

Investigating proton form-factors with initial-state radiation

Miha Mihovilovič

JGU Mainz and JSI

Physics Seminar @ JLab

The Radius Puzzle

Two ways of climbing the mountain

Radius via Cross-section measurement

- Extraction of FF via Rosenbluth Separation.
- Best estimate for radius:

$$r_E^2 = -6\hbar^2 \frac{d}{dQ^2} G_E(Q^2) \Big|_{Q^2=0}$$

Proton's charge form-factor

Radius from Bernauer's measurements: r = (0.879 ± 0.008) fm

There is small difference in energy between energy levels $2S_{1/2}$ and $2P_{1/2}$ due to QED vacuum fluctuations.

Lamb shift in Hydrogen

- Change in level energy (approximately):

$$\Delta E_{Lamb}^{nl} \propto \left| \psi_{nl}(0) \right|^2$$

$$E(nS) \simeq -\frac{R_{\infty}}{n^2} + \frac{\Delta E_{Lamb}^{1S}}{n^3}$$

$$\Delta E_{Lamb}^{1S} \cong \left(8.172 + 1.56 r_p^2\right) MHz$$

- Significant effect in S-states and only tiny change in P-states.
- The center of the hydrogen atom is not empty. Proton is here!

Electron probability densities for different states in **eH**

- Different <u>n-dependence</u> of the two terms allows the determination of R_{∞} and r_{p} from at least two different measurements.

Spectroscopic measurements

Direct (RF) and indirect (laser) spectroscopy measurements:

Radius from spectroscopic measurements: r = (0.8758 ± 0.0077) fm

µH Lamb shift measurements

- Due to <u>larger mass</u> muon much closer to the nucleus, resulting in a more **pronounced Lamb shift effect**.

- The largest signal is given by the $2S_{1/2}^{F=1}$ and $2P_{3/2}^{F=2}$ transition.
- The QED calculation predict:

$$\Delta E = 209.9779(49) - 5.2262 r_p^2 + 0.0347 r_p^3 meV$$

- Finite size of the proton contributes 1.8% of the energy difference.

CREMA Experiment @ PSI

Nature, Vol. 466, 2010

The mean position of the peak: $f_{2S-2P} = 49881.88(76) GHz$ $\Delta E = 206.2949(32) meV$

The ever changing radius!

• The 6σ discrepancy in the r_p measurements.

Why is the puzzle so important?

- Knowledge of basic properties of the nucleon.
- The radius is strongly correlated to the Rydberg constant.
- Problems in nuclear scattering data?
- Bringing different interpretations of nuclear scattering data to an agreement.
- Do we understand QED?

Proton's charge form-factor

- Data available only for Q² > 0.004 (GeV/c)².
- Need to avoid extrapolations to zero!

Relating to Lamb shift measurements

- Region of $Q^2 < 0.004$ (GeV)² is extremely hard to reach.
- Kinematic range is limited by available experimental apparatus.
- Novel techniques are needed to explore extremely low Q² regime.

ISR Experiment at MAMI

Full Simulation

- By comparing data to simulation ISR information can be reached.
- Measured $\delta \sigma$ linearly proportional to the δG_E between data and model.

Simul++

- Based on standard A1 framework.
- Detailed description of apparatus.
- Exact calculation of the leading order diagrams:

 The NL-order virtual and real corrections included via effective corrections to the cross-section.

. .

Going beyond peaking approximation

Traditional peaking approximations insufficient for such experiment.

 <u>Secondary objective</u>: Measurements at higher Q² for validating the radiative corrections in a region, where FFs are well known.

Important for experiments, e.g. VCS, which require high-precision knowledge of the radiative corrections.

The ISR experiment

- Full experiment done in August 2013. Four weeks of data taking.

Beam control module:

- Communicates with MAMI and ensures very stable beam.
- BPM and pA-meter measurements performed automatically every 3min.

Kinematic settings

• Overlapping settings to control systematic uncertainty.

Target Frame contributions #1

Target Frame contributions #2

Entrance flange contributions

- Spec. B encompasses a long entrance flange.
- Events rescattered from the snout cover the whole vertex acceptance.

Results

- Existing apparatus limited reach of ISR experiment to E' ~ 130 MeV.
- Elastic points excluded.
- Simulation performed with Bernauer parameterization of form factors.
- A percent agreement between the data and simulation demonstrates that the radiative corrections are well understood!

ISR form-factors

- Assuming flawless description of radiative corrections, form factors can be extracted from the data.
- First measurement of G_E^p at 0.001 GeV² $\leq Q^2 \leq 0.004$ GeV²

ISR Proton radius

• G_e^p modeled with the polynomial fit.

$$G_E^p(Q^2) = n \left(1 - \frac{\mathbf{r}_E^2}{6} Q^2 + \frac{a}{120} Q^4 - \frac{b}{5040} Q^6 \right)$$

Terms (a,b) known from previous analyses [Distler et al.]

• The obtained radius:

$$r_E = (0.810 \pm 0.035_{stat.} \pm 0.074_{syst.} \pm 0.003_{mod.}) fm$$

Lever arm is important

- Determining radius analogous to measuring elasticity of a rod!
- Measuring deviations x with fixed precision Δx .
- Measuring further away from pivot is relatively more precise.

Not knowing the exact behavior of a rod near the pivot.

Problem of small lever arm

• Measuring near the pivot point gives us insufficient lever arm!

- Insufficient precision to extract the elasticity (radius).
- No precise information on the absolute position of the origin.

ISR Proton radius

• G_e^p modeled with the polynomial fit.

$$G_E^p(Q^2) = n \left(1 - \frac{\mathbf{r}_E^2}{6} Q^2 + \frac{a}{120} Q^4 - \frac{b}{5040} Q^6 \right)$$

Terms (a,b) known from previous analyses [Distler et al.]

• The obtained radius:

$$r_E = (0.810 \pm 0.035_{stat.} \pm 0.074_{syst.} \pm 0.003_{mod.}) fm$$

• The fit (with statistical errors only) reports the reduced χ^2 of 3.2.

Result is dominated by systematic effects!

Uncertainties

Total systematic uncertainty of cross-section \leq 1.0 %

Hypersonic jet target

- Target developed for MAGIX, but could be used also in A1.
- No metal frame near the vertex.
- No target walls.
- Width of the jet 2mm (point-like target)

Expected uncertainties with JetISR

 Uncertainty of NNLO theoretical corrections will be reduced to 0.2% and total uncertainty to 0.3%.

Hypersonic jet target

- Target developed for MAGIX, but could be used also in A1.
- No metal frame near the vertex.
- No target walls.
- Width of the jet 2mm (point-like target)
- Density of 10⁻⁴ g/cm³ at 15 bar.
- Luminosity of 10³⁴/cm²s can be achieved at MAMI.

Experiment approved by PAC 2016

Summary

- A pilot experiment has been performed at MAMI to measure G_E^p at very low Q².
- A new technique for FF determination based on ISR has been successfully validated.

- Reach of the first ISR experiment limited by unforeseen backgrounds.
- The jet target opens possibility for reaching the ultimate goal of measuring form factors at 10⁻⁴ GeV².

Thank you!