors after being struck by the photon

 Most calculations account for FSI via optical potentials (OPT) (e,e'p)(p,p)
J. Udias et al., Phys. Rev. Lett. 83, 5451 (1999)

(e,e'p)(p,p) + (e,e'n)(n,p) R. Schiavilla *et al.*, Phys. Rev. Lett. 94, 072303 (2005)

Some calculations use Glauber framework to incorporate FSI

P. Lava, J. Ryckebush, B. Van Overmeire, Phys. Rev. C 71, 014605 (2005)

A(e,e'p)B: Nuclear Medium Effects

Photon-nucleon vertex current: $J_N^{\mu}(r) = \overline{\psi}_F^{N}(r) \widehat{J}_N^{\mu} \psi_B^{N}(r)$

Form-factors: free or medium modified (density dependent) form-factors in the electromagnetic current operator?

e.g.
$$\hat{J}_{cc1}^{\mu} = G_M(Q^2)\gamma^{\mu} - \frac{\kappa}{2M}F_2(Q^2)(P_i^{\mu} + P_f^{\mu}) \longrightarrow$$
 free or medium-modified
nucleon form-factor ?

For example:

D.H. Lu et al., Phys. Rev. C 60, 068201 (1999)

Polarization Transfer Technique: A(e,e'p)B

> No simple relationship between polarization-transfer ratio and form-factor ratio

But we can take advantage of this very precise experimental technique...

Compare e-p_{bound} to e-p_{free} by measuring:

• Polarization transfer double ratio: $R = \left(\frac{P_x'}{P_z'}\right)_A / \left(\frac{P_x'}{P_z'}\right)_H$

• Other polarization observables sensitive to medium effects: P_y

Put to test the modeling of nuclear medium effects in state-of-the-art nuclear physics calculations

E93-049 in Hall A at JLab

4He(e,e'p)3H in quasi-elastic kinematics $Q^2 = 0.5 - 2.6 \text{ GeV}^2$ H(e,e'p) in elastic kinematics...

E93-049 Results

Polarization transfer

> ⁴He differs significantly from ¹H: 10% reduction from 1 of $\left(\frac{P_x}{P_z}\right)_{4.1}$

Induced polarization

 $> P_y$ in ⁴He(e,e'p)³H is small: ~ -0.035 for Q² -> (0.5 - 1.6) GeV² (rather large systematic uncertainties)

S. Strauch et al., Phys. Rev. Lett. 91, 052301 (2003)

 $\left(\frac{P_x}{P_z}\right)$

E93-049: Interpretation (Madrid)

Polarization transfer

> RDWIA calculation from Madrid fails to describe $\left(\frac{P_x}{P_z}\right)_{4u} / \left(\frac{P_x}{P_z}\right)_{4u}$ from data

RDWIA + QMC (density-dependent form factors) in agreement with data

> Data reasonably well described by RDWIA (within the large systematic uncertainties of data)

P_y insensitive to inclusion of density-dependent form factors but sensitive to the cc and FSI used

The Madrid Calculation

Relativistic Distorted Wave Impulse Approximation (RDWIA)

J.M. Udias *et al.*, Phys. Rev. Lett. 83, 5451 (1999)

$$J_N^{\mu}(\omega, \vec{q}) = \int d\vec{p} \, \bar{\psi}_F(\vec{p} + \vec{q}) \hat{J}_N^{\mu}(\omega, \vec{q}) \psi_B(\vec{p})$$

 $\psi_B(ec{p})$ relativistic wave function for initial bound proton

 $\hat{J}^{\mu}_{N}(\omega,\vec{q})$ relativistic one-body proton current operator

 $\psi_F(p + \vec{q})$ relativistic wave function for final outgoing proton: solution of Dirac eq. with global optical potentials (central + spin dependent)

E93-049: Different Interpretation (R. Schiavilla *et al.*)

Polarization transfer

 $\geq \left(\frac{P_x'}{P_z'}\right)_{4,\mu} / \left(\frac{P_x'}{P_z'}\right)_{\mu}$ from data described by a calculation from Schiavilla *et al.*

(free nucleon form factors but different modeling of FSI and wave function + 2-body current)

Calculation from R. Schiavilla

- > Variational wave functions for the bound three- and four-nucleon systems
- > 2-body current: nonrelativistic MEC
- FSI: optical potentials with an additional charge-exchange term, largely unconstrained

Recap

Polarization transfer

Data consistent with: RDWIA + QMC (medium-modified form-factors) or FSI with charge-exchange + MEC + free form-factors

Induced polarization

- \succ The two calculations differ in their description of P_y
- Systematic uncertainties on data too large to make a definite claim
- ightarrow P_y becomes the key in the interpretation of the polarization-transfer ratio

EO3-104 in Hall A at JLab

4He(e,e'p)3H in quasi-elastic kinematics $Q^2 = 0.8$ and 1.3 GeV² H(e,e'p) in elastic kinematics...

Small missing momenta (< 120 MeV)

> Extract with greater accuracy $(P'_x/P'_z)_{He}/(P'_x/P'_z)_H$ and P_y

> Set tight constraints on the modeling of nuclear medium effects

Polarization Measurements

Observed Angular Distribution for H(e,e'p)

Chambers Info

> VDC (wire chambers): proton track before entering the FPP

Front & Rear FPP chambers (straw chambers): proton track before and after scattering in the Carbon analyzer => the angular distribution

Rear Straw Chambers

> Gas Cerenko

> > Carbon Analyzer

5 plates, total 60 cm

FPP Chambers: Demultiplexing Cuts

Wire Groups

> Check for interchanged wire groups: in the last plane u of second Front chamber: wire groups 10 and 11 interchanged

Tracking

Dead wires in FPP chambers: strict requirements of the standard tracking algorithm cannot be met => "holes" in the event distribution

Inefficient regions in chambers cause instrumental asymmetries

<u>First order Fourier Coefficients</u> (asymmetries):

$$\varepsilon_{y} = \frac{\sum \sin \phi}{\sum \sin^{2} \phi} \quad \varepsilon_{x} = \frac{\sum \cos \phi}{\sum \cos^{2} \phi}$$

Plan of attack: accept poorer tracking resolution in order to fill the holes => relaxed tracking algorithm

Relaxed Tracking

- > <u>Standard tracking</u>:
 - at least 1 hit in each chamber & at least 3 hits in total (left-right ambiguities)
 - Standard tracking algorithm too restrictive if planes have dead wires
- <u>Relaxed tracking</u>: at least 1 hit in each of the rear chambers
 - if 1 hit in each chamber => track
 - if 1 hit just in one of the chambers => hit + p-Carbon vertex = track

Alignment

> Front and Rear chambers: aligned for proper reconstruction of θ and ϕ (angular distribution)

Standard procedure

- > Use "straight-through" runs to:
- align VDC-Front tracks
- align Front-Rear tracks

Our procedure

- Use "straight-through" runs to:
- align VDC-Front planes
- align Front-Rear planes
- align tracks if necessary

Plane Alignment

> Select a "clean" sample of events and determine $\Delta u, v(wire)$

Track Alignment

Track Alignment

Cone Test & Cone Test Cuts

> Cuts to delimit the region where alignment coefficients are constrained

Fourier Coefficients

> After new tracking, alignment and news cone test cuts: reduction of false asymmetries

P_y: Systematic Checks

P_y: Systematic Checks

P_y: Systematic Checks

P_y: Systematic Checks

P_v: Systematic Checks

P_v: Systematic Checks

> Greatly reduced systematic uncertainties for E03-104: preliminary upper limit for systematic 0.006, i.e. ~ 3 times smaller than E93-049

Not Madrid nor Schiavilla:2005 offer a satisfactory description of latest data

New Calculation from R. Schiavilla (2010)

> Does the new calculation describe the polarization transfer?

New Calculation from R. Schiavilla (2010) Induced polarization Polarization transfer Madrid RPWIA E03-104, prelim. Madrid RPWIA E03-104, prelim. Madrid RDWIA (RLF) Madrid RDWIA (RLF) E93-049 Madrid RDWIA (MRW) Madrid RDWIA (MRW) O E93-049 $(P'_{x}/P'_{z})_{He} / (P'_{x}/P'_{z})_{H}$ Madrid RDWIA + QMC Madrid RDWIA + QMC Schiavilla 6^{0.001} Schiavilla 1.0 Ш P_v (p_a -0.05 0.8 n 3

"It seems possible to obtain a good fit of both the polarization ratio and Py by reducing the strength of the charge-exchange independent spin-orbit component of the optical potential. This should not change significantly the fits to the p-³H elastic scattering data"

 $Q^2 (GeV/c)^2$

> Charge-exchange dependent spin-orbit term remains unconstrained

 $Q^2 (GeV/c)^2$

P_y vs Missing Momentum p_m

> Madrid describes the "shape" of P_y with p_m but underpredicts the magnitude in absolute value (~ 0.025)

> Coming soon: new calculation from Madrid...

Summary

> The induced polarization P_y is crucial to clarify the role of conventional nuclear medium effects when searching for signatures of medium-modified form factors in ⁴He(e,e'p)³H

> E03-104 extracted the induced polarization P_y in ${}^4He(e,e'p){}^3H$ with great accuracy (~3 times better systematic than previously achieved)

> Our data put to stringent test nuclear physics calculations

• Presently, the Madrid calculation underestimated E03-104 data on P_y ; new calculation from Madrid expected soon

 Schiavilla: 2005 overestimates E03-104 data; our data offer constraints for Schiavilla: 2010 calculation