The new DIS and Drell Yan: single top quarks and W-prime bosons

Zack Sullivan
Illinois Institute of Technology
CTEQ Collaboration

November 19, 2012
Thanks

Theory collaborators
Brian Harris
Eric Laenen
Pavel Nadolsky
Lucas Phaf
Tim Stelzer
Stefan Weinzierl
Scott Willenbrock
Daniel Duffty (grad student)
Hao Zhang (postdoc)

Experimental collaborators
CDF single-top group
DØ single-top group
ATLAS top group
CMS top group

Department of Energy for funding much of this research
Jefferson Lab for the kind invitation, and for adding to the story
What is single-top-quark production?

Top quark pairs were discovered in 1995 via strong force production:

\[
\begin{align*}
q & \quad \rightarrow \quad t \\
\bar{q} & \quad \rightarrow \quad \bar{t}
\end{align*}
\]
What is single-top-quark production?

Top quark pairs were discovered in 1995 via strong force production:

\[q \quad \bar{q} \quad t \quad \bar{t} \]

Single-top-quark production is an electroweak (EW) process:

- **t-channel**
 \[q \quad W \quad t \quad V_{tb} \]
 \[\bar{q} \quad \bar{b} \]

- **s-channel**
 \[q \quad W \quad t \quad V_{tb} \]
 \[\bar{q} \quad \bar{b} \]

- **Wt-associated**
 \[g \quad W \quad t \quad V_{tb} \]
 \[b \quad W \]

Discovered in 2009 at the Tevatron
What is single-top-quark production?

Experimentalist: Single top quark production is the observation of $b\ell^\pm E_T$ that reconstruct to a top quark mass, plus an extra jet (or two).

Theorist: Single top quark production is a playground in which we refine our understanding of perturbative QCD.
Outline

1. Understanding the cross section
 - Single top goes beyond DIS and Drell Yan
 - Interpreting the initial state
 - Matrix elements
 - Interpreting the final state

2. W' bosons and single top quarks
 - Models of W' bosons
 - Model independent searches for W' bosons
 - Investigating the initial state
 - Investigating the final state

3. Conclusions
Outline

1. Understanding the cross section
 - Single top goes beyond DIS and Drell Yan
 - Interpreting the initial state
 - Matrix elements
 - Interpreting the final state

2. W' bosons and single top quarks
 - Models of W' bosons
 - Model independent searches for W' bosons
 - Investigating the initial state
 - Investigating the final state

3. Conclusions
Structure of an observable cross section

\[\sigma_{\text{obs.}} = \int f_1(x_1, \mu_1)f_2(x_2, \mu_2)|M|^2dP.S.\otimes D_i(p_i) \ldots D_n(p_n) \]

Theorists factorize (break) the cross section into:

- **Initial-state IR singularities swept into parton distribution “functions”**.

These are not physical, but include scheme dependent finite terms:
- \(\overline{\text{MS}} \) — the current standard
- DIS — ill-defined in all modern PDF sets, could be fixed, but why?
Structure of an observable cross section

$$\sigma_{\text{obs.}} = \int f_1(x_1, \mu_1) f_2(x_2, \mu_2) \otimes |M|^2 \otimes \text{dP.S.} \otimes \text{D}_i(\rho_i) \ldots \text{D}_n(\rho_n)$$

Theorists factorize (break) the cross section into:

- **Initial-state IR singularities swept into parton distribution “functions”**. These are not physical, but include scheme dependent finite terms:
 - $\overline{\text{MS}}$ — the current standard
 - DIS — ill-defined in all modern PDF sets, could be fixed, but why?

- A squared matrix element, which represents the bulk of the perturbative calculation effort.
Structure of an observable cross section

\[\sigma_{\text{obs.}} = \int f_1(x_1, \mu_1) f_2(x_2, \mu_2) \otimes |M|^2 \otimes dP.S. \otimes D_i(p_i) \ldots D_n(p_n) \]

Theorists factorize (break) the cross section into:

- Initial-state IR singularities swept into parton distribution “functions”. These are not physical, but include scheme dependent finite terms:
 - \(\overline{\text{MS}} \) — the current standard
 - DIS — ill-defined in all modern PDF sets, could be fixed, but why?

- A squared matrix element, which represents the bulk of the perturbative calculation effort.

- Phase space which you may not want to completely integrate out.
 \(\Rightarrow \) Exclusive cross sections (jet counting), angular correlations
Structure of an observable cross section

\[\sigma_{\text{obs.}} = \int f_1(x_1, \mu_1)f_2(x_2, \mu_2) \otimes |M|^2 \otimes dP.S. \otimes D_i(p_i) \ldots D_n(p_n) \]

Theorists factorize (break) the cross section into:

- **Initial-state IR singularities swept into parton distribution “functions”**. These are not physical, but include scheme dependent finite terms:
 - \(\overline{\text{MS}} \) — the current standard
 - DIS — ill-defined in all modern PDF sets, could be fixed, but why?

- A squared matrix element, which represents the bulk of the perturbative calculation effort.

- Phase space which you may not want to completely integrate out.
 \(\Rightarrow \) **Exclusive cross sections (jet counting), angular correlations**

- **Fragmentation functions or jet definitions**. These provide the coarse graining to hide final-state IR singularities.
Drell-Yan and DIS

The traditional testbed of perturbative QCD have been restricted to Drell-Yan production, e^+e^- to jets, or deep inelastic scattering (DIS).

A key property that all three processes share is a complete factorization of QCD radiation between different parts of the diagrams.

- **Drell-Yan** → Initial-state (IS) QCD radiation only.
- **e^+e^- → jets** → Final-state (FS) QCD radiation only.
- **DIS** → Proton structure and fragmentation functions probed. Simple color flow.
s-/t-channel single-top-quark production

(A generalized Drell-Yan and DIS)

A perfect factorization through next-to-leading order (NLO) makes single-top-quark production mathematically *identical†* to DY and DIS!

Generalized Drell-Yan.
IS/FS radiation are independent.

Color conservation forbids the exchange of just 1 gluon between the independent fermion lines.

Double-DIS (DDIS) w/ 2 scales:
\[
\mu_I = Q^2, \quad \mu_H = Q^2 + m_t^2
\]
s-/t-channel single-top-quark production
(A generalized Drell-Yan and DIS)

A perfect factorization through next-to-leading order (NLO) makes single-top-quark production mathematically identical† to DY and DIS!

Generalized Drell-Yan.
IS/FS radiation are independent.

Double-DIS (DDIS) w/ 2 scales:
\[\mu_l = Q^2, \quad \mu_h = Q^2 + m_t^2 \]

Color conservation forbids the exchange of just 1 gluon between the independent fermion lines.

† Massive forms: \(m_t, m_b, \) and \(m_t/m_b \) are relevant.
Rethinking the initial state:
W-gluon fusion $\rightarrow t$-channel single-top

W-gluon fusion (circa 1996)

\[q' \leftarrow q \swarrow \uparrow \nearrow \downarrow \nwarrow W \rightarrow t \]

\[b \otimes b \]

\[\sim \alpha_s \ln \left(\frac{Q^2 + m_t^2}{m_b^2} \right) + \mathcal{O}(\alpha_s) \]
Rethinking the initial state: \(W \)-gluon fusion → \(t \)-channel single-top

\[W \)-gluon fusion (circa 1996) \]

\[q' \quad q \quad W \quad t \quad b \quad \bar{b} \quad g \quad \bar{g} \]

\[\sim \alpha_s \ln \left(\frac{Q^2 + m_t^2}{m_b^2} \right) + \mathcal{O}(\alpha_s) \]

\[m_t \approx 35 m_b \quad \alpha_s \ln \sim 0.7-0.8 \]

Each order adds

\[\frac{1}{n!} \left[\alpha_s \ln \left(\frac{Q^2 + m_t^2}{m_b^2} \right) \right]^n \]

Looks bad for perturbative expansion...
Rethinking the initial state:
\(W\)-gluon fusion \(\rightarrow t\)-channel single-top

W-gluon fusion (circa 1996)

\[
\begin{align*}
q' & \quad W \\
q & \quad b \\
g & \quad t \\
\uparrow & \quad \bar{b} \\
\sim \alpha_s \ln \left(\frac{Q^2 + m_t^2}{m_b^2} \right) + O(\alpha_s)
\end{align*}
\]

\(m_t \approx 35 m_b \) \(\alpha_s \ln \sim .7-.8 \)

Solution: Use a “math trick”

The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation sums large logs from collinear singularities in gluon splitting to quarks.

\[
\frac{db(\mu^2)}{d \ln(\mu^2)} \approx \frac{\alpha_s}{2\pi} P_{bg} \otimes g
\]

\(P_{bg}(z) = \frac{1}{2} [z^2 + (1-z)^2] \)

Each order adds

\[
\frac{1}{n!} \left[\alpha_s \ln \left(\frac{Q^2 + m_t^2}{m_b^2} \right) \right]^n
\]

Looks bad for perturbative expansion...
Rethinking the initial state: \(W \)-gluon fusion \(\rightarrow \) \(t \)-channel single-top

\[W \text{-gluon fusion (circa 1996)} \]

\[\begin{array}{c}
\text{q} \\
\text{g} \\
\text{b} \\
\text{t}
\end{array} \]

\[q' \]

\[q \]

\[\sim \alpha_s \ln \left(\frac{Q^2 + m_t^2}{m_b^2} \right) + \mathcal{O}(\alpha_s) \]

\[m_t \approx 35 m_b! \quad \alpha_s \ln \sim .7-.8 \]

Solution: Use a “math trick”

The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation sums large logs from collinear singularities in gluon splitting to quarks.

\[\frac{db(\mu^2)}{d \ln(\mu^2)} \approx \frac{\alpha_s}{2\pi} P_{bg} \otimes g \]

\[P_{bg}(z) = \frac{1}{2} [z^2 + (1-z)^2] \]

\[b(x, \mu^2) = \frac{\alpha_s(\mu^2)}{2\pi} \ln \left(\frac{\mu^2}{m_b^2} \right) \]

\[\times \int_x^1 \frac{dz}{z} P_{bg}(z) g \left(\frac{x}{z}, \mu^2 \right) \]

\[b \propto \alpha_s \ln(\mu^2 / m_b^2) \times g \]

Barnett, Haber, Soper, NPB 306, 697 (88)

Olness, Tung, NPB 308, 813 (88)

Aivazis, Collins, Olness, Tung, PRD 50, 3102 (94)

Stelzer, Z.S., Willenbrock PRD 56, 5919 (97)
New nomenclature and classification

New Leading Order

\[b \sim \alpha_s \ln \left(\frac{\mu^2}{m_b^2} \right) \times g \]
New nomenclature and classification

New Leading Order

\[q \rightarrow q \]
\[W \rightarrow b \]
\[t \]

\((P_W^2 < 0) \)

\[b \sim \alpha_s \ln \left(\frac{\mu^2}{m_b^2} \right) \times g \]

\textit{t-channel production}

Named for the “\textit{t-channel}” exchange of a \(W \) boson.
New nomenclature and classification

New Leading Order

\[
\begin{align*}
q & \rightarrow q \\
W & \rightarrow W \\
t & \rightarrow b \\
\uparrow \\
W_{t} & (P_{W}^{2} < 0) \\
\end{align*}
\]

\[b \sim \alpha_s \ln \left(\frac{\mu^2}{m_b^2}\right) \times g\]

t-channel production

Named for the “t-channel” exchange of a \(W\) boson.

\[
\begin{align*}
 u & \rightarrow W \\
W & \rightarrow t \\
\bar{d} & \rightarrow \bar{b} \\
\end{align*}
\]

\[(P_{W}^{2} > 0)\]

s-channel production

Named for the “s-channel” exchange of a \(W\) boson.
New nomenclature and classification

New Leading Order

\[
q \xrightarrow{W} q \quad (P_W^2 < 0)
\]

\[
b \sim \alpha_s \ln \left(\frac{\mu^2}{m_b^2} \right) \times g
\]

t-channel production
Named for the “t-channel” exchange of a W boson.

s-channel production
Named for the “s-channel” exchange of a W boson.

Classifying processes by analytical structure leads directly to kinematic insight:
Jets from t-channel processes are more forward than those from s-channel.

Jet from t-channel

Jet from s-channel

Zack Sullivan (IIT) New DIS/Drell Yan: single top and W' JLAB Theory seminar 10 / 31
Using DGLAP was NOT just a math trick!
This “valence” picture of the proton is not complete.
Rethinking the proton

Using DGLAP was NOT just a math trick!
This “valence” picture of the proton is not complete.
Larger energies resolve smaller structures.
The probability of finding a particle inside the proton is given by PDFs (Parton Distribution Functions)

\[Q = x \times 14 \text{ TeV} \]

\[x \times \text{PDF} \]

\[g_{\text{val}} \]

\[b = b \]

\[m_{b} \]

\[1/3 \]

\[u_{\text{sea}} = \bar{u} \]

\[g \]

\[b \] (and \(c \)) quarks are full-fledged members of the proton structure.
Rethinking several physical processes

Why is this important?

Starting with a c/b gives us:

- $b\bar{b} \rightarrow h$ Largest SUSY Higgs cross section
- Zb/Zc Affects LHC luminosity monitor
- Zbj/Zcj Higgs background
- Wbj Largest single-top background
- etc.
Rethinking several physical processes

Starting with a c/b gives us:
- $b\bar{b} \rightarrow h$ Largest SUSY Higgs cross section
- Zb/Zc Affects LHC luminosity monitor
- Zbj/Zcj Higgs background
- Wbj Largest single-top background
- etc.

Why is this important?

- **Zc at Tevatron**

Parton luminosity can be more important than counting powers of α_s!

This is exaggerated at LHC:
- $Z \approx Z + 1$ jet $\approx Z + 2$ jets!
 (True of $W + X$ as well!)

Is jet counting poorly-defined (theoretically) at LHC?
The same large logs that lead to a reordered perturbation for *t*-channel single-top, implied a potentially large uncertainty in measurable cross sections when cuts were applied.

Recall: *t*-channel and *s*-channel are distinguished by the number of *b*-jets.
Rethinking the matrix element: A practical problem for experiments

The same large logs that lead to a reordered perturbation for t-channel single-top, implied a potentially large uncertainty in measurable cross sections when cuts were applied.

Recall: t-channel and s-channel are distinguished by the number of b-jets.

A problem: About 20% of the time, the extra \bar{b}-jet from the t-channel process is hard and central.

Real problem: Is the b contamination 20%, 30%, 10%?
Rethinking the matrix element: A practical problem for experiments

The same large logs that lead to a reordered perturbation for t-channel single-top, implied a potentially large uncertainty in measurable cross sections when cuts were applied.

Recall: t-channel and s-channel are distinguished by the number of b-jets.

A problem: About 20% of the time, the extra \bar{b}-jet from the t-channel process is hard and central.

Real problem: Is the b contamination 20%, 30%, 10%?

Another problem: To distinguish from $t\bar{t}$, the cross section in the $W + 2$ jet bin has to be known.

Counting jets is IDENTICAL to performing a jet veto.

Inclusive cross sections are not enough, we need to calculate exclusive cross sections.
In 2001, there were few matrix-element techniques or calculations that could deal IR singularities in processes with massive particles.

Experiments were mostly stuck using LO matrix elements to predict semi-inclusive or exclusive final states.

We needed methods to provide the 4-vectors, spins, and corresponding weights of exclusives final-state configurations.
In 2001, there were few matrix-element techniques or calculations that could deal IR singularities in processes with massive particles.

Experiments were mostly stuck using LO matrix elements to predict semi-inclusive or exclusive final states.

We needed methods to provide the 4-vectors, spins, and corresponding weights of exclusives final-state configurations.

These needs led to work on 3 techniques:

- **Phase space slicing method with 2 cutoffs.**

 L.J. Bergmann, Ph.D. Thesis, FSU (89)

 cf. H. Baer, J. Ohnemus, J.F. Owens, PRD 40, 2844 (89)

 B.W. Harris, J.F. Owens, PRD 65, 094032 (02)

- **Phase space slicing method with 1 cutoff.**

 E. Laenen, S. Keller, PRD 59, 114004 (99)

- **Massive dipole formalism (a subtraction method) coupled with a helicity-spinor calculation.** Invented to solve single-top production.

 cf. L. Phaf, S. Weinzierl, JHEP 0104, 006 (01)

 S. Catani, S. Dittmaier, M. Seymour, Z. Trocsanyi, NPB 627,189 (02)
Rethinking jet definitions and phase space: Experiments need exclusive $t+1$ jet at NLO

<table>
<thead>
<tr>
<th># b-jets</th>
<th>tj (Wbj)</th>
<th>tjj ($Wbjj$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-channel</td>
<td>2</td>
<td>$0.620 \text{ pb} \pm^{+13%}_{-11%}$</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>$0.022 \text{ pb} \pm^{+24%}_{-19%}$</td>
</tr>
<tr>
<td>t-channel</td>
<td>1</td>
<td>$0.950 \text{ pb} \pm^{+16%}_{-15%}$</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>$0.146 \text{ pb} \pm^{+21%}_{-16%}$</td>
</tr>
</tbody>
</table>

Cuts: $p_T \gamma > 15 \text{ GeV}$, $|\eta_j| < 2.5$, no cuts on t
Jet definition: $\Delta R_{kT} < 1.0$ ($\approx \Delta R_{\text{cone}} < 0.74$)

Breakdown of shape-independent uncertainties

<table>
<thead>
<tr>
<th>Process</th>
<th>$\times \delta m_t(\text{GeV}) \mu/2-2\mu$</th>
<th>PDF</th>
<th>b mass</th>
<th>$\alpha_s(\delta_{\text{NLO}})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-channel $p\bar{p}$</td>
<td>$-2.33%$</td>
<td>$+5.7%$</td>
<td>$+4.7%$</td>
<td>$< 0.5%$</td>
</tr>
<tr>
<td></td>
<td>$+2.71%$</td>
<td>$-5.0%$</td>
<td>$-3.9%$</td>
<td>$< 0.5%$</td>
</tr>
<tr>
<td></td>
<td>$-1.97%$</td>
<td>$\pm 2%$</td>
<td>$+3.3%$</td>
<td>$< 0.4%$</td>
</tr>
<tr>
<td></td>
<td>$+2.26%$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-channel $p\bar{p}$</td>
<td>$-1.6%$</td>
<td>$\pm 4%$</td>
<td>$+11.3%$</td>
<td>$< 1%$</td>
</tr>
<tr>
<td></td>
<td>$+1.75%$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$-0.73%$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+0.78%$</td>
<td>$\pm 3%$</td>
<td>$+1.3%$</td>
<td>$< 1%$</td>
</tr>
</tbody>
</table>
Rethinking jet definitions and phase space: Experiments need exclusive $t+1$ jet at NLO

<table>
<thead>
<tr>
<th># b-jets</th>
<th>tj (Wbj)</th>
<th>tjj (Wbjj)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-channel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>= 2</td>
<td>0.620 pb $^{+13%}_{-11%}$</td>
<td>0.168 pb $^{+24%}_{-19%}$</td>
</tr>
<tr>
<td>= 1</td>
<td>0.022 pb $^{+24%}_{-19%}$</td>
<td>(NNLO)</td>
</tr>
<tr>
<td>t-channel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>= 1</td>
<td>0.950 pb $^{+16%}_{-15%}$</td>
<td>0.152 pb $^{+17%}_{-14%}$</td>
</tr>
<tr>
<td>= 2</td>
<td>0.146 pb $^{+21%}_{-16%}$</td>
<td>0.278 pb $^{+21%}_{-16%}$</td>
</tr>
</tbody>
</table>

Cuts: $p_Tj > 15$ GeV, $|\eta_j| < 2.5$, no cuts on t
Jet definition: $\Delta R_{kT} < 1.0$ ($\approx \Delta R_{cone} < 0.74$)

Breakdown of shape-independent uncertainties

<table>
<thead>
<tr>
<th>Process</th>
<th>$\times \delta m_t$(GeV) $\mu/2-2\mu$</th>
<th>PDF</th>
<th>b mass $\alpha_s(\delta_{NLO})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-channel $p\bar{p}$</td>
<td>$^{+2.33%}_{-2.71%}$</td>
<td>$^{+5.7%}_{-5.0%}$</td>
<td>$^{+4.7%}_{-3.9%}$</td>
</tr>
<tr>
<td>$p\bar{p}$</td>
<td>$^{+1.97%}_{+2.26%}$</td>
<td>$^{+2.0%}_{-2.0%}$</td>
<td>$^{+3.3%}_{-3.9%}$</td>
</tr>
<tr>
<td>t-channel $p\bar{p}$</td>
<td>$^{+1.6%}_{-0.73%}$</td>
<td>$^{+4%}_{-3%}$</td>
<td>$^{+11.3%}_{-8.1%}$</td>
</tr>
<tr>
<td>$p\bar{p}$</td>
<td>$+1.75%$</td>
<td>$^{+4%}_{-2%}$</td>
<td>$^{+1.3%}_{-2.2%}$</td>
</tr>
</tbody>
</table>

Every number here, even the concept of t-channel single-top, required a new or revised understanding of QCD.

- b PDFs \rightarrow t-channel
- PDF uncertainties
- multiple scales: m_t/m_b
- 2 expansions: α_s, $1/\ln$
- Fully differential NLO jet calculations

Zack Sullivan (IIT) New DIS/Drell Yan: single top and W' JLAB Theory seminar 15 / 31
How do we interpret exclusive NLO calculations?

“Paradigm of jet calculations”

- We are calculating extensive objects, i.e., jets not “improved quarks.”

- Unlike inclusive NLO calculations, exclusive NLO calculations are only well-defined in the presence of a jet definition or hadronization function. \((D_i(p_i))\)

 \[\Rightarrow \] The mathematics of quantum field theory tells us we cannot resolve the quarks inside of these jets!

- “Bad things” happen if you treat jets as NLO partons…

\[\delta_c \]
At LO, a d-quark recoils against the top quark in t-channel.

NLO “d-jet” (no cuts)

- Perturbation theory is not terribly stable at low p_{Td} (or even high p_{Td}).
- This is not what we want.
 Be careful what you ask for!
At LO, a d-quark recoils against the top quark in t-channel.

NLO “d-jet” (no cuts)

Perturbation theory is not terribly stable at low p_{Td} (or even high p_{Td}).

This is not what we want. Be careful what you ask for!

The highest E_T jet recoils against the top. The measurable change in shape is comparable to the scale uncertainty.
Jet distributions depend on jet definition

Just like the experimentalists, theorists must study the effect jet algorithms with different cone sizes R will have on measurable properties.

For “reasonable” values of R the variation is $< 10\%$, but this must be checked for all observables. (Note: theoretical uncertainty $< 5\%$)

Upshot: NLO exclusive calculations give jets not partons.
Without some thought, mismatches between theory and experiment can be larger than the theory error alone would indicate.
THEORY

Experiment
THEORY

Experiment
Event generators vs. NLO t-channel $t\bar{b}$ ($Wb\bar{b}$)

Initial-state radiation (ISR) is generated by backward evolution of angular-ordered showers.

\Rightarrow The jet containing the extra \bar{b} comes from soft ISR.
Event generators vs. NLO t-channel $t\bar{b}$ ($Wb\bar{b}$)

Initial-state radiation (ISR) is generated by backward evolution of angular-ordered showers.

⇒ The jet containing the extra \bar{b} comes from soft ISR.

- PYTHIA/HERWIG completely underestimate the $Wb\bar{b}$ final state.
- **Lesson:** n-jets+showers $\neq n + 1$ jets. ⇒ Need NLO matching.
 (Schemes have since proliferated: MLM, CKKW, SCET, ...)
Outline

1. Understanding the cross section
 - Single top goes beyond DIS and Drell Yan
 - Interpreting the initial state
 - Matrix elements
 - Interpreting the final state

2. W' bosons and single top quarks
 - Models of W' bosons
 - Model independent searches for W' bosons
 - Investigating the initial state
 - Investigating the final state

3. Conclusions
What is a W' boson?

Working definition: A W' boson is any particle that mediates a flavor-changing charged vector or axial-vector current.

Some model classes

Left-right symmetric models: Broken $SU(2)_L \times SU(2)_R$
- Generic mixing of $W_L - W_R$
 - R. N. Mohapatra, J. Pati, A. Salam, G. Senjanovic, ...
 - Orbifold-breaking — suppressed mixing, enhanced couplings
 - Y. Mimura, S. Nandi, ...
- Supersymmetric $L-R$ models
 - M. Cvetic, J. Pati, ...

Models with additional left-handed W'
- Little Higgs: $SU(5)/SO(5), SU(6)/SP(6), SU(N)/SU(N-1), ...$
 - T. Gregoire, N. Arkani-Hamed, S. Chang, H. C. Cheng, A. Cohen, I. Low,
 D. E. Kaplan, E. Katz, O. C. Kong, A. Nelson, M. Schmaltz, W. Skiba,
 D. Smith, J. Terning, J. Wacker, ...
- Topcolor — topflavor, leptophobic topflavor seesaw, generic mixing
 - H. Georgi, H. J. He, E. Jenkins, X. Li, E. Ma, E. Malkawi, D. Muller,
 S. Nandi, E. Simmons, T. Tait, C. P. Yuan, ...
- Extra dimensions: Kaluza-Klein modes of the W
 - A. Datta, P. O'Donnell, T. Huang, Z. Lin, X. Zhang, ...
- Non-commuting extended technicolor
 - R. Chivukula, E. Simmons, J. Terning, ...

+ 1000's more
In proton-antiproton collisions, top quark production exhibits a forward-backward asymmetry ($\Delta y = y_t - y_{\bar{t}}$)

$$A_{FB}^{\text{lab}} = \frac{N_t(y_t > 0) - N_t(y_t < 0)}{N_t(y_t > 0) + N_t(y_t < 0)}$$

The asymmetry first appears at one loop in QCD

$$A_{FB}^{\text{rest}} = 0.05 \pm 0.006 \quad \text{Theory}$$

$$A_{FB}^{\text{rest}} = 0.164 \pm 0.045 \quad \text{CDF}$$

$$A_{FB}^{\text{rest}} = 0.196 \pm 0.065 \quad \text{DØ}$$

The discrepancy w/ NLO is about 2σ

CDF finds a larger discrepancy at large invariant mass and rapidity

DØ does not confirm this effect
W' bosons and A_{FB}^{tt} vs. early LHC data

NOTE: There are 100's of models to explain A_{FB}^{tt}, most were quickly ruled out

A large $V'_{td} > 1$ coupling could explain A_{FB}^{tt} if $M_{W'}$ is small enough. W' bosons this light would have modified $t\bar{t}j$ at LHC.

$d \to W' \to t$

These models were constructed to avoid constraints shown later.

Directly excluded (> 97% C.L.)
Duffty, Z.S., Zhang, PRD 85, 094027 (2012)
Model independent searches for W'

For an arbitrary Lagrangian with coupling to fermions

$$\mathcal{L} = \frac{1}{\sqrt{2}} \bar{f}_i \gamma_\mu \left(g_R e^{i\omega} \cos \zeta V_{i \bar{f}}^R P_R + g_L \sin \zeta V_{i \bar{f}}^L P_L \right) W' f_j + \text{H.c.}$$

The differential NLO cross section looks like:

$$\sigma_{NLO} = \left(g' / g_{SM} \right)^4 \times \sigma_{NLO}^{SM} \left(g' \sim g \sqrt{|V_i'| |V_f'|} \right)$$

This holds for any final state, but s-channel single-top is special...

The final state is fully reconstructable!

A limit on a cross section \times BR = a limit on $(g')^4$!

It takes very little data to get close to the world’s best limit on g'
Model-independent W' searches at the Tevatron

Search strategy developed in Z.S., PRD 66, 075011 (2002)

Simple bump hunt in t-b invariant mass

The important constraint is for g'/g_{SM} vs. $M_{W'}$.

Run I: CDF set bound (SM-like)

$M_{W'} > 536(566)$ GeV. PRL 90, 081802 (03)

Run II:

$M_{W'} > 800(825)$ GeV. CDF, PRL 103, 041801 (09)

$M_{W'} > 863(890)$ GeV. DØ, PLB 699, 145 (11)

Most models have $g'/g_{SM} \sim 1$.

If perturbative, symmetry breaking w/ G_F constrain $0.2 < g'/g_{SM} < 5$.

Zack Sullivan (IIT)

New DIS/Drell Yan: single top and W'

JLAB Theory seminar 25 / 31
Model-independent W' searches at the LHC

Search strategy updated to LHC

Duffty, Z.S., PRD 86, 075018 (2012)

Many new issues arise at LHC:
- Interference more complicated
- More structure in W'_L vs. W'_R or W'_{+} vs. W'_{-}

Initial LHC searches (Tevatron-like)

ATLAS has a similar study

Initial measurements used our updated NLO calculations
The next analyses will use this updated kinematic information

CMS 1208.0956
Investigating the initial state: PDF uncertainties

Single top and W' motivated the Modified Tolerance Method (what you use for PDF errors on observables)

$$
\delta O_+ = \sqrt{\sum_{i=1}^{20} (\max[O(z_i^0+t)-O(z_i^0),O(z_i^0-t)-O(z_i^0),0])^2}
$$

$$
\delta O_- = \sqrt{\sum_{i=1}^{20} (\max[O(z_i^0)-O(z_i^0+t),O(z_i^0)-O(z_i^0-t),0])^2}
$$

- In t-channel single top production, the b PDF uncertainty is $3 \times$ any other theory error
- Large W' masses means large-x/large-Q^2

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>σ_{LO}^t (fb)</th>
<th>σ_{LO}^f (fb)</th>
<th>σ_{NLO}^t (fb)</th>
<th>σ_{NLO}^f (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>27000</td>
<td>12800</td>
<td>35300</td>
<td>16800</td>
</tr>
<tr>
<td>750</td>
<td>6230</td>
<td>2510</td>
<td>7780</td>
<td>3260</td>
</tr>
<tr>
<td>1000</td>
<td>1890</td>
<td>667</td>
<td>2320</td>
<td>860</td>
</tr>
<tr>
<td>1250</td>
<td>668</td>
<td>212</td>
<td>800</td>
<td>273</td>
</tr>
<tr>
<td>1500</td>
<td>259</td>
<td>75.5</td>
<td>302</td>
<td>98.0</td>
</tr>
<tr>
<td>1750</td>
<td>106</td>
<td>29.3</td>
<td>122</td>
<td>38.8</td>
</tr>
<tr>
<td>2000</td>
<td>45.5</td>
<td>12.2</td>
<td>50.9</td>
<td>16.5</td>
</tr>
<tr>
<td>2250</td>
<td>20.1</td>
<td>5.34</td>
<td>22.1</td>
<td>7.41</td>
</tr>
<tr>
<td>2500</td>
<td>9.17</td>
<td>2.49</td>
<td>10.0</td>
<td>3.55</td>
</tr>
<tr>
<td>2750</td>
<td>4.37</td>
<td>1.24</td>
<td>4.79</td>
<td>1.80</td>
</tr>
<tr>
<td>3000</td>
<td>2.20</td>
<td>0.66</td>
<td>2.48</td>
<td>0.98</td>
</tr>
<tr>
<td>3250</td>
<td>1.19</td>
<td>0.38</td>
<td>1.40</td>
<td>0.57</td>
</tr>
</tbody>
</table>

8 TeV

+-9% PDF

+-23% PDF

Zack Sullivan (IIT)
New DIS/Drell Yan: single top and W'
JLAB Theory seminar
Investigating the initial state: Nuclear corrections

\[x \sim \frac{M_{W'}}{\sqrt{S}} e^{y} \]

Uncertainties are not uniform in the detector.

This leads to additional uncertainty in the extraction of \(g'/g_{SM} \).

Uncertainties in nuclear corrections to deuterium DIS affect the large-\(x \) \(d \) PDF. Even at \(\sqrt{S} = 8 \) TeV!

Constraining nuclear uncertainties in large-\(x \) \(F_2^p \) at Jefferson Lab will have an important impact on LHC searches.
Investigating the final state: boosted top jets

For large W' mass the top quark is highly boosted

It becomes difficult to reconstruct isolated jets from $t \rightarrow bW \rightarrow bjj$

Many “boosted top” algorithms have been developed:
- Filtering: Butterworth et al. PRL 100 (2008)
- Pruning: Ellis et al. PRD 80 (2009)
- Trimming: Krohn et al. JHEP 1002 (2010)
- HEP tagger: Plehn et al. JHEP 1010
- tree-less: Jankowiak et al. JHEP 1106
- energy flow: Thaler, Wang JHEP 0807
- N-subjettiness: Kim PRD 83 (2011), Thaler et al. JHEP 1103
- Shower decon: Soper et al. 1102.3480
- Multivariate: Gallicchio et al. JHEP 1104
- Template: Almeida et al. PRD 82 (2010)

The basic idea is to create a fat (large ΔR) jet, and find identifiable clustered substructure we can associate with hadronic top decays.
Can we improve W' searches with boosted tops?

D. Duffty, ZS, arXiv:1301.xxxx

Preliminary

Challenges

- Full detector simulations are too optimistic for top tagging efficiency, and fake rates

 Here we use the top tagging efficiency measured by CMS

- Muon tagging the b jet \Rightarrow great S/B

 What control sample should be used to normalize B?

- Wjj/Zjj fixed order matrix elements may be insufficient to model kinematics

 We are checking this last point now

Factor 2 improvements in g'/g_{SM}!

If this holds, we may be able to rule out most perturbative models with $M_{W'}$ below 2 TeV!

We will also learn about backgrounds to these substructure measurements.
Conclusions

Single-top-quark production is the new DIS and Drell-Yan

\[
\sigma_{\text{obs.}} = \int f_1(x_1, \mu_1)f_2(x_2, \mu_2) \otimes |M|^2 \otimes dP.S. \otimes D_i(p_i) \ldots D_n(p_n)
\]

- \(b/c\) are inside the proton
- Analytic structure gives direct kinematical insight
 \(\Rightarrow\) New processes & new questions

3 mathematical techniques developed to calculate exclusive jet observables: MDF, PSS1, PSS2

The “paradigm of jet calculations”

Exclusive NLO calculations intrinsically describe jets, not quarks.

The search for \(W'\) production pushes our understanding

- Jet substructure (e.g., top-jets) and its backgrounds will need much deeper investigation
- Large-\(x\) physics (e.g., at JLAB) will provide increasingly important constraints on LHC physics reach

THANK YOU
The International Symposium on Multiparticle Dynamics (ISMD) is a major international high-energy conference which attracts participants (theorists and experimentalists) with a common interest in reactions involving a large number of particles. The XLIII International Symposium on Multiparticle Dynamics will be organized in September 2013 by the HEP ANL division together with the Illinois Institute of Technology (IIT, Chicago) and Northwestern University (Chicago). The goal is to provide a truly international forum for discussion and presentations of recent experimental results from the LHC, Tevatron and other experiments as well as new developments in theory. ISMD symposiums typically involve about 120 participants and include about 100 plenary presentations with a good balance between experimental and theoretical talks spread over 5 1/2 days. The Symposium will comprise several sessions, with each session started by an overview talk and followed by topical contributions. The following sessions are planned: "High-pT QCD", "High-pT electroweak physics" (including Higgs), "Soft QCD", "Diffraction" and "Heavy-ion collisions". Special session will be held with overview talks on the "Intensity Frontier" and Snowmass2013

September 15-20, 2013

at

The Illinois Institute of Technology

I hope to hear more from Jefferson Lab about your impressive program

(http://atlaswww.hep.anl.gov/ismd13/)
W' bosons are a general prediction

For each $[SU(2) \otimes U(1)]$ that is broken, there will be a new massive charged vector W'.

$$M_{W'} \approx \frac{f}{2} \sqrt{g_i^2 + g_j^2} \text{ with } f < 1 \text{ TeV} \left[\frac{m_H}{200 \text{ GeV}} \right]^2.$$

Couplings to fermions

The Lagrangian

$$\mathcal{L} = -i \frac{g'}{2\sqrt{2}} V_{ij} W'_\mu \bar{q}_L^i \gamma^\mu (1 - \gamma^5) q_L^j,$$

where $g' = g_{SM} F(g_1, g_2, \ldots, g_n)$.

For $[SU(2) \otimes U(1)]^2$ (a.k.a. Littlest Higgs), $F = \frac{g_1}{g_2}$.

Note: The coupling $W' \bar{T}_L b_L$ has

$$F = \frac{g_1}{g_2} \frac{v_{XL}}{f},$$

where $\frac{v_{XL}}{f} = \sqrt{2(1 - V_{tb}/V_{tb}^{SM})}$.

Single-top tells us this is small.

An important constraint is the measured $g_{SM} = 0.6529$.

$$\frac{1}{g_1^2} + \frac{1}{g_2^2} + \cdots + \frac{1}{g_n^2} = \frac{1}{g_{SM}^2} \approx \frac{1}{0.426}$$

Thus, $g_{SM} < g_{1,2,\ldots} < 4\pi$ (upper limit of effective theory).

⇒ For all Little Higgs models there will be at least 1 W' with

$$0.184 < \frac{g'}{g_{SM}} < 5.43,$$

and preferentially $g'/g_{SM} \sim 1$.

Zack Sullivan (IIT)
New DIS/Drell Yan: single top and W'
JLAB Theory seminar 32 / 31