Realistic Transverse Images of the Nucleon

Gerald A. Miller, U. of Washington

Theme- much form factor data exist, interpret form factor as determining transverse charge
and magnetization densities, nucleon transverse densities known now to high precision,
pion known fairly well

Outline-

1. How not to and how to analyze electromagnetic form
factors- transverse density

2. Model independent proton, neutron transverse charge density

3. Pion time-like data and transverse charge density

Transverse Charge Densities.
Gerald A. Miller, arXiv:1002.0355 [nucl-th] ARNPS
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G% . known Q? < 31 GeV?
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Electric Form Factor of the Neutron up to Q2=3.4 GeV?2 using the Reaction
He3(e,e'n)pp.
S. Riordan et al. Aug 2010. e-Print: 1008.1738
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Interpretation of Sachs - G.(Q?) is Fourier transform of

charge density WRONG

Go@®) = [ arptre™ — [@rpr)1 6+ -)

Correct non-relativistic:
wave function invariant under Galilean

transformation
Relativistic : wave function is frame
dependent, initial and final states differ

interpretation of Sachs FF is wrong

Final wave function is boosted from initial
Need relativistic treatment
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Toy model cam, physRrev.c80:045210.2009

Scalar meson M, made of two scalar mesons, m
IF (M-2m)/M, small non-relativistic works

deuteron kinematics are

non-relativistic: extract neutron

structure function should be
possible

¢ (M-2m)/M=0.002

10 M2

Relativity needed

(M-2m)/M=0.1

Exact vs non-relativistic Form factors for the case mi = ms = m.
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Light front, Infinite momentum frame

g al 9 + 0 3 «“ D) — 0 3
Time”, x" =x" +x°, “Evolve”, p~ =p —p

— 0 3 + .
“Space”, x~ =x° —z°, “Momentum”, p™(Bjorken)
T'ransverse position, momentum b,p

These variables are standard! GPDs, TMDs PDFs all use these

transverse boosts in kinematic subgroup
k -k —ktv
Space-like momentum transfer in the transverse direction

then density is 2 Dimensional
Fourier Transform
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Model independent transverse charge density

Charge Density operator in infinite momentum frame
Evaluate in state of R=0, superposition of p eigenstates

Definition of F1

_ [ Qe

- EF(Q%)J0(QD)

o(b) = / 4z pos (2™, b)

— Soper 77

Density is u — 4, d — d
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Impact parameter dependent GPD Burkardt

Probability that quark at b from CTM has long momentum fraction x: ,0(:13, b)

o(b) = / drp(z,b)

Transverse density is integral over longitudinal position or momenta
example of Parseval’s theorem

N
R=0=)» axb; Quarkofx=1, must have b=0

10
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What is charge density at the
center of the neutron?

* Neutron has no charge, but
charge density need not vanish

* |s central density positive or
negative?

_ - p at center,
Fermi: n fluctuates to pJ‘[j

pion floats
to edge

One gluon exchange favors dud

Real question- how does form factor relate to charge density?
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Transverse charge densities from
parameterlzatlons (Alberlco)
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Neutron
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Negative at
large b, pion
cloud? see
Strikman
Weiss 10
arXiv:1004.3535

13

Wednesday, October 27, 2010



Neutron interpretation

+ Impact parameter gpd Burkardt p(x, b)

* Drell-Yan-West relation between high x DIS
and high Q2 elastic scattering

* High x related to low b, not uncertainty principle
111’1’11 VWQ(SI?) = (1 — CL‘)Qn_l < £1m Fl(Q ) ~

n =2
oo 2n

» d quarks dominate DIS from neutron at high x
. d quarks dominate at neutron center, or 7T

Density is v — 4, d — d
T 1S ud

decreases u contribution
enhances d contribution

Wednesday, October 27, 2010




Neutron interpretation p(x,b)
GAM, J. Arrington, PRC78.032201R 08

Using other people’s models

x=0.3

d or ™ dominates at high x, low b
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Understand b: quark and
spectator system

pb=7r(l—x),2)0s

p(0, x)

Model dependent, 0.5

does NOt integrate to 0

Large x does not dominate -1.00'

the density

10

Several values of x,
little variation

0.0 |
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Transverse Nucleon anomalous
magnetization density

. 1 L
i B= (x| [ dry @) BIX)
7 % j is magnetization density (OAM) Spinincluded

B in z-direction, J in z-direction

Magnetlzatlon den81ty

par(b) = S2p [ Q49 By (92) 7, (Qb)

17
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Direction of magnetic field
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Realistic Transverse Images of the Proton Charge and Magnetic Densities

Siddharth Venkat, John Arrington, Gerald A. Miller, Xiaohui Zhan arXiv:1010.3629

« Goals:

« Extract model-independent spatial information
* Deal with experimental uncertainties and

+ Lack of information at higher Q*

 Current interest- three dimensional structure of
nucleon

* Technique should be extendable to other
observables

19
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ﬂ-RQ Z‘]l

Finite Radius Approximation FRA

The basic idea

2F Q2) ( nE)a Qn =

b

R

« With R=3 fm, n=1Q? ~ 4 GeV"
* Dipole example

o Pr® [fm 2]
1.4f

1.2¢
1.0
0.8}
0.6}
0.4¢
0.2}

An X, A (n+3/4)m

Few terms are necessary

00 02
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The proton data
 ep scattering up to 31 GeV?

« Ggmextracted up to 10 GeV?
 global analysis of world data
* two photon exchange: Blunden et al

* repeat Arrington et al analysis with Puckett
data, evaluate analytic expression for Gem

 constrain slopes of Geg m to measured values

* uncorrelated uncertainties and normalization

uncertain’gies iIncluded
(dF1)* = (752)°(dGE) + (77—

) (dGwmr)?

L 246 o+ (—

dFy)°? =
(@) =137 147

)*(dGr)? 21
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O'F1(0)[GeV*]
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The uncertainties
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Proton transverse charge density *:

1.5¢

* Very well determined
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Other densities

PV = 5 [ QUQIQVFY (@)
o0 2

b ~ C — (A) 2
p(>\) (b) — Z Cn)\JA(XA,nE); Cn,\ Cn,\ R2J)\_|_1(X}\’n)2F (Q)\,n)v
n=1 Q B X>\,n
An — R
Pm(b) [fm™) L. _
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Determination of F_via Pion Electroproduction

At low 0%<0.3 GeV?, the n* form factor can be measured
exactly using high energy n" scattering from atomic electrons.
= 300 GeV pions at CERN SPS. jamendolia et al., NP B277(1986)168]

= Provides an accurate? measure - =0.657+0.012 fm
of the " charge radius.

To access higher 02, one must employ the
p(e,e’n")n reaction.
» -channel process dominates G, at
small —.
e In the Born term model.:

Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.
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Pion Transverse Charge Densityea rmsxecmosss
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NT@UW-10-15
Pionic Transverse Density From Time-like and Space-Like Probes

Gerald A. Miller', Mark Strikman?, Christian Weiss®

T

F.(t) = l/ dt’w Dispersion relation (0
4

T Jamz U —t+ie

Use this expression in equation for transverse density.

o) = o [ ek ImFy(t)

2 T
mﬂ'

Low t’ dominates except for very small values of b

Model needed: C. Bruch et al E. J Phys.C39, 41: Vector Meson
Dominance Gouranis Sakurai
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Pion Transverse Ch
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Summary

 Much data exist, Jlab12 will improve data set

* Charge density is not a 3 dimensional Fourier
transform of Ge

 Interpret form factor as determining transverse
charge and magnetization densities

* Nucleon transverse densities known now to high
precision

* New Finite Radius Approximation FRA technique
can be used for other spatial variables

* Pion transverse density known well

Wednesday, October 27, 2010




Spares follow

30
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Generalized transverse densities-

d.CC_ eipw:r;_

O, (pz,b) = / . ¢} (0,b)'qs(z™,b)

PP = [ dr Y eylpt R = 0O (7 2, bl R = 0.
q

[ dx sets x= = 0, get qi((), b)'q; (0,b) Density!
[' = %(1 +mn- v7°) gives spin-dependent density

Local operators calculable on lattice M. Gockeler et al
PRL98,222001 A/]:lO ~ sdd spin-dependent density

Schierholtz, 2009 -this quantity is not zero, proton is not

round
31
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Observing shape of proton

* Transverse coordinate space density is a
GPD, observe on lattice

* Transverse momentum space density Iis a
TMD, can be observed in

Q,TPHG/WX

32
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I: Non-Rel. p;/5 proton outside 0™ core

(rplth1,1/2s) = R(1p)O - TplS)
p(1r) = (P1,1/2510(r — Tp)[11,1/25) = R*(r)
probability proton at r & spin direction n:
P(IH n) — <¢1,1/25|5(I' — rp)(1+c27.n)|¢1,1/28>
R2(r) . . 0
= ——(slo- (1l +0-n)o-t|s)
S r

S : p(r,n =8) = R*(r)cos? 6
—S: p(r,n = —8) = R?(r)sin? 6

non-spherical shape depends on spin direction
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Summary

 Much data exist, Jlab12 will improve data set

* Interpret form factor as determining transverse
charge and magnetization densities

* Nucleon transverse densities known now to high
precision,

* Pion known fairly well
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Relativistic formalism-

kinematic subgroup of Poincare

 Lorentz transformation —transverse
velocity v

kY — k7. k — k —kTv

k- such that k? not changed
Just like non-relativistic with k* as
mass, take momentum transfer in perp
direction, then density is 2 Dimensional
Fourier Transform, also

" =¢"+¢=0,—¢=Q°=q
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Transverse charge densities

1.5
o(b) [fm™?] 1 proton
0.5
________ 0
BBBA 5 1 15 2
b[fm]
Kelly
0.1
0
-0.1
o(b) [fm™?] —0.2
-0.3 neutron
Negative 0O 0.5 1 1.5 2

b[fm]
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Negative F, means

central density negative
0.01}

0 ,

b o(b)[fm ] _g. 01}
-0.02}

-0.03

neutron

0 0.5 1 1.5 2
b[fm]
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Return of the cloudy bag model

* In a model nucleon:bare nucleon + pion
cloud - parameters adjusted to give
negative definite F1, pion at center causes
negative central transverse charge density

e Boosting the matrix element of JY

to the infinite momentum frame
changes Gg to F}

Rinehimer and Miller
PRC80,015201, 025206

38
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Spin dependent densities-transverse-
Lattice QCDSF, Zanotti, Schierholz...
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Transverse Momentum Distributions -
momentum space density

In a state of fixed momentum
CIDI(; (z, K) give probability of quark of given 3-momentum
hlLT gives momentum-space spin-dependent density

measurable experimentally
hard to calculate on lattice because - gauge link

40
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Relation or not between GPD and TMD

der™ , x~ x it o
PS'| [ a0 a0 RS

A,
IM Eq(x,f,t)> ’U,(P, S)

+ — 2.
Oh(o = 5rK) = (P.S| [ S e SaOTa(Q)IP.S)ci—o

GPD: nucleons have different momenta, but FT local in coordinate
space if integrate over x

TMD: nucleons have same momenta, operator is
local in momentum space

41
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How well are these known now?

* Analyze effect of experimental errors and
errors due to finite range of Q2

ocn(b) [fm™]
2.0k

1.5}
1.0t

0.5¢

Transverse Charge density
b
—2 2
7TR2 Zjl F Q )J()( R)7

Qn

An
-

b [fm]

02 04 06 08 10 12 14

Venkat, Arrington, Miller, Zhan arXiv:1010.3629

42
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Both can be obtained Wigner distribution operator
W, (¢7, ¢,k k)

1 n- ] o 7
d d2 1k-n 0 ——F o o
=5 [ dn~dne q(¢™ 5 6 2) q(¢” + 5 ,C+2)

o d2k o
Hy(2,&,t) = (P, 5] =0,{ =0,k",k)|P, S)

dg—
2

o7 (2,k) = (P, S| / oW R IP.S)

43
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Anomalous magnetization
density

pngA — R2 Z J Xl n)le nFZ(Ql n)Jl (Ql n ) Ql,n = R;

2(b) [fm™2
Pyl

1.0}
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Summary

* Form factors, GPDs, TMDs, understood from unified
light-front formulation

* Neutron central transverse density is negative-
consistent with Cloudy Bag Model

* Proton is not round- lattice QCD spin-dependent-
density is not zero

 Experiment can whether or not proton is round by

measuring h‘f_T
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Summary

* Form factors, GPDs, TMDs, understood from unified
light-front formulation

* Neutron central transverse density is negative-
consistent with Cloudy Bag Model

* Proton is not round- lattice QCD spin-dependent-
density is not zero

 Experiment can whether or not proton is round by

measuring h‘f_T

The Proton
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Cloudy Bag Model~1980

PHYSICAL REVIEW D VOLUME 24, NUMBER 1 1 JULY 1981

Cloudy bag model of the nucleon

A. W. Thomas and S. Théberge
TRIUMEF, University of British Columbia, Vancouver, British Columbia, Canada V6T2A43

Gerald A. Miller

Institute for Nuclear Theory and Physics Department, FM-15, University of Washington, Seattle, Washington 98195
(Received 28 January 1981)

A previously derived model in which a baryon is treated as a three-quark bag that is surrounded by a cloud of pions
is used to compute the static properties of the nucleon. The only free parameter of the model is the bag radius which
is fixed by a fit to pion-nucleon scattering in the (3,3)-resonance region to be about 0.8 fm. With the model so
determined the computed values of the root-mean-square radii and magnetic moments of the neutron and proton,
and g, are all in very good agreement with the experimental values. In addition, about one-third of the 4 -nucleon
mass splitting is found to come from pionic effects, so that our extracted value of a, is smaller than that of the MIT

bag model.

Many successful predictions

One feature- pion penetrates to the bag inte5i60r
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interpretation of FF as quark density
9 9

>~

-=-

overlap of wave function Fock
components with different
number of constituents

NO probability/charge
density interpretation

Yy Y Y&

overlap of wave function .
P Absent in a Drell-Yan Frame

Fock components with
same number of quarks

q+=q0+q3=o

interpretation as
probability/charge density  From Marc Vanderhaeghen
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