Transition form factors of light mesons

Andrzej Kupsc Uppsala University

JLab, April 17th, 2015

Outline

π⁰,n,n',w,φ meson factories/data samples
 (pN, γp, e⁺e⁻)

Transition Form Factors

- → relation anomalous magnetic moment of the muon
- Radiative decay width $\Gamma\gamma\gamma$
- . Dalitz Decays
- . Dark photon searches
- . Two photon production of pseudoscalar mesons
- . Radiative decays $n,n' \rightarrow \pi^+\pi^-\gamma n,n' \rightarrow \pi^0\gamma\gamma$
- . Anomalous processes

Meson Transition Form Factors (TFF)

MesonNet(HP3) Workshop on Meson Transition Form Factors May 29-30,2012 Kraków

Anomalous magnetic moment

Anomalous magnetic moment of elementary fermion

$$a = \frac{\alpha}{2\pi} \approx 0.0011614$$

$$\alpha_{\mu}^{\rm SM} = \alpha_{\mu}^{\rm QED} + \alpha_{\mu}^{\rm EW} + \alpha_{\mu}^{\rm Hadron}.$$

$$\frac{-2}{2}$$

$$a = \frac{g-2}{2}$$

 a_{u}^{E821} = (116 592 089±63) · 10⁻¹¹

Hint of new physics or hadronic effect? hadronic vacuum polarization

hadronic light-by-light scattering

$$a_{\mu}^{exp} - a_{\mu}^{SM} = (249 \pm 87) \cdot 10^{-11}$$
 (3 σ)

 $a_u = (g-2)/2$ muon

Dark matter photon

New measurement

New FNAL exp.

Goal reduce	ε Δa _u	(10-1)	¹):
Experiment	63	\rightarrow	16
HVP	42	\rightarrow	11
HLbL	39/26	\rightarrow	10

Low Energy meson QCD processes

Even # pseudoscalars PPPP

u-d quark masses $\pi - \pi, \pi - \eta$ scattering

Odd intrinsic parity: PVV/Pyy, PPPV

 $V \rightarrow PV$

Vector Meson Dominance

BEPCII L= 6×10^{32} cm⁻²s⁻¹ at J/ Ψ BESIII DATINE L= 10^{32} cm⁻²s⁻¹ at φ KLOE/KLOE-2 VEPP2000 L= 10^{32} cm⁻²s⁻¹ at 2GeV CMD-3,SND

DATINE luminosity upgrade

Frascati φ-factory e⁺e⁻ collider vs = Mφ

KLOE-2 IP collisions: from 2010 Commissioning for KLOE-2 Status:L=1.5 x 10³² cm⁻²s⁻¹

with 1.3 A + 700/800 mA, $7pb^{-1}/day$ Novel interaction scheme: large angle beam crossing + crabbed waist sextupoles

KLOE-2: Extension of the KLOE physics program at upgraded DA INE

$\textbf{KLOE} \rightarrow \textbf{KLOE-2}$

IT front-end and CCALT

IR insertion in DAFNE

Installation of the upgrades and the IR in DAFNE completed on July, 12th

BEPCII (Beijing)

Storage ring

BESIII at **BEPCII**

W. Grad

- **τ** -charm factory 2<√s<4.6 GeV:
- Charmonium spectroscopy/decays

Linac

- Light hadron physics
- **Charm physics**
- τ physics
- R-scan

 $\phi \rightarrow \eta^{(\prime)}\gamma$ (KLOE)

 $1 \times 10^{10} \phi$ events

KLOE 2001-2005 data/new data campaign started

 $1.3 \times 10^9 \text{ J/} \psi$ events

Radiative widths of η, π^0

n, π⁰ : narrow and short lived
=> Γtot=Γγγ/BRyy

 η : 5×10⁻¹⁹ s; **Γ**=1.3 keV $\eta \rightarrow \gamma \gamma$ π^{0} : 8×10⁻¹⁷ s; $c\tau$ =25 nm $\pi^{0} \rightarrow \gamma \gamma$

VALUE (keV)	EVTS	DOCUMENT ID		TECN	COMMENT	
0.510±0.026	OUR FIT	δΓ(1	1—→	vv)~5	5%	
0.510±0.026	OUR AVER	RAGE	ĺ	11)		
0.51±0.12±0.05	36	BARU	90	MD1	$e^+ \; e^- \rightarrow e^+ \; e^- \; \eta$	
$0.490 \pm 0.010 \pm 0.048$	2287	ROE	90	ASP	$e^+ \; e^- \rightarrow e^+ \; e^- \; \eta$	
$0.514 \pm 0.017 \pm 0.035$	1295	WILLIAMS	88	CBAL	$e^+ \; e^- \rightarrow e^+ \; e^- \; \eta$	
$0.53 \pm 0.04 \pm 0.04$		BARTEL	85E	JADE	$e^+~e^- \to e^+~e^-~\eta$	
* * * We do not use the following data for averages, fits, limits, etc. * * *						
0.476±0.062	1	RODRIGUES	08	CNTR	Reanalysis	
$0.64 \pm 0.14 \pm 0.13$		AIHARA	86	TPC	$e^+~e^- \to e^+~e^-~\eta$	
0.56±0.16	56	WEINSTEIN	83	CBAL	$e^+~e^- \to e^+~e^-~\eta$	
0.324 ± 0.046		BROWMAN	74B	CNTR	Primakoff effect	
1.00±0.22	2	BEMPORAD	67	CNTR	Primakoff effect	

Two exp. techniques: $\gamma Z \rightarrow \eta, \pi^0$ Primakoff $\delta \Gamma(\pi^0 \rightarrow \gamma \gamma) \sim 2.8\%$ PrimEx PRL 106, 162303(2011)

 e^+e^- : $\gamma\gamma \rightarrow \eta, \pi^0$

KLOE-2 Taggers 5fb⁻¹ => $\delta\Gamma(\pi^0 \rightarrow \gamma\gamma) \sim 1\%$ Details: [EPJC 72, 1917 (2012)] $\sigma(e^+e^- \rightarrow e^+e^-\eta, \sqrt{s=1GeV})$

Γγγ=520±20_{stat}±13_{syst} eV

[KLOE JHEP1301 (2013) 119]

η, π^0 single off shell TFF

Data: CELLO, NA60, CB-MAMI, CMD-2, SND

Dalitz decays

Data analysis: $\pi^0 \rightarrow \gamma e^+e^-$

NA48/2 $\pi^0 \rightarrow e + e - \gamma$

NA48/2: arXiv:1504.00607

$$\eta \rightarrow e^+e^-\gamma$$

 $\sigma(e+e- \rightarrow \pi^0\gamma,\eta\gamma)$

Data: CMD-2, SND

TFF kinematic regions: π^0 , η

Double off shell TFF at KLOE

TFF=1 => BR=2.5×10⁻⁵ TFF≠1 ∆BR ~ 5%

η meson radiative decay width

$V \rightarrow P\gamma^*$ and e+e- $\rightarrow PV$ processes

φ→e⁺e⁻η

History of $\pi^0 \rightarrow e+e-$ measurements

- Unitary bound (model independent) BR ≥ 4.75 · 10⁻⁸
- Experiment: KTeV (794 events from $K_L \rightarrow 3\pi^0$): $BR(\pi^0 \rightarrow e^+e^-) = (6.44 \pm 0.25_{stat} \pm 0.22_{syst}) \times 10^{-8}$ $BR_{no-rad}(\pi^0 \rightarrow e^+e^-) = (7.48 \pm 0.29_{stat} \pm 0.25_{syst}) \times 10^{-8}$ PRD75:012004(07)

 $P \rightarrow e + e -$

 $B_{\eta' \to e^+ e^-} < 1.2 \times 10^{-8}$

HADES WASA Cball,NA60

CMD3 PLB740, 273 (2015)

 $\eta \rightarrow \pi^+ \pi^- \gamma$

From $\eta \rightarrow \pi^+\pi^-\gamma$ to $\eta \rightarrow e^+e^-\gamma$

EPJC73(13)2668

BR(r

DATA: C Barrel PLB 402,195 ('97); KLOE PL B718, 910 ('13)

BESIII data sample on $\eta' \rightarrow \pi^+\pi^-\gamma$

 $\eta/\eta' \rightarrow \pi^0 \gamma \gamma$

Dominant VMD contribution

Summary and outlook

. Neutral meson structure

. Relation to muon (g-2) HLbL \rightarrow Dark photon searches ($\eta/\eta' \rightarrow \pi^0 \gamma \gamma$)

- . Tests of SM in π^0 , η , η' decays
- KLOE, MAMI, WASA, HADES, JLAB, BESIII ($10^{10}\pi^{0}$, 10^{9} n, 10^{7} n', $10^{10}\phi$)