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Theme- much  form factor data exist, interpret form factor as determining transverse charge 
and magnetization densities, nucleon transverse densities known now to high precision,
pion known fairly well
Outline-

1. How not to and how to analyze electromagnetic form 
factors- transverse density 

2. Model independent proton, neutron transverse  charge density 

3. Pion time-like data and transverse charge density

Transverse Charge Densities.
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Proton

3

Final Results, I 

5/19/10 GEp-III Collaboration 

21 

•! Results finalized, 

accepted for 

publication in PRL 

•! 50% increase in Q2 

coverage 

•! New data favor a 

slowing rate of 

decrease of R 

A.J.R. Puckett et al., 
Phys.Rev.Lett.
104:242301,2010.

        

Gp
M known Q2 ≤ 31 GeV2
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 Electric Form Factor of the Neutron up to Q2=3.4 GeV2 using the Reaction 
He3(e,e'n)pp.

S. Riordan et al. Aug 2010. e-Print: 1008.1738

4

Constituent Quark Light-Front Cloudy Bag Model

Results match present G
p
E at higher Q2
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E suppression at higher Q2 due to inclusion of quark orbital

angular momentum

Seamus Riordan — Exclusive 2010 GnE and GnM with SBB 9/32
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Results for

JLab,  May 19,  2010, 17!

Overview of results for GM
n 

!!A systematic difference of several % 
between results from JLab and MAMI 
in Q2-range 0.4 – 1.0 GeV2 
!!Reminder that at least two 

independent experiments are always 
needed 
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High-quality data set now 
available up to ~4.5 GeV2 
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Interpretation of Sachs - GE(Q2) is Fourier transform of 

charge density      WRONG

Correct non-relativistic:
wave function  invariant under Galilean 
transformation

-

Relativistic :  wave function is frame 
dependent, initial and final states differ
interpretation of Sachs FF is wrong

Final wave function is boosted from initial

Need relativistic treatment

GE(!q 2) =
∫

d3rρ(r)ei!q·!r →
∫

d3rρ(r)(1− !q 2r2/6 + · · · )
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Scalar meson M, made of two scalar mesons, m
IF (M-2m)/M, small non-relativistic works 

11
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FIG. 5: Exact vs non-relativistic Form factors for the case m1 = m2 = m.

where the coupling constants and other constants enter in such a manner as to make FNR(Q2 = 0) = 1.
We study the non-relativistic approximation, by comparing the exact model results Eq. (17) with those of the

non-relativistic approximation Eq. (69). See Fig. IXA.
The figure shows two sets of results. In the upper panel the binding energy B = 0.002 M . This corresponds roughly

to deuteron kinematics, in which the binding energy is of the order of a 0.004 of the deuteron mass. We see that
the non-relativistic approximation is not accurate for values of Q2/M2 greater than about 1. If one increases the
binding energy to 0.1 M , one sees that the non-relativistic approximation is not accurate for any value of Q2. If one
approximates a nucleon by taking M = 1 GeV, then m = 0.55 GeV, which is much larger than a constituent quark
mass.

We can gain some insight into the nature of the relativistic corrections to the charge radius by studying the low Q2

limit of the form factor of Eq. (8). One finds

lim
Q2→0

F (Q2) = 1 − Q2R2

6
, (70)

with

M2R2 =

(

1
γ3 + 48γ

)

cot−1(2γ) + 2
γ2 − 24

16
((

2γ + 1
2γ

)

cot−1(2γ) − 1
) , (71)

and

γ2 =
m2

M2
− 1

4
=

B

2M
+

B2

4M2
. (72)

The non-relativistic limit corresponds to the limit of small values of γ, which corresponds to a small value of B/M .
So we expand the previous result to order B/M to find

M2R2 ≈
(

12288− 2816π2 + 195π4
)

B

48Mπ4
+

√

B
M

(

128
√

2 − 25
√

2π2
)

4π3
+

64 − 5π2

8π2
+

√
2

√

B
M π

+
M

4B
(73)

deuteron kinematics are 
non-relativistic: extract neutron 
structure function should be 
possible

Relativity needed

Toy model  GAM, Phys.Rev.C80:045210,2009.   

(M-2m)/M=0.002

(M-2m)/M=0.1

On the Relationship Between Electromagnetic Form Factors and Charge Densities

Gerald A. Miller
Department of Physics, University of Washington

Seattle, Washington 98195-1560

An exact covariant simple model is used to elucidate various issues.

PACS numbers:
Keywords: Nuclear Form Factors, Nuclear Charge Densities

I. INTRODUCTION

The text-book interpretation of these form factors is that their Fourier transforms are measurements of the charge
and magnetization densities. But the initial and final nuclei have different momentum, and therefore different wave
functions. This is because the relativistic boost operator that transforms a nucleus at rest into a moving one changes
the wave function in a manner that depends on the momentum of the nucleon. The presence of different wave functions
of the initial and final nucleons invalidates a probability or density interpretation.

Infinemomentum frame method history-me carlson carlson
Nuclei are very heavy expect relativistic effects are small.
Present analysis.
A proper determination of a charge density requires that the quantity be related to the square of a wave function

or of a field operator. The technical solution to the problem of determining the relevant density operator has been
known for a long time [3], and has been elegantly explained recently[5, 6]

The charge density ρ(b) [7] of partons in the transverse plane is a two-dimensional Fourier transform of the F1 form
factor. Here we present the first phenomenological analysis of existing data to determine ρ(b) for 3He and 3H. Carlson
and M. Vanderhaeghen,V and C have done the deuteron [8].

II. EXACT FORM FACTORS USING A SIMPLE MODEL

The model Lagrangian is given by gΨφ ξ where Ψ, φ and ξ represent three scalar fields of masses M, m1 and m2

respectively and g is a coupling constant One can take two or three of these fields to carry charge to make up a system
of definite charge (including the neutral case). We begin with the case that Ψ, φ carry a single positive charge and ξ
is neutral. The form factor F (q2) for a space-like incident photon of four-momentum qµ (q2 < 0, Q2 = −q2), incident

P P+q

q

k

P!k

k+q

1

2

FIG. 1: Feynman diagram for the form factor with the photon coupling to the particle of mass m1.
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“Time”, x+ = x0 + x3, “Evolve”, p− = p0 − p3

“Space”, x− = x0 − x3, “Momentum”, p+(Bjorken)
Transverse position, momentum b,p

Light front, Infinite momentum frame

These variables are standard! GPDs, TMDs PDFs all use these

transverse boosts in kinematic subgroup
k→ k− k+v

then density is 2 Dimensional  
Fourier Transform

Space-like momentum transfer in the transverse direction

q

p
p’

Wednesday, October 27, 2010



ρ(b) ≡
∫

dx−ρ∞(x−,b) =
∫

QdQ

2π
F1(Q2)J0(Qb)

Density is u− ū, d− d̄

Model independent transverse charge density

•
9

Charge Density operator in infinite momentum frame

Evaluate in state of R=0, superposition of p  eigenstates

Definition of F1

Soper ’77

Wednesday, October 27, 2010



ρ(x, b)

ρ(b) =
∫

dxρ(x, b)

R = 0 =
N∑

i

xibi

Impact parameter dependent GPD Burkardt

10

Probability that quark at b from CTM has long momentum fraction x: 

Quark of x=1, must have b=0

Transverse density is integral over longitudinal position or momenta
example of Parseval’s theorem

1!x

b / (1! )xr =
b

x

Wednesday, October 27, 2010



What is charge density at the 
center of the neutron? 

• Neutron has no charge, but 
charge density need not vanish

• Is central density positive or 
negative?

 Fermi: n fluctuates to  
 

p at center, 
pion floats 
to edge

One gluon exchange favors   dud 

Real question- how does form factor relate to charge density?

Wednesday, October 27, 2010



Transverse charge densities from 
parameterizations (Alberico)

12
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Figure 4
Nucleon ρ(b). (a) Proton transverse charge density. (b) Neutron transverse charge density. These densities
are obtained by using the parameterization of Reference 91.

by a nonzero value of Q2, no matter how small, because the momentum difference between the
initial and final states appears via the use of derivatives of momentum-conserving delta functions
in the moments computed in Reference 85. Any attempt to analytically incorporate relativistic
corrections in a p2/m2

q type of expansion would be doomed by the presence of the quark mass mq

to be model dependent. This feature is explained more thoroughly in References 6 and 86.
We exploit Equation 31 by using measured form factors to determine ρ(b). Recent parameter-

izations (87–91) of GE and GM are very useful, so we use Equation 43 to obtain F1 in terms of GE,
GM . Then ρ(b) can be expressed as a simple integral of known functions,

ρ(b) =
∫ ∞

0

d Q Q
2π

J0(Qb)
GE (Q2) + τGM (Q2)

1 + τ
, 44.

where τ = Q2

4M 2 and J0 is a cylindrical Bessel function.
A straightforward application of Equation 44 to the proton using the parameterizations of

Reference 91 yields the results shown in Figure 4a. The curves obtained by using the two different
parameterizations overlap. Furthermore, there seems to be negligible sensitivity to form factors
at very high values of Q2 that are currently unmeasured. The density is peaked at low values of b
but contains has a long positive tail, suggesting a long-ranged, positively charged pion cloud.

The neutron results are shown in Figure 4b. The curves obtained by using the two different
parameterizations seem to overlap. Surprisingly, the central neutron charge density is negative.
The values of the integral of Equation 44 are somewhat sensitive to the regime 8 < Q2 < 16 GeV2,

14 Miller
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Neutron

13
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Figure 5
Neutron F1 and bρ(b). (a) F1(Q2). (b) bρ(b). The solid light brown curves are obtained using fit 1 of
Reference 91, and the dashed green curves are obtained by using fit 2 of the same reference.

for which GE is as yet unmeasured. Approximately 30% of the value of ρ(0) arises from this region.
That ρ(b = 0) < 0 was confirmed in References 80 and 92–94.

The negative central density deserves further explanation. See Figure 5a, which shows F1 for
the neutron from two parameterizations of Reference 91. In both cases, F1 is negative (because
of the dominance of the GM term of Equation 44) for all values of Q2. This feature, along with
taking b = 0 so that J0(Qb) = 1 in Equation 44, immediately leads to the central negative result.
The long-range structure of the charge density is captured by displaying the quantity bρ(b) in
Figure 5b. At very large distances from the center, bρ(b) < 0, which suggests the existence of the
long-ranged pion cloud. Thus, the neutron transverse charge density displays an unusual behavior,
in which the positive charge density in the middle region is sandwiched by negative charge densities
at the inner and outer reaches of the neutron. A simple model in which the neutron fluctuates
into a proton and a π− parameterized to reproduce the negative-definite nature of the neutron’s
F1 (95) reproduces the negative transverse central density. In this case, the negative nature arises
from pions that penetrate to the center. The change from the nominal positive value obtained
from GE can be understood as originating in the boost to the IMF (86).

One can gain information about the individual u and d quark densities by invoking charge
symmetry [invariance under a rotation by π about the z (charge) axis in isospin space (96–99)] and
by neglecting the effects of s s̄ pairs (100). Model-independent information about nucleon structure
is thereby obtained and shows, surprisingly, that the central density of the neutron is negative.

www.annualreviews.org • Transverse Charge Densities 15
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Neutron interpretation
• Impact parameter gpd Burkardt
•  Drell-Yan-West relation between high x DIS 

and high Q2 elastic scattering
• High x related to low b, not uncertainty principle

• d quarks dominate DIS from neutron at high x
• d quarks dominate at neutron center, or 

14

ρ(x, b)

π−

Density is u− ū, d− d̄
π− is ūd
decreases u contribution
enhances d contribution

lim
x→1

νW2(x) = (1− x)2n−1 ↔ lim
Q2→∞

F1(Q2) ∼ 1
Q2n

, n = 2

Wednesday, October 27, 2010



Neutron interpretation ρ(x,b)  
GAM, J. Arrington, PRC78,032201R  ’08

x=0.1 x=0.3

x=0.5

d or        dominates at high x, low bπ−

Using other people’s models

Wednesday, October 27, 2010



Understand b: quark and 
spectator system

16

1!x

b / (1! )xr =
b

x

u

d

Several values of x,
little variation

Model dependent,
does not integrate to 0
Large x does not dominate
the density

ρ(b = r(1− x), x)
ρ(0, x)

RAPID COMMUNICATIONS

GERALD A. MILLER AND JOHN ARRINGTON PHYSICAL REVIEW C 78, 032201(R) (2008)

FIG. 4. (Color online) The u and d quark contributions to
ρ

Spec,n
⊥ (Brel, x), see Eq. (12), vs Brel for x = 0.1 (solid), 0.3 (long-

dash), 0.5 (short-dash), and 0.7 (dotted). The curves are scaled to
unity at Brel = 0. Here the quark flavor refers to the neutron (u in the
proton is d in the neutron).

from the struck quark to the spectator quarks:

x1b1 +
∑

i>1

xibi = xb + (1 − x)bspec = 0, (10)

Brel = b − bspec = b
(1 − x)

= Brel. (11)

We exhibit the dependence on Brel by defining the function

ρ
Spec
⊥ (Brel, x) ≡ ρ⊥(Brel(1 − x), x), (12)

which gives the probability that a struck quark of longitudinal
momentum fraction x is a distance Brel away from the spectator
center of momentum. Figure 4 shows this rescaled version of
ρ⊥(b), with the contribution at each x value normalized to unity

at b = 0. The quantity ρ
Spec
⊥ (Brel, x) cannot be determined in a

model-independent manner, but may be a better approximation
to our intuitive picture of the charge distribution, as it removes
the influence of the struck quark on defining the center of the
nucleon. While the charge distribution coming from very low x
quarks has a greater spatial extent, the decreasing width of the
ρ⊥(b) distribution for large x quarks is essentially completely
removed when looking at Brel.

Before concluding, it is worthwhile to comment on the
relation between the present work and the difference between
the electric and magnetic radii of the proton [9]. In the model-
independent, IMF approach presented here, the electric and
magnetic transverse radii have a clear connection to F1 and
F2 and a Foldy [26] term causes a difference between the
transverse radii. The Foldy term is responsible for most of
the charge radius defined by GE . Understanding the neutron’s
negative central density is more subtle and requires knowledge
of ρ(x, b).

We summarize our findings with the statement that, using
the model GPDs of Refs. [17–19], the dominance of the
neutron’s d quarks at high values of x leads to a negative
contribution to the charge density which, due to the definition
of b, becomes localized near the center of mass of the neutron.
This localization does not appear when examined as a function
of the position of the struck quark relative to the spectators.

We thank D. Geesaman, P. Kroll, and B. Wojtsekhowski for
useful discussions. We thank the ECT∗ for hosting a workshop
where many of the calculations we present were performed.
This work was supported by the U.S. Department of Energy,
Office of Nuclear Physics, under Contracts FG02-97ER41014
and DE-AC02-06CH11357.
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Magnetization density
ρM (b) = sin2 φ

2M b
∫ Q2dQ

2π F2(Q2)J1(Qb)

1
2!r ×!j is magnetization density (OAM)

!B in x-direction, !J in z-direction

!j

!B, !S
!r

!µ · !B = 〈X|
∫

d3r
1
2
(!r ×!j) · !B|X〉

Transverse Nucleon anomalous 
magnetization density

17

Spin included 
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46 Gerald A. Miller
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Figure 7: Upper panel: ρ̃M (b = (b,φ = π/2)) as a function of b. Lower panel:

Density plot of ρ̃M (b) . The horizontal axis is the direction of the applied mag-

netic field. The largest (smallest) values of ρ̃M are denoted by the brightest

(darkest) areas. This figure is obtained using a dipole parametrization for F2 of

the proton.

Direction of magnetic field
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Realistic Transverse Images of the Proton Charge and Magnetic Densities

Siddharth Venkat, John Arrington, Gerald A. Miller, Xiaohui Zhan   arXiv:1010.3629 

• Goals:
• Extract model-independent spatial information
• Deal with experimental uncertainties and
• Lack of information at higher 
• Current interest- three dimensional structure of 

nucleon
• Technique should be extendable to other 

observables
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Xn ≈ (n + 3/4)π

The basic idea

• With R=3 fm, n=10,             
• Dipole example
•
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limited and can be written as a discrete Fourier series
involving F (Q2). This result, known as the Nyquist-
Shannon [7] sampling theorem, enables us to asso-
ciate the density at a given range of values of b with
a discrete value of the momentum transfer, see Eq. (3)
below (which we denote as the finite radius approxi-
mation FRA). The equivalence between the FRA and
the Bessel series expansion technique is also estab-
lished.

Sect. III is concerned with exploring the the valid-
ity and utility (which depends on the number of terms
needed in the discrete Fourier series) of the FRA us-
ing examples in which the form factor is given by a
monopole (M) or dipole (D) form. Sect. V is con-
cerned with the reality that the proton electromag-
netic form factors are not known as analytic func-
tions. Instead, form factors GE,M , F1,2 (with uncer-
tainties ) measured at discrete values of Q2 up to a
finite maximum value Q2

max are known. This means
that ρ is known only within some uncertainties, and
a technique to determine the uncertainties in ρ must
be developed. This is accomplished by using the val-
ues of Fi ± dFi in the FRA. Estimates of the effects
arising from form factors evaluated at Q2 > Q2

max ,
the effects of incompleteness, are also provided. The
paper is concluded with a brief summary.

II. GENERAL CONSIDERATIONS

JRA: A simpler overview of the assumptions and
approach would be very helpful. (GAM: this is done
above.) The only assumption made (that I see) is that
the ρ = 0 above b = R, but later there is a comment
about the assumption that F (Q2) = 0 above some
unspecified Q2. ( GAM:this comment is removed.)
Also, expanding a little more on the connection be-
tween N, R, and Q2, in the context of fitting to be
done later, would help clarify this. (GAM: this is
done below.) Also, it would set up things nicely if you
state after giving eq.1 that this can be used to extract
the density for any well-behaved fit to F (Q2), but then
point out that an expansion is useful for determining
the error in the density, especially for contributions
beyond the measured regions in Q2, that would help
the later sections where it seems strange to start with
the exact answer and then follow up with the approx-
imate solution.(GAM: this is done below.)

Intuitively, we expect particles to be localized.
That is, we expect densities associated with the par-
ticle to be well approximated by functions that are
zero outside some maximum radius. This assump-
tion, called the finite radius approximation (FRA),
greatly simplifies the relationship between form fac-

tors and their associated densities.
Let ρ(b) be a two-dimensional transverse density

function (we later take this to be charge or magneti-
zation density) and let F (Q2) be the associated form
factor. The transverse density is given by

ρ(b) =
1

(2π2)

∫
d2qe−iq·b F (Q2 = q2)

=
1

2π

∫
QdQJ0(Qb)F (Q2), (1)

with the azimuthal symmetry of ρ obtained from the
Lorentz invariant form of F in the space-like region
with q+ = 0. If one knows F (Q2) exactly for all
values of Q2 the transverse density is known immedi-
ately. However, one only knows F (Q2) within exper-
imental uncertainties for a finite range of Q2. This
means that ρ is known only within some uncertain-
ties, and it is necessary to develop a technique to
determine the uncertainties in ρ.

We proceed by assuming that ρ(b) = 0 for b ≥ R,
where R is a finite distance. Since the functions ρ, F
are Fourier transforms, F is band-limited. We pro-
ceed in the spirit of the Nyquist-Shannon sampling
theorem. The function ρ can be expanded as

ρ(b) =
∞∑

n=1

cnJ0(Xn
b

R
), (2)

where Xn is the n-th zero of J0, and cn is given ap-
proximately by the formula

cn ≈ c̃n =
1

2π

2

R2J1(Xn)2
F

(
(
Xn

R
)2

)
. (3)

The above equation Eq. (3), which is the two-
dimensional version of [7], is the central formal re-
sult of this paper. Using this in Eq. (2) yields the
following expression for ρ(b):

ρ(b) =
1

πR2

∞∑

n=1

J1(Xn)−2F (Q2
n)J0(Xn

b

R
), (4)

with

Qn ≡
Xn

R
. (5)

The result Eq. (4) is the central phenomenological
result because it tells us that measuring a form fac-
tor at Q2

n provides information about the density at
values of b < R/Xn. This is because Bessel functions
are of the order of unity only for values of arguments
less than that of its first zero.
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Q2
n ≈ 4 GeV2

5

physical extent of the proton as compared to the
pion. Furthermore, ρD is not singular at the origin
(∼ 1 − 0.058(bΛ)2). Thus there are several reasons
to expect to find better convergence properties, and
therefore a more accurate representation of the trans-
verse density for the proton. With this value of Λ,
〈b2〉 = 8/Λ2 = 0.439 fm2, and R = 3.31 fm. Once
again the fractional difference of Eq. (12) is truly tiny
for all values of n: the fractional differences are less
than about 10−5 for all values of n that correspond
to non-zero cn. We plot ρD and its approximations
in Fig. 2.
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FIG. 2: (Color online) Plot of ρD (solid), 5 term approx-
imation (red, long dash), 10 term approximation (green,
medium dash) and 15 term approximation (brown, short
dash).

We can see how the approximations converge to
the exact ρD. Even the 10 term approximation is
reasonably good and the 15 term approximation is
extremely accurate except for b < 0.1 fm.
Another way of looking at convergence properties

is to examine properties of the transverse density. We
display upper limit dependence of 〈b2〉M,D for both
the monopole and dipole form factors. We compute
these matrix elements for a range of values of b from
0 to 1.5 fm. This covers the region up to where ρ
is about 0.1% of its central value. The results are
shown in Table I. Despite the relatively poor conver-
gence obtained for the monopole form factor (Fig. 1),
reasonable convergence for the expectation value is
obtained. However, the convergence is much better
for the dipole form factors. The 5,10 and 15 term
approximations correspond to values of Q2 = 0.9, 4
and 9 GeV2. These values and even higher have al-
ready been achieved experimentally. Thus we rea-
sonably expect that the proton transverse density is
now known. Indeed, this has already been suggested
[9]. However, now we can answer the question: “How
well is the proton transverse charge density known?”.

TABLE I: Upper limit, N , dependence of 〈b2〉M,D com-
puted for values of b from 0 to 1.5 fm.

N 〈b2〉M (fm)2 〈b2〉D (fm)2

5 0.259 0.313

10 0.362 0.320

15 0.368 0.319

∞ 0.367 0.319

IV. EXTRACTION OF PROTON FORM
FACTORS AND UNCERTAINTIES

The transverse densities we seek are given in terms
of the Dirac F1 and Pauli F2 form factors, which are
expressed in terms of the Sachs electromagnetic form
factors GE and GM as

F1(Q
2) =

GE + τGM

1 + τ
, F2(Q

2) =
GM −GE

1 + τ
, (25)

where τ = Q2

4M2
p

.

Elastic electron-proton scattering has been mea-
sured up to Q2 of about 30 GeV2, with the separa-
tion of both GE and GM extracted using a variety of
techniques up to 10 GeV2. There are two sources of
uncertainty in the extraction of the transverse den-
sities. Experimental uncertainties from the measure-
ments of GE and GM yield uncertainty in the ex-
tracted densities, and incompleteness error arise from
the lack of form factor measurements at very highQ2

(above 30 GeV2). In this section, we perform extrac-
tions of the transverse density and evaluate the the
effects that two kinds of uncertainties on the densi-
ties.
The form factors GE and GM have been extracted

from a global analysis of the world’s cross section
and polarization data, including corrections for two-
photon exchange corrections from Ref. [16]. The
analysis is largely identical to that that of Ref. [17],
although additional high Q2 form factor results [18]
have been included. In addition, the slopes of GE

and GM at Q2=0 were constrained in the global fit
based on a dedicated analysis of the low Q2 data. In
the global fit, the large body of high Q2 data, espe-
cially for GM , can constrain the fit well enough that
the low Q2 behavior is not primarily constrained by
the low Q2 data. Constraining the slope based on an
analysis of only the low Q2 data keeps the global fit
from doing a poor job at low Q2 simply to make a
slight improvement in the high Q2 data. In writing
GE(Q2) = 1 − Q2R2

E/6, the value of RE was con-
strained to be 0.878 fm and RM was constrained to

n=5
n=10
n=15

Few terms are necessary

Finite  Radius Approximation FRA
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The proton data
• ep scattering up to 31 GeV2    
• GE,M extracted up to 10 GeV2  

• global analysis of world data
• two photon exchange: Blunden et al
• repeat Arrington et al analysis with Puckett 

data, evaluate analytic expression for GE,M

• constrain slopes of GE,M  to measured values
• uncorrelated uncertainties and normalization 

uncertainties included
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be 0.860 fm. This is important in the extraction of
the large scale structure of the density. The fit is of
the following form:

GE(Q
2) =

1 + p6τ + p10τ2 + p14τ3

1 + p2τ + p4τ2 + p8τ3 + p12τ4 + p16τ5

GM (Q2) =
1 + q6τ + q10τ2 + q14τ3

1 + q2τ + q4τ2 + q8τ3 + q12τ4 + q16τ5

(26)

where the fitting constants p2, ..p16, q2, ..., q16 are
given in Table II.

TABLE II: Fit parameters for GE , GM

i pi qi

2 1.104 × 101 3.517 × 101

4 1.385 × 101 3.530 × 101

6 −2.947 × 10−2 2.318 × 101

8 2.430 × 101 1.958 × 103

10 7.347 × 10−1 9.994 × 101

12 2.920 × 101 7.947 × 102

14 3.087 × 10−1 −1.952 × 101

16 1.381 × 101 3.099 × 103

We also need a reliable estimate of the experimen-
tal uncertainties in the form factors, in order to de-
termine the uncertainty in the extracted coefficients
c̃n. In the global analysis, there are two sources that
can contribute to the uncertainties in GE and GM :
the uncertainty on each individual cross section or
polarization ratio, and the normalization uncertainty
associated with each cross section data set. The nor-
malization factors are allowed to vary in the fit, as
was the case in Ref. [17]. To estimate the uncertainty
in the fitted normalization factors, we take the nor-
malization factor from a single data set and vary it
around its best fit value (while allowing all other pa-
rameters to vary) to map out the change in the χ2 of
the fit as a function of the normalization factor. This
yields uncertainties between 0.2% and 2.5% (typically
0.6%–1%), compared to the initally quoted uncer-
tainties of 1.5% to 5%, for the data before the nor-
malization has been constrained by the fit. However,
by assuming that all uncertainties are entirely un-
correlated or pure normalization factors, we neglect
the possibility there may be some angle-dependent
or Q2-dependent correction that could bias the de-
termination of the relative normalization coefficients.
Thus, we assume that the final uncertainty on each
normalization factor is at least 0.5%, even if the re-
sult of the χ2 analysis yields a smaller result.

Having the uncorrelated uncertainties for each data
point and the constrained normalization uncertain-
ties, we then extract the uncertainties for GE and
GM . For the uncorrelated uncertainties, we randomly
shift each cross section and polarization ratio mea-
surement within its uncertainties, and then redo the
fit for GE and GM . We repeat this 1000 times, and
look at the range of values for several Q2 values (55
Q2 values between 0.007 and 31.2 GeV2). This yields
our uncorrelated uncertainty at each of theQ2 points.
To obtain the impact of the normalization uncertain-
ties, we repeat this procedure, varying the normal-
ization of each cross section data set according to its
uncertainty, and determine the range of GE , GM val-
ues for the same set of Q2 points. In this procedure,
the uncertainty obtained depends on the fit function
used, and a functional form with insufficient flexibil-
ity will yield significant smoothing of the results and
thus unrealistically small uncertainties. We scale up
our uncertainties by a factor of two, which yields good
agreement with best direct measurements of the form
factors and uncertainties.
As mentioned above, we use the electric and mag-

netic radii extracted from just the low Q2 data in as
a constraint to the global fit, which can yield unreal-
isically small uncertainties for below Q2=0.2 GeV2,
especially for GM , where the very low Q2 data is ex-
tremely limited. Thus, for these low Q2 values, we
calculate the uncertainty at each Q2 corresponding
to the uncertainty in the extracted radius, assuming
the linear expansion. We take this larger uncertainty,
rather than the result from the fit, until the uncer-
tainties from direct extractions of the form factors are
of comparable size, at which point we take the direct
extraction of the uncertainty. For Q2 > 10 GeV2,
there are no direct extractions of GE , and thus we
again have to be sure that we do not underestimate
the uncertainties. The global fit yields GE/GD ≈ 0
at high Q2, but it is difficult to tell if GE becomes
zero, or if GE/GM continues its linear decrease with
Q2 [18]. Thus, for Q2 > 10 GeV2, we set the uncer-
tainty to be the difference between the best fit, which
yields GE ≈ 0 and the fit where the linear falloff in
GE/GM continues, with GE changing sign and then
increasing in absolute value.
We then use the fit and uncertainties for GE and

GM to extract F1 and F2, treating the uncertainties
in GE and GM as uncorrelated, yielding:

(dF1)
2 = (

1

1 + τ
)2(dGE)

2 + (
τ

1 + τ
)2(dGM )2 (27)

(dF2)
2 = (

1

1 + τ
)2(dGE)

2 + (
1

1 + τ
)2(dGM )2 , (28)
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For Q2 < 30 GeV2,
use dF1 in FRA to get dρch(b)

For Q2 greater than 30 GeV2,
use FRA and take dF1 = ± |F1(fit)|

The uncertainties
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FIG. 3: (Color online) The electromagnetic form factors
F1(Q2) and F2(Q2) and their error bands, scaled by a
factor of Q4.

While the Rosenbluth extractions yield a strong anti-
correlation between the uncertainties onGE and GM ,
the polarization ratio yields a correlated uncertainty;
in the global fit, the combined result is fairly well
approximated by entirely uncorrelated uncertainties.
Figure 3 shows the extracted values of F1 and F2

along with their uncertainties. Because the elastic
cross section is dominated by the contribution from
GM at large Q2, the fractional uncertainties on GE

are much larger, and the uncertainty on GE domi-
nates the uncertainty on both F1 and F2, even though
its contribution to F1 is supressed by a factor of τ rel-
ative to the GM contribution.

We note that for Q2 < 0.5, the uncertainty coming
from cross section normalizations can be the larger
contribution to the total uncertainty (and it’s dom-
inant for GE below 0.1 GeV2). While the normal-
ization uncertainty in the cross sections won’t give
a normalization style uncertainty on GE , the nor-
malization of a given experiment will tend to have
a correlated effect on all of the extractions within
the Q2 covered by the experiment. This effect is ac-
counted for by using the procedure discussed below
in Sect. VA.

V. EXTRACTION OF REALISTIC PROTON
TRANSVERSE DENSITIES

The principle aim of this paper is to use data
observed in experiments to obtain the charge and
magnetization densities. Recall that the transverse
charge density ρch is given by

ρch(b) =
1

2π

∫
QdQJ0(Qb)F1(Q

2). (29)

The two-dimensional Fourier transform of F2, ρ2 is
similarly given by

ρ2(b) =
1

2π

∫
QdQJ0(Qb)F2(Q

2). (30)

However the true magnetization density, obtained by
computing the expectation value of the transverse po-
sition operator with the electromagnetic current op-
erator is given [10] by

ρm(b) = −b
d

db
ρ2(b)

=
b

2π

∫
Q2dQJ1(Qb)F2(Q

2). (31)

This quantity is the density related to the anoma-
lous magnetic moment. We begin by extracting ρch,2.
The starting point is to use the above expressions
along with the experimentally determined F1,2 ob-
tained from the fits of Sect. IV. But extracting re-
alistic transverse densities requires that a determina-
tion of the uncertainties in the results. There are two
sources of uncertainty. Experimental data have un-
certainties in the region where they are measured,
and no direct information is available above some
maximum value of Q2 = Q2

max, where there are no
measurements. The experimental uncertainties lead
directly to uncertainties in the c̃n via Eq. (3), and can
be taken into account without further ado. However,
uncertainty must arise because of lack of knowledge
of form factors for Q2 > Q2

max, and these need to
be estimated. This error is called the incompleteness
error.

A. Impact of Experimental Uncertainties on
the Extracted Transverse Densities

We first treat the experimental uncertainties. We
only use the series Eq. (5) for values of Q2

n for which
form factors have been extracted. The magnetic form
factor GM is well measured up to Q2 = 31 GeV2, but
GE is only known up to ∼10 GeV2. Based on the
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Proton transverse charge density 

• Very well determined
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low as 20, with the largest disagreement at b = 0. For
ρch(b = 0), the difference between the result from the
parameterization and the N = 30 approximation is
-2%, while for ρ2(b = 0), the N = 20 approximation
is only 1% below the full result. Even though fewer
terms are included in the approximation for F2, the
agreement is comparable, due to the more rapid fall-
off of F2 with increasing values of Q2.
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FIG. 6: (Color online) Incompleteness error. The abso-
lute error in ρch (solid, blue) and ρ2 (dashed, red).

Given this information, we can state our procedure.
Our basic transverse densities are obtained by using
the parameterization Eq. (26) to evaluate the expres-
sions of Eq. (29),Eq. (30), and Eq. (31). However, we
are justified in using this parameterization for values
of Q2 corresponding to N = 30, (20) for F1,(2). We
assume a maximum error by taking the uncertainty in
the form factor to be ± the value given by the param-
eterization. Therefore the estimated incompleteness
uncertainty is given by the expression

∆inc(b) ≡

∣∣∣∣∣

∞∑

N+1

cnJ0(Xn/R1)Fi(Q
2
n)

∣∣∣∣∣
, (34)

as a function of b, with i = 1, 2. The results are
shown in Fig. 6. It is necessary to realize that us-
ing this expression for the incompleteness error over-
estimates the error because using this expression is
equivalent to assuming that the form factor vanishes
for Q2 > Q2

N in Eq. (5). But the form factor can not
suddenly drop to 0. Fig. 3 shows a fractional error
bar for F1(31 GeV2) which is only about 0.2, a frac-
tional error bar at 13 GeV2 which is only about 0.3 of
the form factor F2. Thus using Eq. (34) amounts to
making an overestimate. To be conservative, we ob-
tain the total uncertainty by adding the contributions
of Eq. (32) (or Eq. (33)) to the estimated incomplete-
ness uncertainty given by Eq. (34).
We now have working expressions for the trans-

verse densities ρch,2, and their respective uncertain-
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FIG. 7: (Color online) ρch (solid, blue) (with error bands
(short dashed, red)).

ties. We start with the basic term for ρch,2, obtained
by using the parameterization Eq. (26) to evaluate
the expressions of Eq. (29),Eq. (30), and Eq. (31),
then add the two separate errors ∆inc,exp to get a to-
tal error ∆ = ∆inc +∆exp for ρch. A band is formed
by considering the region between the basic plus or
minus the appropriate ∆ for the two densities.

The transverse densities ρch,2(b) are plotted with
their error bands in Fig. 7 and Fig. 8. The errors
are very small except for values of b less than about
0.1 fm. The results in this figure are the central nu-
merical findings of this paper. The transverse densi-
ties are known very well indeed. The spatial extent of
ρ2 is broader than that of ρch as previously observed
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this paper have shown that this value of R is suffi-
ciently large so that perturbations to this value lead
to the same density functions and that R2ρ(R) is al-
ways small enough so that the difference between cn
and c̃n is minute.

C. Other transverse densities

We believe that the techniques used in this pa-
per can be exploited to image other quantities that
depend on transverse position. Suppose there is a
transverse quantity ρ(λ)(b) that is a two-dimensional
Fourier transform of an experimental observable
F (λ)(Q2) such that

ρ(λ)(b) =
1

2π

∫
QdQJλ(Qb)F (λ)(Q2). (18)

An example, discussed in detail in Sect. VC, is the
magnetization density ρm of the anomalous magnetic
moment. We expect that the index (λ) is associated
with a given number of units of orbital angular mo-
mentum. Extracting ρ(λ)(b) is facilitated by using
the expansion

ρ(λ)(b) =
∞∑

n=1

cnλJλ(Xλ,n
b

R
), (19)

where Xλ,n is the n’th zero of the Bessel function of
order λ. Then the sampling theorem leads immedi-
ately to the result.

cn,λ ≈ c̃n,λ =
2

R2Jλ+1(Xλ,n)2
F (λ)(Q2

λ,n), (20)

Qλ,n =
Xλ,n

R

The difference between cn,λ and c̃n,λ can be shown to
be very small by using the arguments of Sect. II A.
The result Eq. (20) can be used to relate accessible
kinematic ranges with transverse regions.

III. EXAMPLES

To demonstrate our method and explore its limita-
tions, we now analyze two models of the form factor.
For the first model, let the form factor be given by
the monopole form

FM (Q2) =
1

1 + Q2

Ω2

(21)

where Ω = 0.77 GeV. This form factor is taken as
a caricature of the pion electromagnetic form factor.

Then the associated charge density is obtained from
Eq. (1):

ρM (b) =
1

2π
Ω2K0(Ωb). (22)

This function diverges as log(1/b) for small values of b
and so provides a severe test of the method. With the
stated value of Ω we find 〈b2〉M = 4/Ω2 = 0.26 fm2,
and thus take R = 5

√
|〈b2〉| = 2.56 fm. We then

find the fractional difference between cn and c̃n of
Eq. (12) is less than 5×10−4 for small values of n,
and the magnitude decreases rapidly as n increases.
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FIG. 1: (Color Online) Plot of ρM (blue,solid), 10 term
approximation (red, long dash) and 20 term approxima-
tion (green, medium dash) and 50 term (brown, short
dash).

We compare to ρM to its approximation as an ex-
pansion in N terms, with N = 10, 20, 50 in Fig. 1.
We see that our approximations differ from the exact
result, but the difference decreases with increasing
value of N . The 50 term approximation works rea-
sonably well for all value of b for which the density
differs appreciably from 0. Unfortunately the 10,20
and 50 term approximations would require measure-
ments at Q2 = 6, 23 and 144 GeV2. Only the first
value seems presently achievable.
We now examine the dipole form factor given by

FD(Q2) =
1

(1 + Q2

Λ2 )2
(23)

where Λ2 = 0.71 GeV2. This value is suggested by its
historically close relationship with the proton electro-
magnetic form factors. The dipole transverse charge
density is obtained by from Eq. (1) to be

ρD(b) =
1

4π
bΛ3K1(bΛ). (24)

This form factor falls more rapidly with increasing
Q2 than does FM , and also corresponds to the larger
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We see that our approximations differ from the exact
result, but the difference decreases with increasing
value of N . The 50 term approximation works rea-
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ments at Q2 = 6, 23 and 144 GeV2. Only the first
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FIG. 8: (Color online) ρ2, with error bands

[19]. Note that the realistic transverse densities dif-
fer substantially from the dipole result of Eq. (24),
shown in Fig. 2.

C. Extraction of ρm(b)

We now turn to the true transverse anomalous
magnetic density of Eq. (31), defined by taking the
matrix element of 1

2

∫
d3rb×!j in a transversely po-

larized state,[10, 19]. This Fourier transform involves
J1(Qb) and therefore the FRA corresponds to that of
Eq. (19) and Eq. (20), with λ = 1. Using this expan-
sion, instead of simply taking the derivative of ρ2,
allows an expansion in basis functions that explicitly

0.5 1.0 1.5 2.0 2.5
b !fm"

0.2

0.4

0.6

0.8

1.0

1.2
Ρm#b$ !fm

"2"

FIG. 9: (Color online) The true magnetization density
ρm. The uncertainties are numerically negligible.

vanish at b = R2. Then the FRA gives the result:

ρm =
1

πR2
2

∞∑

n=1

J−2
2 (X1,n)bQ1,nF2(Q

2
1,n)J1(Q1,nb),

Q1,n ≡
X1,n

R2
. (35)

Once again we include the effects of the experimen-
tal error and the incompleteness error. This latter
error is larger in this case than for ρ2 because of the
explicit factor of X1,n. The result for ρm and its er-
ror bands are plotted in Fig. 9. This quantity has
a broader spatial extent than ρ2, possibly resulting
from the importance of the pion cloud in causing the
anomalous magnetic moment. The uncertainties on
this quantity are greater than for the other densities.
Future measurements extending knowledge of F2 to
higher values of Q2 would reduce these higher uncer-
tainties.

VI. SUMMARY

This paper is concerned with obtaining a general
method to determine information about densities in
the transverse plane. The use of Bessel series expan-
sion, augmented by the finite radius approximation
FRA of Eq. (2), Eq. (3), Eq. (19) and Eq. (20) al-
lows us to determine the effects of experimental un-
certainties and also allows us to estimate the effects
of the incompleteness error caused by a lack of mea-
surements at large values of Q2. The method can
be applied to the extraction of any spatial quantity.
One example, related to orbital angular momentum,
is shown in Eq. (19) and Eq. (20).
The method is applied here to analyze electromag-

netic form factors. We can see from Fig. 7 and Fig. 8
that the errors associated with the transverse charge
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ρπ(b) =
3K0(

√
6b

R )
πR2

Pion Transverse Charge DensityGAM Phys.Rev.C79:055204

2

of partons is valid. Setting the transverse center of momentum of a state of total very large momentum p+ to zero as
in Eq. (3), allows the transverse distance b relative to R to be defined.

Next we relate the charge density

ρ∞(x−,b) =
〈p+,R = 0, λ| ρ̂∞(x−,b) |p+,R = 0, λ〉

〈p+,R = 0, λ|p+,R = 0, λ〉 , (4)

to Fπ(Q2). In the DY frame no momentum is transferred in the plus-direction, so that information regarding the x−

dependence of the distribution is not accessible. Therefore we integrate over x−, using the relationship

q†+(x−,b)q+(x−,b) = eibp+x−
e−ibp·bq†+(0)q+(0)eibp·be−ibp+x−

, (5)

to find

ρ(b) ≡
∫

dx−ρ∞(x−,b) =
〈

p+,R = 0, λ
∣

∣ ρ̂∞(0,b)
∣

∣p+,R = 0, λ
〉

/(2p+). (6)

Furthermore, the use of Eqs. (5,3,2) leads to the simplification of the right-hand-side of the above equation:

ρ(b) =

∫

d2q

(2π)2
Fπ(Q2 = q2)e−iq·b, (7)

where ρ(b) is termed the transverse charge density, giving the charge density at a transverse position b, irrespective
of the value of the longitudinal position or momentum. This relation between an integral of the three-dimensional
infinite momentum frame density and the electromagnetic form factor is our principal new formula. Previous results
[5, 6, 7, 11, 12] involved the integral over the longitudinal momentum fraction x of the impact parameter parton
distribution function (pdf) q(x, b), which gives the charge density for a quark at position b for a momentum fraction
(of the plus-component) x. The equality of the respective integrals over x− or x of the quantities ρ∞(x−, b) and q(x, b)
is an example of Parseval’s theorem. The central charge density of the pion is determined by ρ(b = 0), because the
longitudinal dimension is Lorentz contracted to essentially zero in the infinite momentum frame

Recent pion data[1, 2] provide an accurate measurement of the pion form factor up to a value of Q2 = 2.45 GeV2.
Their analysis includes an assessment of the influence of the necessary model dependence caused by extracting the
form factor from the measured cross sections on the experimental error bars. The existing data for the pion form
factor show that it is well represented by the monopole form

Fπ(Q2) = 1/(1 + R2Q2/6), (8)

with R2 = 0.431 fm2. A better representation of the data may be a monopole plus dipole [2] which involves the square
of the term of Eq. (8), but any form involving the monopole term leads to a singular central charge density. This is
because the use Eq. (8) in Eq. (7) gives the result:

ρ(b) =
3K0

(√
6b

R

)

πR2
, (9)

where K0 is modified Bessel function of rank zero. For small values of b this function diverges as ∼ log(b). This
divergence is very surprising because the charge density we are considering measures a valence quark operator between
eigenstates of the full Hamiltonian. The divergences of quark distribution functions that occur at small values of
Bjorken x do not occur here. Any model, such as vector meson dominance or holographic QCD [13, 14, 15] that yields
a monopole form factor has a central density with a logarithmic divergence..

Intuition regarding a possible singularity in the central charge density may be improved by considering other
examples. Suppose that the non-relativistic (NR) limit in which the quark masses are heavy is applicable. In this
case, the pion would be a pure qq̄ object and the charge density is the Fourier transform of the form factor. Given
the form factor of Eq. (8) the three-dimensional density is uniquely given by

ρNR(r) =
3

2 π r R2
e

−
√

6 r
R (10)

where r is the distance relative to the pion center of mass. If one takes r =
√

b2 + z2 as demanded by the rotational
invariance of the non-relativistic wave function, then one finds

∫ ∞
−∞ dzρNR(r) is equal to ρ(b) of Eq. (9). This is

expected because in the NR limit the charge density is the same in all frames, including the infinite momentum

Singular - varies as log (b) 
small b, log(log(b)) in pQCD

5

FIG. 1: (Color online) Q2Fπ(Q2). Pion form factor data as plotted in [2]. The data labeled Jlab are from [2]. The data Brauel
et al. [28] and that of Ackermann et al. [29] have using the method of [2]. The Amendola data et al. are from [30] The
data point labeled PionCT is from [31]. The (red) dashed curve uses the monopole fit Eq. (8) and the (black) solid line the
constituent quark model of [27].

[4] Our notation is that x± ≡ (x0±x3)/
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2, p± ≡ (p0±p3)/
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2, and pµxµ = p−x++p+x−−p·b. The coordinates perpendicular
to the 0 and 3 directions are denoted as b and p.
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Use of data for the pionic electromagnetic form factor obtained from e+e− anni-
hilation and electron scattering experiments places tighter constraints on the pionic
transverse density than using form factor measurements taken at space-like momen-

tum transfers. We show that the transverse charge density ρ(b) is well-determined
for distances b greater than about 0.3 fm. The relationship between ρ(b) and the
presence of point-like qq̄ configurations (PLC) of the pion is discussed. We find that

the data allow a significant presence of PLC.
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Keywords: form factor, vector meson, pion, dispersion relation

I. INTRODUCTION

Learning how QCD describes the interaction and existence of elementary particles is one
of the central goals of nuclear physics. To do this, it is necessary to understand the pion, a
nearly mass-less excitation of the QCD vacuum with pseudoscalar quantum numbers. The
pion plays a central role in nuclear and particle physics as the carrier of the longest range force
between nucleons and as a harbinger of spontaneous symmetry breaking. The importance of
the pion has been recognized by an intense level of both experimental and theoretical activity
aimed at measuring its properties and understanding its structure. Recent measurements of
the pion electromagnetic form factor, Fπ have been made for space-like momentum transfers
[1, 2] and new ones are planned [3]. Moreover, many experiments have used e+e− annihilation
to determine Fπ for time-like momentum transfers. [4–6].

It is natural to attempt to use measurements of Fπ to determine properties such as the
charge density. But one needs a model-independent treatment of the spatial structure of
the pion to make a proper analysis. The recently proposed concept of transverse densities
[7, 8] provides a model-independent way to interpret form factors. See [9] for a review of the
significant relevant literature. Transverse densities are 2–dimensional Fourier transforms of
the elastic form factors that are matrix elements of true density operators. They describe the
distribution of charge and magnetization in the plane transverse to the direction of motion
of a fast hadron. Transverse densities provide an unambiguous spatial interpretation for
systems in which the motion of the constituents is relativistic, are closely related to the
parton picture of hadron structure in high–energy processes and correspond to a reduction
of the generalized parton distributions describing the distribution of quarks/antiquarks with
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respect to longitudinal momentum and transverse position [10],[11].
Recently Strikman and Weiss [12] showed how to use time-like data and a dispersion relation

for the nucleon form factor to study the transverse density of the nucleon and elucidate its
long-range structure. Our intent here is to use both time-like and space like data, along with a
dispersion relation to determine the pionic transverse density. We shall find that this approach
enables a much more precise determination than does the use of only space-like data [8].

The transverse density of the pion ρ(b) is determined from Fπ measured at space-like
momentum transfers as

ρ(b) =
1

(2π)

∫
∞

0

dQQJ0(Qb)Fπ(Q2) (1)

The pion form factor can be written in terms of a dispersion relation based on the idea that
the singularity of Fπ(t) are confined to a cut along the real axis from t = 4m2

π to infinity: [13]

Fπ(t) =
1

π

∫
∞

4m2
π

dt′
ImFπ(t′)

t′ − t + iε
. (2)

The asymptotic behavior expected from perturbative QCD, limt→∞ Fπ(t) ∼ αs

s allows the use
of an unsubtracted dispersion relation. The use of Eq. (2) in Eq. (1) leads to the result [12]

ρ(b) =
1

2π

∫
∞

4m2
π

dtK0(
√

tb)
ImFπ(t)

π
. (3)

The exponential drop-off of the modified Bessel function, K0 causes the integrand of Eq. (3)
to drop rapidly with increasing values of t. Moreover, high quality cross-section data exist for
values of t up to about 1 GeV, so that we can hope to be able to determine ρ(b) for values of
b at least as large as b ∼ 1 GeV−1=0.2 fm.

To proceed we need to know ImF , which is not directly measured. The e+e− annihilation
experiments measure a cross section that is proportional to |Fπ|2. Therefore a model is needed.

II. THE MODEL FORM FACTOR

In the time-like region near threshold the form factor is dominated by the effects of the ρ
meson. The effects of ρ0 − ω mixing are also clearly observable. Many workers generalized
this to a set of ρ meson resonances. A recent and very detailed treatment, which represents
data for momentum transfers far above the ρ resonance, was developed in [14]. This model
is constructed to be in accord with constraints imposed by analyticity and isospin symmetry.
It incorporates behavior at high energies that is consistent with perturbative QCD and is
based on plausible assumptions derived from the quark model, vector meson dominance and a
pattern of radial excitations expected from dual resonance models. The model provides form
factors in agreement with experimental results for space-like as well as time-like momentum
transfers. Although this work was published prior to the appearance of recent data [1, 2], it
predicts form factors in accord with that data.

A brief description of the model’s details is provided here, but the original paper [14] and
references therein contain complete information. The model includes the first four rho mesons

Dispersion relation

 
Low t’ dominates except for very small values of b

Model needed: C. Bruch et al E. J Phys.C39, 41: Vector Meson 
Dominance  Gouranis Sakurai
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Use this expression in equation for transverse density. 
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ρπ(b) is known for b > 0.1 fm

Pion Transverse Charge Density
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Summary
• Much data exist, Jlab12 will improve data set
• Charge density is not a 3 dimensional Fourier 

transform of GE 

• Interpret form factor as determining transverse 
charge and magnetization densities

• Nucleon transverse densities known now to high 
precision

• New Finite Radius Approximation FRA technique 
can be used for other spatial variables

• Pion transverse density known  well

Wednesday, October 27, 2010



Spares follow

30
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Generalized transverse densities-

31

OΓ
q (px,b) =

∫
dx−eipxx−

4π
q†+(0,b)Γq+(x−,b)

ρΓ(b) =
∫

dx
∑

q

eq〈p+,R = 0, λ|OΓ
q (p+x,b)|p+,R = 0, λ〉

∫
dx sets x− = 0, get q†+(0,b)Γq+(0,b) Density!

Local operators calculable on lattice M. Göckeler et al 
PRL98,222001  Ã

′′

T10 ∼ sdd

Schierholtz, 2009 -this quantity is not zero, proton is not 
round

spin-dependent density

Γ = 1
2 (1 + n · γγ5) gives spin-dependent density
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Observing shape  of proton

• Transverse coordinate space density is a 
GPD, observe on lattice

• Transverse momentum space density is a 
TMD, can be observed in

32

e, ↑ p → e′π X
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Summary
• Much data exist, Jlab12 will improve data set
• Interpret form factor as determining transverse 

charge and magnetization densities
• Nucleon transverse densities known now to high 

precision,

• Pion known fairly well
•
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Relativistic formalism-
kinematic subgroup of Poincare

• Lorentz transformation –transverse 
velocity v

k- such that k2 not changed
Just like non-relativistic with k+ as 
mass, take momentum transfer in perp 
direction, then density is 2 Dimensional  
Fourier Transform, also 

q+ = q0 + q3 = 0,−q2 = Q2 = q2
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Transverse charge densities

BBBA

Kelly

Negative
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Negative F1 means 
central density negative

GeV2
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Return of the cloudy bag model

• In a model nucleon:bare  nucleon + pion 
cloud - parameters adjusted to give 
negative definite F1, pion at center causes 
negative central transverse charge density

•  

38

Boosting the matrix element of J0

to the infinite momentum frame
changes GE to F1

Rinehimer and Miller  
PRC80,015201, 025206
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Spin dependent densities-transverse- 
Lattice QCDSF, Zanotti, Schierholz...

39

This is not zero!
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Transverse Momentum Distributions -
momentum space density

40

ΦΓ
q (x,K) give probability of quark of given 3-momentum

h⊥1T gives momentum-space spin-dependent density
measurable experimentally
hard to calculate on lattice because - gauge link

In a state of fixed momentum
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GPD :

〈P ′, S′|
∫

dx−

4π
q̄(−x−

2
,0)γ+q(

x−

2
,0)eixp̄+x− |P, S〉

=
1

2p̄+
ū(P ′, S′)

(
γ+Hq(ξ, t) + i

σ+ν∆ν

2M
Eq(x, ξ, t)

)
u(P, S)

TMD :

ΦΓ
q (x =

k+

P+
,k) = 〈P, S|

∫
dζ−d2ζ

2(2π)3
eik·ζ q̄(0)Γq(ζ)|P, S〉ζ+=0

x+ = 0

Relation or not between GPD and TMD

41

GPD: nucleons have different momenta, but FT local in coordinate 
space if integrate over x

TMD: nucleons have same momenta, operator is 
local in momentum space
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How well are these known now?
• Analyze effect of experimental errors and 

errors due to finite range of Q2

42

Transverse charge density

Venkat, Arrington,  Miller,  Zhan 
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limited and can be written as a discrete Fourier series
involving F (Q2). This result, known as the Nyquist-
Shannon [7] sampling theorem, enables us to asso-
ciate the density at a given range of values of b with
a discrete value of the momentum transfer, see Eq. (3)
below (which we denote as the finite radius approxi-
mation FRA). The equivalence between the FRA and
the Bessel series expansion technique is also estab-
lished.

Sect. III is concerned with exploring the the valid-
ity and utility (which depends on the number of terms
needed in the discrete Fourier series) of the FRA us-
ing examples in which the form factor is given by a
monopole (M) or dipole (D) form. Sect. V is con-
cerned with the reality that the proton electromag-
netic form factors are not known as analytic func-
tions. Instead, form factors GE,M , F1,2 (with uncer-
tainties ) measured at discrete values of Q2 up to a
finite maximum value Q2

max are known. This means
that ρ is known only within some uncertainties, and
a technique to determine the uncertainties in ρ must
be developed. This is accomplished by using the val-
ues of Fi ± dFi in the FRA. Estimates of the effects
arising from form factors evaluated at Q2 > Q2

max ,
the effects of incompleteness, are also provided. The
paper is concluded with a brief summary.

II. GENERAL CONSIDERATIONS

JRA: A simpler overview of the assumptions and
approach would be very helpful. (GAM: this is done
above.) The only assumption made (that I see) is that
the ρ = 0 above b = R, but later there is a comment
about the assumption that F (Q2) = 0 above some
unspecified Q2. ( GAM:this comment is removed.)
Also, expanding a little more on the connection be-
tween N, R, and Q2, in the context of fitting to be
done later, would help clarify this. (GAM: this is
done below.) Also, it would set up things nicely if you
state after giving eq.1 that this can be used to extract
the density for any well-behaved fit to F (Q2), but then
point out that an expansion is useful for determining
the error in the density, especially for contributions
beyond the measured regions in Q2, that would help
the later sections where it seems strange to start with
the exact answer and then follow up with the approx-
imate solution.(GAM: this is done below.)

Intuitively, we expect particles to be localized.
That is, we expect densities associated with the par-
ticle to be well approximated by functions that are
zero outside some maximum radius. This assump-
tion, called the finite radius approximation (FRA),
greatly simplifies the relationship between form fac-

tors and their associated densities.
Let ρ(b) be a two-dimensional transverse density

function (we later take this to be charge or magneti-
zation density) and let F (Q2) be the associated form
factor. The transverse density is given by

ρ(b) =
1

(2π2)

∫
d2qe−iq·b F (Q2 = q2)

=
1

2π

∫
QdQJ0(Qb)F (Q2), (1)

with the azimuthal symmetry of ρ obtained from the
Lorentz invariant form of F in the space-like region
with q+ = 0. If one knows F (Q2) exactly for all
values of Q2 the transverse density is known immedi-
ately. However, one only knows F (Q2) within exper-
imental uncertainties for a finite range of Q2. This
means that ρ is known only within some uncertain-
ties, and it is necessary to develop a technique to
determine the uncertainties in ρ.

We proceed by assuming that ρ(b) = 0 for b ≥ R,
where R is a finite distance. Since the functions ρ, F
are Fourier transforms, F is band-limited. We pro-
ceed in the spirit of the Nyquist-Shannon sampling
theorem. The function ρ can be expanded as

ρ(b) =
∞∑

n=1

cnJ0(Xn
b

R
), (2)

where Xn is the n-th zero of J0, and cn is given ap-
proximately by the formula

cn ≈ c̃n =
1

2π

2

R2J1(Xn)2
F

(
(
Xn

R
)2

)
. (3)

The above equation Eq. (3), which is the two-
dimensional version of [7], is the central formal re-
sult of this paper. Using this in Eq. (2) yields the
following expression for ρ(b):

ρ(b) =
1

πR2

∞∑

n=1

J1(Xn)−2F (Q2
n)J0(Xn

b

R
), (4)

with

Qn ≡
Xn

R
. (5)

The result Eq. (4) is the central phenomenological
result because it tells us that measuring a form fac-
tor at Q2

n provides information about the density at
values of b < R/Xn. This is because Bessel functions
are of the order of unity only for values of arguments
less than that of its first zero.
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Hq(x, ξ, t) = 〈P ′, S′|
∫

d2k
(2π)2

W γ+

q (ζ− = 0, ζ = 0, k+,k)|P, S〉

ΦΓ
q (x,k) = 〈P, S|

∫
dζ−

(2π)2
WΓ

q (ζ−, ζ, k+,k)|P, S〉

WΓ
q (ζ−, ζ, k+,k)

=
1
4π

∫
dη−d2ηeik·η q̄(ζ− − η−

2
, ζ − η

2
)Γq(ζ− +

η−

2
, ζ +

η

2
)

Both can be obtained Wigner distribution operator

43
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Anomalous magnetization 
density

44

ρFRA
m =

1
πR2

2

∞∑

n=1

J−2
2 (X1,n)bQ1,nF2(Q2

1,n)J1(Q1,nb), Q1,n ≡
X1,n

R2
10
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FIG. 9: The true magnetization density ρm. The uncer-
tainties are numerically negligible.

C. Extraction of ρm(b)

We now turn to the true transverse magnetic den-
sity of Eq. (31). This Fourier transform involves
J1(Qb) and therefore the FRA corresponds to that
of Eq. (19) and Eq. (20), with λ = 1. Using this ex-
pansion, instead of simply taking the derivative of ρ2,
allows an expansion in basis functions that explicitly
vanish at b = R2. Then the FRA gives the result:

ρFRA
m =

1

πR2
2

∞∑

n=1

J−2
2 (X1,n)bQ1,nF2(Q

2
1,n)J1(Q1,nb),

Q1,n ≡
X1,n

R2
(35)

Once again we include the effects of the experimen-
tal error and the incompleteness error. This latter
error is larger in this case than for ρ2 because of the
explicit factor of X1,n. The result for ρM and its er-
ror bands are plotted in Fig. 9. This quantity has

a broader spatial extent than ρ2, possibly resulting
from the importance of the pion cloud in causing the
anomalous magnetic moment. The uncertainties on
this quantity are greater than for the other densities.
Future measurements extending knowledge of F2 to
higher values of Q2 would reduce these higher uncer-
tainties.

VI. SUMMARY

This paper is concerned with obtaining a general
method to determine information about densities in
the transverse plane. The use of Bessel series expan-
sion, augmented by the finite radius approximation
FRA of Eq. (2), Eq. (3), Eq. (19) and Eq. (20) al-
lows us to determine the effects of experimental un-
certainties and also allows us to estimate the effects
of the incompleteness error caused by a lack of mea-
surements at large values of Q2. The method is ap-
plied to analyze electromagnetic form factors. We
can see from Fig. 7 and Fig. 8 that the errors associ-
ated with the transverse charge density and the two-
dimensional Fourier transform of F2 are very small.
The anomalous magnetization density ρM , Fig. 9, is
also reasonably well determined, but future measure-
ments extending our knowledge of F2 to higher values
of Q2 would reduce the existing uncertainties.
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Summary

• Form factors,  GPDs, TMDs, understood from unified 
light-front formulation

• Neutron central transverse density is negative-
consistent with Cloudy Bag Model

• Proton is not round- lattice QCD spin-dependent-
density is not zero

• Experiment can whether or not proton is round by 
measuring 
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Cloudy Bag Model~1980 

46

Many successful predictions

One feature- pion penetrates to the bag interior
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Absent in a Drell-Yan Frame

From Marc Vanderhaeghen
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