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Knowing an answer is possible without calculating

Estimate the answer to 12/13 + 7/8. You will not have time to solve the
problem using paper and pencil. (2nd NAEP, 1977–78)
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Knowing an answer is possible without calculating

Estimate the answer to 12/13 + 7/8. You will not have time to solve the
problem using paper and pencil. (2nd NAEP, 1977–78)

Age 13 Age 17
1 7% 8%
2 24 37
19 28 21
21 27 15
I don’t know 14 16

Exact-calculation problem:

7/15 + 4/9 39 54



Insight helps us develop new understanding

1. Need for insight

2. Examples

a. factorials

b. coincidences

c. drag

d. musical notes



Rote learning makes problem solving
into a random walk
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Rote learning combines the worst of
human and computer thinking

human chess computer chess
calculation 1 position/second 108 positions/second
judgment fantastic minimal
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I’ve written out two antidotes to rote learning

MIT Press, 2010 MIT Press, 2014

Freely and legally available from MIT Press—with freedom to modify
and redistribute.



The antidote is to avoid rigor
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Pictures explain most of Stirling’s formula for 𝒏!

ln 2

ln 3

ln 4
ln 5

ln 6
ln 7 ln k

0

1

2

0 1 2 3 4 5 6 7
k

ln 𝑛! ≈
u�
∫
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ln 𝑘 𝑑𝑘 = 𝑛 ln 𝑛 − 𝑛 + 1;

𝑛! ≈ 𝑒 × 𝑛u�/𝑒u�.



The protrusions are the underestimate
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Each protrusion is almost a triangle
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Doubling each triangle makes them easier to add
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The doubled triangles stack nicely
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Sum of doubled triangles = ln 𝑛



The integral along with the triangles explain
most pieces of Stirling’s formula for 𝒏!

ln 𝑛! =
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∑
1

ln 𝑘

≈ 𝑛 ln 𝑛 − 𝑛 + 1
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𝑛! ≈ 𝑒󾏟
should be √2𝜋

× 𝑛u�/𝑒u� × √𝑛



Our perceptual hardware can do
one-shot learning

Dalmatian at the beach



Reasoning without our perceptual hardware
leaves us less clever

Dalmatian at the beach



Insight helps us develop new understanding

1. Need for insight

2. Examples

a. factorials

b. coincidences

c. drag

d. musical notes



We can understand coincidences

Imagine that every packet on a network gets a random 80-bit number
(the “hash”) based on its contents and the timestamp, and that new
packets are being generated at 1 megahertz (220 per second).
How long, on average, before two packets have been generated with a
common hash?

a. 1 second (20 seconds)

b. 10 days (220 seconds)

c. 3×104 years (240 seconds)

d. 3×1010 years (260 seconds)



… but not if we use the exact formula

After 𝑛 packets,

𝑝no coincidence = (1 − 1
280)(1 − 2

280)(1 − 3
280)⋯(1 − 𝑛 − 1

280 ) .

For what 𝑛 does 𝑝 get small enough, say 1/𝑒?



An approximate scaling analysis provides more insight

𝑛 packets make 𝑛2/2 “handshakes.”
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An approximate scaling analysis provides more insight

𝑛 packets make 𝑛2/2 “handshakes.”

Each handshake has a 2−80 chance of being a collision.

𝑝no coincidence ≈ (1 − 2−80)u�2/2

≈ exp(−𝑛2

2 × 2−80) .

Therefore, 𝑝no coincidence drops to 1/𝑒 when

𝑛 ≈ 240.



We can understand coincidences by using proportional
reasoning

Imagine that every packet on a network gets a random 80-bit number
(the “hash”) based on its contents and the timestamp, and that new
packets are being generated at 1 megahertz (220 per second).
How long, on average, before two packets have been generated with a
common hash?

a. 1 second (20 seconds)

b. 10 days (220 seconds or 240 packets)

c. 3×104 years (240 seconds)

d. 3×1010 years (260 seconds)



This scaling analysis demystifies the birthday paradox

365 possible hashes

𝑝no shared birthday ≈ (1 − 1
365)

u�2/2

≈ exp(− 𝑛2

2 × 365) .

𝑝no shared birthday drops to 1/𝑒 when

𝑛 ∼ √2 × 365 ≈ 27.
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Fluid mechanics is difficult, so we need insight

What is the fuel efficiency of a 747?



The brute-force method is hopelessly difficult

Equations of fluid mechanics

∂𝐯
∂𝑡 + (𝐯⋅∇)𝐯 = −1

𝜌∇𝑝 + 𝜈∇2𝐯

∇⋅𝐯 = 0

where

𝜌 = air density
𝑝 =pressure
𝐯 =velocity
𝜈 = (kinematic) viscosity
𝑡 = time



A more insightful analysis uses proportional reasoning

vsmall vbig

What is the approximate ratio of the fall speeds 𝑣big/𝑣small?

a. 2 : 1

b. 1 : 1

c. 1 : 2



A more insightful analysis uses proportional reasoning

vsmall vbig

What is the approximate ratio of the fall speeds 𝑣big/𝑣small?

a. 2 : 1

b. 1 : 1 Drag force is proportional to area!

c. 1 : 2



We also need a symmetry principle: dimensional analysis

drag force⏟⏟⏟⏟⏟
kilograms × meters

second2

∼ area⏟
meters2

×density? speed?viscosity?⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
kilograms

meter × second2
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We also need a symmetry principle: dimensional analysis

drag force⏟⏟⏟⏟⏟
kilograms × meters

second2

∼ area⏟
meters2

× density⏟
kilograms
meter3

× speed2
⏟
meters2

second2



We use proportional reasoning again

Fuel consumption is proportional to the drag force, and

drag force ∼ area × density × speed2.

The ratio of plane-to-car fuel consumptions is therefore

plane consumption
car consumption ∼

areaplane
areacar⏟⏟⏟⏟⏟

?

×
densityplane

densitycar⏟⏟⏟⏟⏟⏟⏟
?

×
speed2

plane

speed2
car⏟⏟⏟⏟⏟

?



We use proportional reasoning again

Fuel consumption is proportional to the drag force, and

drag force ∼ area × density × speed2.

The ratio of plane-to-car fuel consumptions is therefore

plane consumption
car consumption ∼

areaplane
areacar⏟⏟⏟⏟⏟

10

×
densityplane

densitycar⏟⏟⏟⏟⏟⏟⏟
?

×
speed2

plane

speed2
car⏟⏟⏟⏟⏟

?



We use proportional reasoning again

Fuel consumption is proportional to the drag force, and

drag force ∼ area × density × speed2.

The ratio of plane-to-car fuel consumptions is therefore

plane consumption
car consumption ∼

areaplane
areacar⏟⏟⏟⏟⏟

10

×
densityplane

densitycar⏟⏟⏟⏟⏟⏟⏟
1/3

×
speed2

plane

speed2
car⏟⏟⏟⏟⏟

?



We use proportional reasoning again

Fuel consumption is proportional to the drag force, and

drag force ∼ area × density × speed2.

The ratio of plane-to-car fuel consumptions is therefore

plane consumption
car consumption ∼

areaplane
areacar⏟⏟⏟⏟⏟

10

×
densityplane

densitycar⏟⏟⏟⏟⏟⏟⏟
1/3

×
speed2

plane

speed2
car⏟⏟⏟⏟⏟

100



We use proportional reasoning again

Fuel consumption is proportional to the drag force, and

drag force ∼ area × density × speed2.

The ratio of plane-to-car fuel consumptions is therefore

plane consumption
car consumption ∼

areaplane
areacar⏟⏟⏟⏟⏟

10

×
densityplane

densitycar⏟⏟⏟⏟⏟⏟⏟
1/3

×
speed2

plane

speed2
car⏟⏟⏟⏟⏟

100

∼ 300



We use proportional reasoning again

Fuel consumption is proportional to the drag force, and

drag force ∼ area × density × speed2.

The ratio of plane-to-car fuel consumptions is therefore

plane consumption
car consumption ∼

areaplane
areacar⏟⏟⏟⏟⏟

10

×
densityplane

densitycar⏟⏟⏟⏟⏟⏟⏟
1/3

×
speed2

plane

speed2
car⏟⏟⏟⏟⏟

100

∼ 300.

But 300 passengers on a plane flight; only 1 passenger in a car.

Planes and cars are equally fuel efficient!



The connection between falling cones and flying planes
helps us estimate the cost of a plane ticket

A Boston–Los Angeles roundtrip is roughly 5000 miles.

5000miles ×
1 gallon
25miles × 2dollars

1 gallon ∼ 500dollars.



Insight helps us develop new understanding
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2. Examples

a. factorials

b. coincidences
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d. musical notes



We can understand acoustics without calculating (too much)

Doubling the block’s thickness changes the note frequency by what
factor?

tap
tap

a. 4
b. 2

c. √2
d. no change

e. 1/√2
f. 1/2
g. 1/4



We can understand acoustics without calculating (too much)

Doubling the block’s thickness changes the note frequency by what
factor?

tap
tap

a.0% 4
b.11 2

c.2 √2
d.8 no change

e.26 1/√2
f.47 1/2
g.6 1/4



We can understand acoustics without calculating (too much)

Doubling the block’s thickness changes the note frequency by what
factor?

tap
tap

a.0% 4
b.11 2

c.2 √2
Let’s try it!

d.8 no change

e.26 1/√2
f.47 1/2
g.6 1/4
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A spring model of wood explains
the doubling in frequency

Compare the stored energies for the same deflection 𝑦:

y
y

4× the energy per spring
2× the number of springs

8× the stored energy⏟⏟⏟⏟⏟⏟⏟⏟⏟
stiffness × u�2

(bending) frequency ∼ √stiffness
mass = √8×

2× = 2×.



Frequency is proportional to thickness

𝑓 ∝ ℎ1.



What if we vary the length (rather than the thickness)?

𝑓 ∝ 𝑙u�.

What is the scaling exponent 𝑥?



Dimensional analysis tells us the exponent

The frequency depends on the the block’s three dimensions 𝑙, 𝑤, and ℎ
as well as a characteristic of the material, the speed of sound 𝑐s.

𝑓 ∼ ℎ1𝑙u�𝑤u�𝑐u�
s .
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Dimensional analysis tells us the exponent

The frequency depends on the the block’s three dimensions 𝑙, 𝑤, and ℎ
as well as a characteristic of the material, the speed of sound 𝑐s.

𝑓 ∼ ℎ1𝑙−2𝑤0𝑐1
s

Thus,

𝑓 ∝ 𝑙−2

or

𝑙 ∝ 𝑓 −1/2.



We can test this prediction experimentally

C

11.4 cm

D

10.8 cm
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8.35 cm

C′

8.1 cm



We can test this prediction experimentally
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The data closely match the scaling prediction
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slope = −0.493



Insight helps us develop new understanding

1. Need for insight

2. Examples

a. factorials

b. coincidences

c. drag

d. musical notes



Without insight we cannot develop new understanding

system / theory behavior / data

analysis

design / explanation



Insight helps us develop new understanding

system / theory behavior / data

invertible methods of analysis

design / invention



Insight helps us develop new understanding

The goal [of teaching] should be, not to implant in the students’ mind
every fact that the teacher knows now;

but rather to implant a way of thinking that enables the student, in the
future, to learn in one year what the teacher learned in two years.

Only in that way can we continue to advance from one generation to
the next.

—Edwin T. Jaynes (1922–1998)
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