What Can be Learned from Decay of Light Mesons?

Moskov Amaryan

Outline

- -Introduction
- -Dalitz Decays
- -Radiative Decays
- -Hadronic Decays
- -Summary

Light (u,d,s) Mesons (not all)

Pseudoscalar JP=0

K^{0} K^{+} S=+1 S=0 K^{-} K^{0} K^{0} K^{+} S=0 K^{-} K^{0} K

Vector J^P=1

Parity
$$P=(-1)^{L+1}$$

C-parity $C=(-1)^{L+S}$
G-parity $G=C(-1)^{I}=(-1)^{L+S+I}$

Gell-Mann-Nishidjima:

$$Q=I_3+Y/2$$

Y=B+S

Light Mesons in CLAS

π ⁰	e+e-γ			
η	e+e-γ	π+π- γ	п+п-пО	
η '	e+e-γ	π+π- γ	п+п-п0	$\Pi^+\Pi^-\eta$
ρ		$\Pi^+\Pi^-\gamma$		
ω	e+e- π ⁰	π+π- γ	п+п-пО	
φ			п+п-пО	$\Pi^+\Pi^-\eta$

Space-Like Form Factor

$$F(Q^2) \sim 1 + a_{\pi}Q^2$$

Well measured at Q²>0.5GeV²

 $a_{\pi} = 0.0309 \pm 0.0008 \pm 0.0009$ (CLEO)

Time-Like Form Factor $\pi^0 \rightarrow e + e - \gamma$

The slope is measured with very large errors:

$$a_{\pi} = -0.11 \pm 0.03 \pm 0.08$$
 [2] $a_{\pi} = +0.026 \pm 0.024 \pm 0.0048$ [3] $a_{\pi} = +0.025 \pm 0.014 \pm 0.026$ [4]

Here a_{π} is defined from the following expression for the decay rate [5]

$$\frac{d\Gamma(\pi^0\to e^+e^-\gamma)}{dx\Gamma(\pi^0\to\gamma\gamma)}=(\frac{d\Gamma}{dx})_{QED}\times |F(x)|^2$$
 (Kroll-Wada)
$$(\frac{d\Gamma}{dx})_{QED}=\frac{2\alpha}{3\pi}\frac{1}{x}(1-x)^3(1+\frac{r}{2x})(1-\frac{r}{x})^{1/2}$$

$$F(x)=1+a_\pi x$$

where $x = m_{e^+e^-}^2/m_{\pi^0}^2$, $r = 4m_e^2/m_{\pi^0}^2$, and F(x) is π^0 transition form factor.

^[2] H. Fonvieille, N. Bensayah, J. Berthot, P. Bertin, M. Crouau, et al., Phys.Lett. **B233**, 65 (1989).

^[3] F. Farzanpay, P. Gumplinger, A. Stetz, J. Poutissou, I. Blevis, et al., Phys.Lett. **B278**, 413 (1992).

^[4] R. Meijer Drees et al. (SINDRUM-I Collaboration), Phys.Rev. **D45**, 1439 (1992).

CLAS g12 Data

Transition Form Factor

KLOE-2 Proposal

CLAS g12 Data

CLAS at JLAB accumulated unprecedented statistics for precision measurement of TFF slope!

Important for LbyL radiative corrections to Anomalous Magnetic Moment of Muon g-2

CLAS g12 Data

Time-Like Form Factor of η

$$\frac{d\Gamma(\eta \to l^+ l^- \gamma)}{dm\Gamma(\eta \to \gamma \gamma)} = [QED] \cdot |F_{\eta}(m^2)|^2$$

$$F(m^2) = \frac{1}{1 - \frac{m^2}{\Lambda^2}}$$

$$b = |\frac{dF}{dm^2}|_{m^2 = 0} = \Lambda^{-2}$$

b=<r²>/6 (size of η)

World Data

CLAS g12 Data

CB/TAPS
$$\Lambda^{-2} = 1.92 \pm 0.35(stat.) \pm 0.13(syst.)$$
 GeV^{-2} NA60 $\Lambda^{-2} = 1.95 \pm 0.17(stat.) \pm 0.05(syst.)$ GeV^{-2}

CLAS syst. err. ~ 0.05 (preliminary)

Photon Conversion in CLAS (MC Simulation)

Photon conversion contribution is <1% (except for first bin for π^0)

First measurement of Dalitz Decay of eta' from CLAS

Radiative Decay $\eta(\eta') \to \pi^+\pi^-\gamma$

Why is it interesting?

Access to Box Anomaly

Triangle (PVV)

Box (VPPP)

It gives an access to the box anomaly term of Wess-Zumino-Witten Lagrangian Also via Primakoff effect in COMPASS experiment (long standing problem)

$$\pi^- \gamma \to \pi^- \pi^0$$

Box Anomaly $\gamma\pi^- \to \pi^-\pi^0$

Y.M. Antipov et al., PRD 36(1987), 21

$$\mathbf{A}_{\pi}^{\mathbf{2}\gamma} = rac{\mathbf{e^2N_c}}{\mathbf{12}\pi^{\mathbf{2}}\mathbf{f}_{\pi}}$$

Constrained by $\gamma \gamma$ width of π^0

$$\mathbf{A}_{\pi}^{\mathbf{2}\gamma} = \mathbf{ef}_{\pi}^{\mathbf{2}} \mathbf{A}_{\gamma}^{\mathbf{3}\pi}$$
 (theory prediction)

$$\mathbf{A}_{\gamma}^{3\pi} = \lim_{\mathbf{m} \to \mathbf{0}} \mathbf{F}_{\gamma}^{3\pi}(\mathbf{p_1}, \mathbf{p_2}, \mathbf{p_3} = \mathbf{0}) = \frac{\mathbf{e} \mathbf{N_c}}{\mathbf{12}\pi^2 \mathbf{f_{\pi}^3}}$$

Very poorly measured

Radiative Decay $\eta, \eta' \rightarrow \pi^+\pi^-\gamma$

Mx(p)=0.55+-0.01 GeV 0.76+-0.06 GeV

0.96+-0.01 GeV

Invariant Mass vs Missing Mass

Missing Mass Resolution is much better as expected

CLAS Hadronic decays: g11 Data

Counts/2 MeV Mean: 0.7835 ± 0.0000 GeV 1600 σ :0.0107 ± 0.0000 GeV 1400 Range: \pm 3.0 σ 1200 $\gamma p \rightarrow p \pi^+ \pi^- \pi^0$ Yield: 17183497 1000 Background: 6423778 800 600 400 200 0.6 0.7 0.8 0.9 $M_{\chi}(p)$ [GeV]

About 17M ω 's

Largest statistics in the world

$$X = \frac{\sqrt{3}}{Q}(T_{\pi^+} - T_{\pi^-}), \qquad Y = \frac{3T_{\pi^0}}{Q} - 1$$
 $Q = T_{\pi^+} + T_{\pi^-} + T_{\pi^0}$

$$\omega \to \pi^+\pi^-\pi^0$$

Not corrected for acceptance

CLAS $\eta \to \pi^+\pi^-\pi^0$ VI

$$X = \frac{\sqrt{3}}{Q}(T_{\pi^+} - T_{\pi^-}), \qquad Y = \frac{3T_{\pi^0}}{Q} - 1$$

~2M events

Dalitz plot projections $\eta \to \pi^+\pi^-\pi^0$

$$M^2 = A(1 + aY + bY^2 + cX + dX^2)$$

$$A \propto \frac{1}{Q^2} = \frac{m_d^2 - m_u^2}{m_s^2 - \hat{m}^2}; \quad \hat{m} = \frac{m_u + m_d}{2}$$

g11 Data

Quark mass ratio G.Colangelo et al., arXiv:0910.0765

From Particle Data Group:

$$\eta$$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=547.853\pm0.024$ MeV Full width $\Gamma=1.30\pm0.07$ keV

C-nonconserving decay parameters

 $\pi^+\pi^-\pi^0$ left-right asymmetry = $(0.09^{+0.11}_{-0.12}) \times 10^{-2}$ $\pi^+\pi^-\pi^0$ sextant asymmetry = $(0.12^{+0.10}_{-0.11}) \times 10^{-2}$ $\pi^+\pi^-\pi^0$ quadrant asymmetry = $(-0.09 \pm 0.09) \times 10^{-2}$ $\pi^+\pi^-\gamma$ left-right asymmetry = $(0.9 \pm 0.4) \times 10^{-2}$ $\pi^+\pi^-\gamma$ β (*D*-wave) = -0.02 ± 0.07 (S = 1.3)

Test of C-Parity Violation

Fig. 1. Comparison of obtained values of asymmetries [7] with results determined by previous experiments [3,4,5], and a value given by PDG [6]. arXiv:1210.1758 [WASA-COSY]

CLAS expected stat. error. $\delta \leq 0.001$

CLAS g11 Data (7 times more η ' than in BESIII) another 3 times more on tape (from CLASg12 run)

Dalitz plot η'→ππη

Dalitz plot projections η'→ππη CLAS Preliminary uncorrected

Testing Scalar Mesons in π + π - from η '

KLOE-2 (DAΦNE) Projection

arXiv:1003.3868

Based on Fariborz and Schechter model PRD 67,054001,2003

Fig. 18: The $m_{\pi^+\pi^-}$ distribution in the $\eta' \to \eta \pi^+\pi^-$ decay with the σ meson (right-centered distribution) and without (left-centered distribution) contribution.

Dalitz decay $\omega \rightarrow e^+e^-\pi^0$

CLAS g12 Data

Transition Form Factor $\omega \rightarrow e^+e^+\pi^0$

World data

CLAS g12 Data

We expect significant improvement in stat. error with CLAS Data

Photoproduction and Decay of Light Mesons in CLAS

CLAS Analysis Proposal

M.J. Amaryan (spokesperson),^{1,*} Ya. Azimov,² M. Battaglieri,³ W.J. Briscoe,⁴ V. Crede,⁵ R. De Vita,³ C. Djalali,⁶ M. Dugger,⁷ G. Gavalian,¹ L. Guo,^{8,9} H. Haberzettl,⁴ C.E. Hyde,¹ D.G. Ireland,¹⁰ F. Klein,¹¹ B. Kopf,¹² B. Kubis,¹³ A. Kubarovsky,^{14,15} V. Kubarovsky,⁹ M.C. Kunkel,¹ B. McKinnon,¹⁰ K. Nakayama,¹⁶ C. Nepali (spokesperson),¹ E. Pasyuk,⁹ M.V. Polyakov,^{17,2} B.G. Ritchie,⁷ J. Ritman,^{18,19,12} C. Salgado,²⁰ S. Schadmand (spokesperson),^{18,19} S.P. Schneider,¹³ I. Strakovsky,⁴ D. Weygand,⁹ U. Wiedner,¹² and A. Wirzba^{18,19,21}

¹Old Dominion University, Norfolk, Virginia 23529

²Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russia

³INFN, Sezione di Genova, 16146 Genova, Italy ⁴ The George Washington University, Washington, DC 20052 ⁵Florida State University, Tallahassee, Florida 32306 ⁶University of South Carolina, Columbia, South Carolina 29208 ⁷Arizona State University, Tempe, Arizona 85287-1504 ⁸Florida International University, Miami, Florida 33199 ⁹Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 ¹⁰University of Glasgow, Glasgow G12 8QQ, United Kingdom ¹¹Catholic University of America, Washington, DC 20064 ¹²Institut für Experimentalphysik I, Ruhr Universität Bochum, 44780 Bochum, Germany ¹³Helmholtz-Institut für Strahlen- und Kernphysk (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany ¹⁴Rensselaer Polytechnic Institute, Troy, New York 12180-3590 ¹⁵Skobeltsyn Nuclear Physics Institute, 119899 Moscow, Russia ¹⁶Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA ¹⁷Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany ¹⁸Institut für Kernphysik, Forschungszentrum, Jüelich, Germany ¹⁹ Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jüich, Germany ²⁰Norfolk State University, Norfolk, VA 23504, USA ²¹Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany (Dated: September 30, 2012)

Summary

We expect to release at least the following results:

- 1. Transition form factor of π^0 in the time-like region from Dalitz decay $e^+e^-\gamma$
- 2. Transition form factor of η in the time-like region from Dalitz decay $e^+e^-\gamma$
- 3. Branching ratio $\eta' \to e^+e^-\gamma$ for the first time
- 4. Measurement of E_{γ} distribution in radiative decay $\eta \to \pi^+\pi^-\gamma$
- 5. Measurement of E_{γ} distribution in radiative decay $\eta' \to \pi^+\pi^-\gamma$
- 6. Transition form factor of ω in time-like region from Dalitz decay $\omega \to e^+e^-\pi^0$
- 7. Dalitz plot analysis of hadronic decay $\eta \to \pi^+\pi^-\pi^0$
- 8. Dalitz plot analysis of hadronic decay $\eta' \to \pi^+\pi^-\eta$
- 9. First observation of G-parity violating decay $\phi \to \pi^+\pi^-\eta$