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4 % in radius: why care?

• Can’t be calculated to that accuracy

• 1/2 cm in radius of a basketball 
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4 % in radius: why care?

• Can’t be calculated to that accuracy

• 1/2 cm in radius of a basketball 

Is the muon-proton interaction the 
same as the electron-proton 

interaction? - many possible ramifications 
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Summary/Outline

• If all of the experiments, and their analyses,  
are correct a lepton universality is violated- 
a new scalar boson  can explain the puzzles

• Need to check that doesn’t violate existing 
constraints- it doesn’t  s

• Direct detection is needed.  
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A new scalar boson which couples to the muon and proton can simultaneously solve the proton radius
puzzle and the muon anomalous magnetic moment discrepancy. Using a variety of measurements, we
constrain the mass of this scalar and its couplings to the electron, muon, neutron, and proton. Making no
assumptions about the underlying model, these constraints and the requirement that it solve both problems
limit the mass of the scalar to between about 100 keVand 100 MeV. We identify two unexplored regions in
the coupling constant-mass plane. Potential future experiments and their implications for theories with
mass-weighted lepton couplings are discussed.

DOI: 10.1103/PhysRevLett.117.101801

Recent measurements of the proton charge radius using
the Lamb shift in muonic hydrogen are troublingly dis-
crepant with values extracted from hydrogen spectroscopy
and electron-proton scattering. The value from muonic
hydrogen is 0.84087(39) fm [1,2] while the CODATA
average of data from hydrogen spectroscopy and e-p
scattering yields 0.8751(61) fm [3]; these differ at more
than 5σ. Although the discrepancy may arise from subtle
lepton-nucleon nonperturbative effects within the standard
model or experimental uncertainties [4,5], it could also be a
signal of new physics involving a violation of lepton
universality.
The muon anomalous magnetic moment provides

another potential signal of new physics. The BNL [6]
measurement differs from the standard model prediction
by at least 3 standard deviations, Δaμ ¼ aexpμ − athμ ¼
287ð80Þ × 10−11 [7,8].
A new scalar boson ϕ that couples to the muon and

proton could explain both the proton radius and ðg − 2Þμ
puzzles [9]. We investigate the couplings of this boson to
standard model fermions f, which appear as terms in the
Lagrangian, L ⊃ eϵfϕf̄f, where ϵf ¼ gf=e and e is the
electric charge of the proton. Other authors have pursued
this idea, but made further assumptions relating the
couplings to different species; e.g., in Ref. [9] ϵp is taken
equal to ϵμ and in Ref. [10], mass-weighted couplings are
assumed. References [9] and [10] both neglect ϵn. We make
no a priori assumptions regarding signs or magnitudes of
the coupling constants. The Lamb shift in muonic hydrogen
fixes ϵμ and ϵp to have the same sign which we take to be
positive. ϵe and ϵn are allowed to have either sign.
We focus on the scalar boson possibility because scalar

exchange produces no hyperfine interaction, in accord with
observation [1,2]. The emission of possible new vector
particles becomes copious at high energies, and in the
absence of an ultraviolet completion, is ruled out [11].
Scalar boson exchange can account for both the proton

radius puzzle and the ðg − 2Þμ discrepancy [9]. The shift of

the lepton ðl ¼ μ; eÞ muon’s magnetic moment due to
one-loop ϕ exchange is given by [12]

Δal ¼ αϵ2l
2π

Z
1

0
dz

ð1 − zÞ2ð1þ zÞ
ð1 − zÞ2 þ ðmϕ=mlÞ2z

: ð1Þ

Scalar exchange between fermions f1 and f2 leads to a
Yukawa potential, VðrÞ ¼ −ϵf1ϵf2αe

−mϕr=r. In atomic
systems, this leads to an additional contribution to the
Lamb shift in the 2S-2P transition. For an atom of A and
Z this shift is given by [13]

δElN
L ¼ −

α
2alN

ϵl½Zϵp þ ðA − ZÞϵn&fðalNmϕÞ; ð2Þ

where fðxÞ ¼ x2=ð1þ xÞ4 [9,14], with alN ¼ ðZαmlNÞ−1
the Bohr radius and mlN the reduced mass of the lepton-
nucleus system. Throughout this Letter we set

Δaμ ¼ 287ð80Þ × 10−11; δEμH
L ¼ −0.307ð56Þ meV

ð3Þ

within 2 standard deviations. This value of δEμH
L is equal

to the energy shift caused by using the different values of
the proton radius [1–3,15]. Using Eq. (3) allows us to
determine both ϵp and ϵμ as functions of mϕ. The
unshaded regions in Figs. 1 and 3 show the values of
ϵp and ϵμ, as functions of the scalar’s mass, which lead to
the values of Δaμ and δEμH

L in Eq. (3).
We study several observables sensitive to the couplings

of the scalar to neutrons ϵn and protons ϵp to obtain new
bounds on mϕ.
(i) Low energy scattering of neutrons on 208Pb has been

used to constrain light force carriers coupled to nucleons
[16], assuming a coupling of a scalar to nucleons of gN .
Using the replacement
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The Lamb shift is the splitting of the degenerate 2S1/2 
and 2P1/2 eigenstates

Dominant in μH vacuum polarization 205 of 206 meV

Dominant in eH electron self-energy

• Muon/electron mass ratio 205! 8 million times larger for 
muon

Proton radius in 
Lamb shift

?

1

�E = h S |VC � V pt
C | Si =

2

3
⇡↵| S(0)|2(�6G0

E(0))

4



Figure 3 shows the two measured mp res-
onances. Details of the data analysis are given
in (12). The laser frequency was changed every
few hours, and we accumulated data for up to
13 hours per laser frequency. The laser frequen-
cy was calibrated [supplement in (6)] by using
well-known water absorption lines. The reso-
nance positions corrected for laser intensity ef-
fects using the line shape model (12) are

ns ¼ 54611:16(1:00)stat(30)sysGHz ð2Þ

nt ¼ 49881:35(57)stat(30)sysGHz ð3Þ

where “stat” and “sys” indicate statistical and sys-
tematic uncertainties, giving total experimental un-
certainties of 1.05 and 0.65 GHz, respectively.
Although extracted from the same data, the fre-
quency value of the triplet resonance, nt, is slightly
more accurate than in (6) owing to several improve-
ments in the data analysis. The fitted line widths
are 20.0(3.6) and 15.9(2.4) GHz, respectively, com-
patible with the expected 19.0 GHz resulting from
the laser bandwidth (1.75 GHz at full width at half
maximum) and the Doppler broadening (1 GHz)
of the 18.6-GHz natural line width.

The systematic uncertainty of each measure-
ment is 300 MHz, given by the frequency cal-
ibration uncertainty arising from pulse-to-pulse
fluctuations in the laser and from broadening
effects occurring in the Raman process. Other
systematic corrections we have considered are
the Zeeman shift in the 5-T field (<60 MHz),
AC and DC Stark shifts (<1 MHz), Doppler
shift (<1 MHz), pressure shift (<2 MHz), and
black-body radiation shift (<<1 MHz). All these
typically important atomic spectroscopy system-
atics are small because of the small size of mp.

The Lamb shift and the hyperfine splitting.
From these two transition measurements, we
can independently deduce both the Lamb shift
(DEL = DE2P1/2−2S1/2) and the 2S-HFS splitting
(DEHFS) by the linear combinations (13)

1
4
hns þ

3
4
hnt ¼ DEL þ 8:8123ð2ÞmeV

hns − hnt ¼ DEHFS − 3:2480ð2ÞmeV ð4Þ

Finite size effects are included in DEL and
DEHFS. The numerical terms include the cal-
culated values of the 2P fine structure, the 2P3/2
hyperfine splitting, and the mixing of the 2P
states (14–18). The finite proton size effects on
the 2P fine and hyperfine structure are smaller
than 1 × 10−4 meV because of the small overlap
between the 2P wave functions and the nu-
cleus. Thus, their uncertainties arising from
the proton structure are negligible. By using
the measured transition frequencies ns and nt
in Eqs. 4, we obtain (1 meV corresponds to
241.79893 GHz)

DEexp
L ¼ 202:3706(23) meV ð5Þ

DEexp
HFS ¼ 22:8089(51) meV ð6Þ

The uncertainties result from quadratically
adding the statistical and systematic uncertain-
ties of ns and nt.

The charge radius. The theory (14, 16–22)
relating the Lamb shift to rE yields (13):

DEth
L ¼ 206:0336(15Þ − 5:2275(10Þr2E þ DETPE

ð7Þ

where E is in meV and rE is the root mean
square (RMS) charge radius given in fm and
defined as rE

2 = ∫d3r r2 rE(r) with rE being the
normalized proton charge distribution. The first
term on the right side of Eq. 7 accounts for
radiative, relativistic, and recoil effects. Fine and
hyperfine corrections are absent here as a con-
sequence of Eqs. 4. The other terms arise from
the proton structure. The leading finite size effect
−5.2275(10)rE2 meV is approximately given by
Eq. 1 with corrections given in (13, 17, 18).
Two-photon exchange (TPE) effects, including the
proton polarizability, are covered by the term
DETPE = 0.0332(20) meV (19, 24–26). Issues
related with TPE are discussed in (12, 13).

The comparison of DEth
L (Eq. 7) with DEexp

L
(Eq. 5) yields

rE ¼ 0:84087(26)exp(29)th fm
¼ 0:84087(39) fm ð8Þ

This rE value is compatible with our pre-
vious mp result (6), but 1.7 times more precise,
and is now independent of the theoretical pre-
diction of the 2S-HFS. Although an order of
magnitude more precise, the mp-derived proton
radius is at 7s variance with the CODATA-2010
(7) value of rE = 0.8775(51) fm based on H spec-
troscopy and electron-proton scattering.

Magnetic and Zemach radii. The theoretical
prediction (17, 18, 27–29) of the 2S-HFS is (13)

DEth
HFS ¼ 22:9763(15Þ − 0:1621(10)rZ þ DEpol

HFS

ð9Þ

where E is in meVand rZ is in fm. The first term is
the Fermi energy arising from the interaction
between the muon and the proton magnetic mo-
ments, corrected for radiative and recoil con-
tributions, and includes a small dependence of
−0.0022rE2 meV = −0.0016 meVon the charge
radius (13).

The leading proton structure term depends
on rZ, defined as

rZ ¼ ∫d3r∫d3r′r′rE(r)rM(r − r′) ð10Þ

with rM being the normalized proton mag-
netic moment distribution. The HFS polariz-

Fig. 1. (A) Formation of mp in highly excited states and subsequent cascade with emission of “prompt”
Ka, b, g. (B) Laser excitation of the 2S-2P transition with subsequent decay to the ground state with Ka
emission. (C) 2S and 2P energy levels. The measured transitions ns and nt are indicated together with
the Lamb shift, 2S-HFS, and 2P-fine and hyperfine splitting.

25 JANUARY 2013 VOL 339 SCIENCE www.sciencemag.org418
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The experiment:   
results disagree with previous measurements & world average 

atoms formed. Themeasurement times varied between 3 and 13 h per
laser wavelength. The 75-ns-long laser time window, in which the
laser induced Ka events are expected, is indicated in Fig. 4. We have
recorded a rate of 7 events per hour in the laser timewindowwhen on
resonance. The background of about 1 event per hour originates
mainly from falsely identified muon-decay electrons and effects
related to delayed muon transfer to target walls.

Figure 5 shows the measured 2S–2P resonance curve. It is obtained
by plotting the number of Ka events recorded in the laser timewindow,
normalized to thenumber of events in thepromptpeak, as a functionof
the laser frequency. In total, we have measured 550 events in the res-
onance, where we expect 155 background events. The fit to the data is a
Lorentzian resonance line on top of a flat background. All four para-
meters (Lorentzian amplitude, position and width, as well as back-
ground amplitude) were varied freely. A maximum likelihood fit
using CERN’s ROOT analysis tool accounted for the statistics at each
laser wavelength. Our statistical uncertainties are the 1s confidence
intervals.

Weobtain a centroid position of 49,881.88(70)GHz, and awidth of
18.0(2.2)GHz, where the given uncertainties are the 1 s.d. statistical
uncertainties. The width compares well with the value of 20(1)GHz
expected from the laser bandwidth and Doppler- and power-broad-
ening of the natural line width of 18.6GHz. The resulting background
amplitude agrees with the one obtained by a fit to data recorded
without laser (not shown). We obtain a value of x25 28.1 for 28
degrees of freedom (d.f.). A fit of a flat line, assuming no resonance,
gives x25 283 for 31 d.f., making this resonance line 16s significant.

The systematic uncertainty of our measurement is 300MHz. It
originates exclusively from our laser wavelength calibration proced-
ure. We have calibrated our line position in 21 measurements of 5
different water vapour absorption lines in the rangel5 5.49–6.01mm.
The positions of these water lines are known28 to an absolute precision
of 1MHz and are tabulated in the HITRAN database29. The measured
relative spacingbetween the 5 lines agreeswith thepublishedones.One
suchmeasurement of awater vapour absorption line is shown in Fig. 5.
Our quoted uncertainty of 300MHz comes from pulse to pulse fluc-
tuations and a broadening effect occurring in the Raman process. The
FSRof the reference Fabry–Perot cavity does not contribute, as the FSR
is known better than 3 kHz and the whole scanned range is within 70
FSR of thewater line. Other systematic correctionswe have considered
are Zeeman shift in the 5T field (,30MHz), a.c. and d.c. Stark shifts
(,1MHz), Doppler shift (,1MHz) and pressure shift (,2MHz).
Molecular effects do not influence our resonance position because
the formed muonic molecules ppm1 are known to de-excite quickly30

and do not contribute to our observed signal. Also, the width of our
resonance line agrees with the expectedwidth, whereasmolecular lines
would be wider.

The centroid position of the 2SF~1
1=2 {2PF~2

3=2 transition is
49,881.88(76)GHz, where the uncertainty is the quadratic sum of
the statistical (0.70GHz) and the systematic (0.30GHz) uncertainties.
This frequency corresponds to an energy of DẼ5 206.2949(32)meV.
From equation (1), we deduce an r.m.s. proton charge radius of
rp5 0.84184(36)(56) fm, where the first and second uncertainties ori-
ginate respectively from the experimental uncertainty of 0.76GHzand
the uncertainty in the first term in equation (1). Theory, and here
mainly the proton polarizability term, gives the dominant contri-
bution to our total relative uncertainty of 83 1024. Our experimental
precision would suffice to deduce rp to 43 1024.

This new value of the proton radius rp5 0.84184(67) fm is 10 times
more precise, but 5.0s smaller, than the previous world average3,
which is mainly inferred from H spectroscopy. It is 26 times more
accurate, but 3.1s smaller, than the accepted hydrogen-independent
value extracted from electron–proton scattering1,2. The origin of this
large discrepancy is not known.

If we assume some QED contributions in mp (equation (1)) were
wrong or missing, an additional term as large as 0.31meV would be
required to match our measurement with the CODATA value of rp.
We note that 0.31meV is 64 times the claimed uncertainty of equation
(1).

TheCODATAdeterminationof rp canbe seen in a simplifiedpicture
as adjusting the input parameters rp and R‘ (the Rydberg constant) to
match theQED calculations8 to themeasured transition frequencies4–7

in H: 1S–2S on the one hand, and 2S{n‘ n‘~2P,4,6,8S=D,12Dð Þ on
the other.

The 1S–2S transition in H has been measured3–5 to 34Hz, that is,
1.43 10214 relative accuracy. Only an error of about 1,700 times the
quoted experimental uncertainty could account for our observed dis-
crepancy. The 2S{n‘ transitions have been measured to accuracies
between 1/100 (2S–8D) (refs 6, 7) and 1/10,000 (2S1/2–2P1/2 Lamb
shift31) of the respective line widths. In principle, such an accuracy
couldmake these data subject to unknown systematic shifts.We note,
however, that all of the (2S{n‘) measurements (for a list, see, for
example, table XII in ref. 3) suggest a larger proton charge radius.
Finally, the origin of the discrepancy with the H data could originate
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Figure 4 | SummedX-ray time spectra. Spectra were recorded on resonance
(a) and off resonance (b). The laser light illuminates themuonic atoms in the
laser time window tg [0.887, 0.962] ms indicated in red. The ‘prompt’
X-rays aremarked in blue (see text and Fig. 1). Inset, plots showing complete
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“The 1S-2S transition in H has been measured to

34 Hz, that is, 1.4× 10−14 relative accuracy.

Only an error of about 1,700 times the quoted

experimental uncertainty could account for our

observed discrepancy.”
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2010 Rock Solid!

7 standard deviation difference in rp- or 
value of Rydberg constant  has to be 
shifted- (12 figures) or new physics!6
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Hydrogen spectroscopy
2S1/2 -  2P1/2

2S1/2 -  2P1/2

2S1/2 -  2P3/2

1S-2S + 2S- 4S1/2

1S-2S + 2S- 4D5/2

1S-2S + 2S- 4P1/2

1S-2S + 2S- 4P3/2

1S-2S + 2S- 6S1/2

1S-2S + 2S- 6D5/2

1S-2S + 2S- 8S1/2

1S-2S + 2S- 8D3/2

1S-2S + 2S- 8D5/2

1S-2S + 2S-12D3/2

1S-2S + 2S-12D5/2

1S-2S + 1S - 3S1/2

µp : 0.84184 +- 0.00067 fm

proton charge radius (fm)   
0.8 0.85 0.9 0.95 1

Randolf Pohl APS Anaheim, 30 April 2010 p. 20

E(nS) u R1
n2

+
L1S

n3

• Need two levels to get Rydberg and Lamb 
shift-have ~ 20 available

Electronic Hydrogen -Pohl
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Same lab
maybe not so accurate
Ralston Karshenboim
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The proton radius puzzle

 [fm]
ch

Proton charge radius R
0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

H spectroscopy

scatt. Mainz

scatt. JLab

p 2010µ

p 2013µ electron avg.

σ7.9 

The proton rms charge radius measured with

electrons: 0.8770 ± 0.0045 fm
muons: 0.8409 ± 0.0004 fm

R. Pohl et al., Nature 466, 213 (2010).
A. Antognini et al., Science 339, 417 (2013).

Randolf Pohl Mainz, 2nd June 2014 11

In a picture

Small

Large
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What  energy difference 
corresponds to 4% in radius?
Measured =206.2949(32)= 206.0573(45)-5.2262 rp2+0.0347 rp3 meV  

computed

Explain puzzle with radius as in H atom increase 206.0573 meV 
by 0.31 meV-attractive effect on 2S state needed
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QED theory ?
• Pohl et al table 32 terms!

• Most important -HFS- measured Jan ’13

• QED theory not responsible-

muon
electron A new effect on mu-H energy shift

must vary at least as fast as lepton mass
to the fourth power, if short-ranged

An effect on electron, 
but not muon free of this 

constraint
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Deuteron
Electron (D-H) isotope shift (2S-1S) 2 photon spectroscopy PRL 104, 233001
r2d � r2p = 3.82007(65)

µ�D Lamb shift rd = 2.12562(78) fm Science 353 (2016) 669

CODATA (2010)rd = 2.1424(26) fm - mainly electron scattering

Use rp = 0.84087 in r2d � r2p = 3.82007(65) gives rd = 2.12769 fm

µD and Electron (D-H) isotope shift are consistent! redo eD scattering?

�EµD
L = �0.438(59) meV compared with 0.307 in proton

Using the CODATA deuteron radius corresponds to 

11

Puzzle is worse!



He radius from e-scattering

- world data of e-scattering.
- constraints density at large r:
- shape: from p-wavefunction ∼Whittaker.
- absolute density: from p-He scattering + FDR.

- point density from potential + GFMC (small r) + FDR (large r).
- fold point density with charge density distribution of p and n.
- include Coulomb distortions.

Fit with SOG
→ R = 1.681(4) fm

(best known radius from e-scattering)

[Sick, PRC 77, 941392(R) (2008)]

A. Antognini MITP workshop, Mainz 02-06 June 2014 – p. 20
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3He expected soon
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Several new electron 
spectroscopy experiments 

• Independent measurement of Rydberg 
constant. This would change only extracted 
rp  nothing else

•  2S-6S UK, 2S-4P Germany,1S-3S France

• 2S-2P classic, Canada

• Highly charged single electron ions NIST

2S-4P has reported preliminary results- small radius not yet 
published

13



Possible resolutions
• QED bound-state calculations not accurate-

very unlikely- this includes recoil effects

• Electron H spectroscopy not so  accurate    

• Strong interaction effect in two photon 
exchange diagram

• More e+e- pairs than μ+ μ- pairs in the proton

• Muon interacts differently than electron!-new 
particles, gravity, non-commutative geometry

• soft proton

14
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Two photon exchange 

2

of momentum q = p′ − p.as:

Γµ(p′, p) = γµ
NF1(−q2) + F1(−q2)F (−q2)Oµ

a,b,c (2)

Oµ
a =

(p + p′)µ

2M
[Λ+(p′)

(p · γN − M)

M
+

(p′ · γN − M)

M
Λ+(p)]

Oµ
b = ((p2 − M2)/M2 + (p′

2
− M2)/M2)γµ

N

Oµ
c = Λ+(p′)γµ

N

(p · γN − M)

M
+

(p′ · γN − M)

M
γµ

NΛ+(p),

where three possible forms are displayed. Other terms of
the vertex function needed to satisfy the WT identity do
not contribute significantly to the Lamb shift and are not
shown explicitly. The proton Dirac form factor, F1(−q2)
is empirically well represented as a dipole F1(−q2) = (1−
q2/Λ2)−2, (Λ = 840 MeV) for the values of −q2 ≡ Q2 > 0
of up to about 1 GeV2 needed here. F (−q2) is an off-
shell form factor, and Λ+(p) = (p · γN + M)/(2M) is an
operator that projects on the on-mass-shell proton state.
We use Oa unless otherwise stated.

We take the off-shell form factor F (−q2) to vanish at
q2 = 0. This means that the charge of the off-shell proton
will be the same as the charge of a free proton, and is
demanded by current conservation as expressed through
the Ward-Takahashi identity [24, 25]. We assume

F (−q2) =
−λq2/b2

(1 − q2/Λ̃2)1+ξ
. (3)

This purely phenomenological form is simple and clearly
not unique. The parameter b is expected to be of the
order of the pion mass, because these longest range com-
ponents of the nucleon are least bound and more suscep-
tible to the external perturbations putting the nucleon
off its mass shell. At large values of |q2|, F has the same
fall-off as F1, if ξ = 0. We take Λ̃ = Λ here.

We briefly discuss the expected influence of using
Eq. (2). The ratio, R, of off-shell effects to on-shell ef-

fects, R ∼ (p·γN−M)
M λ q2

b2 , (|q2| ≪ Λ2) is constrained by
a variety of nuclear phenomena such as the EMC effect
(10-15%), uncertainties in quasi-elastic electron-nuclear
scattering [26], and deviations from the Coulomb sum
rule [27]. For a nucleon experiencing a 50 MeV central
potential, (p · γN − M)/M ∼ 0.05, so λq2/b2 is of or-
der 2. The nucleon wave functions of light-front quark-
models [33] contain a propagator depending on M2.
Thus the effect of nucleon virtuality is proportional to
the derivative of the propagator with respect to M , or of
the order of the wave function divided by difference be-
tween quark kinetic energy and M . This is about three
times the average momentum of a quark (∼ 200 MeV/c)
divided by the nucleon radius or roughly M/2. Thus
R ∼ (p · γN − M)2/M , and the natural value of λq2/b2

is of order 2.
The lowest order term in which the nucleon is suffi-

ciently off-shell in a muonic atom for this correction to
produce a significant effect is the two-photon exchange
diagram of Fig. 1 and its crossed partner, including an

ℓ

P

ℓ − k

P

ℓ

FIG. 1: Direct two-photon exchange graph corresponding to
the hitherto neglected term. The dashed line denotes the
lepton; the solid line, the nucleon; the wavy lines photons;
and the ellipse the off-shell nucleon.

interference between one on-shell and one off-shell part
of the vertex function. The change in the invariant am-
plitude, MOff , due to using Eq. (2) along with Oµ

a , to be
evaluated between fermion spinors, is given in the rest
frame by

MOff =
e4

2M2

∫
d4k

(2π)4
F 2

1 (−k2)F (−k2)

(k2 + iϵ)2
(4)

×(γµ
N (2p + k)ν + γν

N (2p + k)µ)

×

[
γµ

(l · γ − k · γ + m)

k2 − 2l · k + iϵ
γν + γν

(l · γ + k · γ + m)

k2 + 2l · k + iϵ
γµ

]
,

where the lepton momentum is l = (m, 0, 0, 0), the vir-
tual photon momentum is k and the nucleon momentum
p = (M, 0, 0, 0). The intermediate proton propagator
is cancelled by the off-mass-shell terms of Eq. (2). This
graph can be thought of as involving a contact interaction
and the amplitude in Eq. (4) as a new proton polariza-
tion correction corresponding to a subtraction term in the
dispersion relation for the two-photon exchange diagram
that is not constrained by the cross section data [34].
The resulting virtual-photon-proton Compton scattering
amplitude, containing the operator γµ

Nγν
N corresponds to

the T2 term of conventional notation [35], [36]. Eq. (4)
is gauge-invariant; not changed by adding a term of the
form kµ kν/k4 to the photon propagator.

Evaluation proceeds in a standard way by taking the
sum over Dirac indices, performing the integral over k0

by contour rotation, k0 → −ik0, and integrating over the
angular variables. The matrix element M is well approx-
imated by a constant in momentum space, for momenta
typical of a muonic atom, and the corresponding poten-
tial V = iM has the form V (r) = V0δ(r) in coordinate
space. This is the “scattering approximation” [3]. Then
the relevant matrix elements have the form V0 |Ψ2S(0)|2,
where Ψ2S is the muonic hydrogen wave function of the
state relevant to the experiment of Pohl et al. We use
|Ψ2S(0)|2 = (αmr)3/(8π), with the lepton-proton re-

Our idea  energy shift proportional
 to lepton mass4

Measured =206.2949(32)= 206.0573(45)-5.2262 rp2+0.0347 rp3 meV  
computed

Explain puzzle with radius as in H atom increase 206.0573 meV 
by 0.31 meV-attractive effect on 2S state needed

Tµ⌫ =
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The uncertainty in the contribution to the Lamb shift in muonic hydrogen, !Esubt arising from proton
polarizability effects in the two-photon exchange diagram at large virtual photon momenta is shown large
enough to account for the proton radius puzzle. This is because !Esubt is determined by an integrand that
falls very slowly with very large virtual photon momenta. We evaluate the necessary integral using a set
of chosen form factors and also a dimensional regularization procedure which makes explicit the need for
a low energy constant. The consequences of our two-photon exchange interaction for low-energy elastic
lepton–proton scattering are evaluated and could be observable in a planned low energy lepton–proton
scattering experiment planned to run at PSI.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The proton radius puzzle is one of the most perplexing physics
issues of recent times. The extremely precise extraction of the pro-
ton radius [1] from the measured energy difference between the
2P F=2

3/2 and 2S F=1
1/2 states of muonic hydrogen disagrees with that

extracted from electronic hydrogen. The extracted value of the pro-
ton radius is smaller than the CODATA [2] value (based mainly
on electronic H) by about 4% or 5.0 standard deviations. This im-
plies [1] that either the Rydberg constant has to be shifted by
4.9 standard deviations or that present QED calculations for hy-
drogen are insufficient. The Rydberg constant is extremely well
measured and the QED calculations seem to be very extensive and
highly accurate, so the muonic H finding is a significant puzzle for
the entire physics community.

Pohl et al. show that the energy difference between the 2P F=2
3/2

and 2S F=1
1/2 states, !Ẽ , is given by

!Ẽ = 209.9779(49) − 5.2262r2
p + 0.0347r3

p meV, (1)

where rp is given in units of fm. Using this equation and the exper-
imentally measured value !Ẽ = 206.2949 meV, one can see that
the difference between the Pohl and CODATA values of the proton
radius would be removed by an increase of the first term on the
rhs of Eq. (1) by 0.31 meV = 3.1 × 10−10 MeV.

This proton radius puzzle has been attacked from many differ-
ent directions [3–21] The present communication is intended to
investigate the hypothesis that the proton polarizability contribu-

E-mail address: miller@phys.washington.edu.

Fig. 1. The box diagram for the O(α5m4) corrections. The graph in which the pho-
tons cross is also included.

tions entering in the two-photon exchange term, see Fig. 1, can
account for the 0.31 meV. This idea is worthy of consideration be-
cause the computed effect is proportional to the lepton mass to
the fourth power, and so is capable of being relevant for muonic
atoms, but irrelevant for electronic atoms.

2. !Esubt and its evaluation

The basic idea is that the two-photon exchange term depends
on the forward virtual Compton scattering amplitude T µν(ν,q2)
where q2 is the square of the four momentum, qµ of the vir-
tual photon and ν is its time component (ν ≡ q · p/M) with p as
the proton momentum and M as its mass. One uses symmetries
to decompose T µν(ν,q2), into a linear combination of two terms,
T1,2(ν,q2). The imaginary parts of T1,2(ν,q2) are related to struc-
ture functions F1,2 measured in electron– or muon–proton scat-
tering, so that T1,2 can be expressed in terms of F1.2 through
dispersion relations. However (for fixed values of q2), F1(ν,q2)
falls off too slowly for large values of ν for the dispersion relation
to converge. Hence, one makes a subtraction at ν = 0, requiring
that an additional function of q2 (the subtraction function) be in-
troduced. Because q2 < 0 for lepton–nucleon scattering, one often

0370-2693/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physletb.2012.11.016

= �(gµ⌫ � · · · )T1 + (Pµ � · · · )(Pµ � · · · )T2

Dispersion relation: Im[T1] / W1 measured

Large virtual photon energy ⌫, W1 ⇠ ⌫ integral over energy diverges

Subtraction function needed:

¯T1(0, Q2
) zero energy

Hill & Paz- big uncertainty in dispersion approach 15



Almost unknown T̄1(0, Q
2) Miller PLB 2012

�Esubt ⇠ ↵2

m
 2

S(0)

Z 1 dQ2

Q2
· · ·�Esubt ⇠ ↵2

m
 2

S(0)

Z 1 dQ2

Q2
· · ·

Recast in EFT- parameters seem natural

Soft proton

F
loop

(Q2)

Infinite F
loop

(Q2

) give 0.31 meV

satisfy all constraints

Q2

number of
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So what? MUSE expt
A Proposal for the Paul Scherrer Institute πM1 beam line

Studying the Proton “Radius” Puzzle with µp Elastic
Scattering

J. Arrington,1 F. Benmokhtar,2 E. Brash,2 K. Deiters,3 C. Djalali,4 L. El Fassi,5 E.
Fuchey,6 S. Gilad,7 R. Gilman (Contact person),5 R. Gothe,4 D. Higinbotham,8 Y.
Ilieva,4 M. Kohl,9 G. Kumbartzki,5 J. Lichtenstadt,10 N. Liyanage,11 M. Meziane,12

Z.-E. Meziani,6 K. Myers,5 C. Perdrisat,13 E. Piasetzsky (Spokesperson),10 V.
Punjabi,14 R. Ransome,5 D. Reggiani,3 A. Richter,15 G. Ron,16 A. Sarty,17

E. Schulte,6 S. Strauch,4 V. Sulkosky,7 A.S. Tadapelli,5 and L. Weinstein18

1Argonne National Lab, Argonne, IL, USA
2Christopher Newport University, Newport News, Virginia, USA

3Paul Scherrer Institut, CH-5232 Villigen, Switzerland
4University of South Carolina, Columbia, South Carolina, USA

5Rutgers University, New Brunswick, New Jersey, USA
6Temple University, Philadelphia, Pennsylvania, USA

7Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
8Jefferson Lab, Newport News, Viginia, USA

9Hampton University, Hampton, Virginia, USA
10Tel Aviv University, Tel Aviv, Israel

11University of Virginia, Charlottesville, Virginia, USA
12Duke University, Durham, North Carolina, USA

13College of William & Mary, Williamsburg, Virginia, USA
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15Technical University of Darmstadt, Darmstadt, Germany
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About 1.5 years after the radius of muonic hydrogen was found to be 5σ inconsistent with earlier
determinations from atomic hydrogen level transitions and ep elastic scattering, no resolution to
the puzzle has been found. We propose to measure µ±p scattering, which will allow a second de-
termination of the consistency of the µp interaction with the ep interaction. If the µp scattering is
consistent with muonic hydrogen measurements but inconsistent with ep scattering measurements,
the confirmation of consistency between lepton scattering and Lamb shift measurements but differ-
ences between electron- and muon-based measurements of ep and µp systems would provide strong
evidence for beyond standard model physics.

PSI proposal R-12-01.1

2 photon exchange idea is testable 

using RF time measurements. Magnet polarities can be reversed to allow the channel to transport

either positive or negative polarity particles.

B. Detector Overview

FIG. 3. A Geant4 simulation showing part of the MUSE experimental system. Here one sees the beam
going through the GEM chambers and the scattering chamber, along with the spectrometer wire chambers
and scintillator hodoscopes. The beam SciFi’s, quartz Cherenkov, and beam monitor scintillators are
missing from this view.

The ⇡M1 channel features a momentum dispersed (⇡7 cm/%) intermediate focal point (IFP)

and a small beam spot (�
x,y

< 1 cm) at the scattering target. The base line design for the MUSE

beam detectors has a collimator and a scintillating fiber detector (SciFi) at the intermediate focus.

Some of the detectors in the target region are shown in Fig. 3. After the channel and immediately

before the target there are a SciFi detector, a quartz Cherenkov detector, and a set of GEM

chambers. A high precision beam line monitor scintillator hodoscope is downstream of the target.

The IFP collimator serves to cut the ⇡M1 channel acceptance to reduce the beam flux to

manageable levels. The IFP SciFi measures the RF time, for use in determining particle type,

and measures beam particle position, to determine the particle momentum and thus the beam

momentum spectrum.

The target SciFi measures the RF time, for use in determining particle type. The quartz

14

http://www.physics.rutgers.edu/~rgilman/elasticmup/

determining the proton radius through muon scattering, with simultaneous electron scattering measurements.

e+/e� and µ+/µ�
scattering on proton

17
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muon scattering
M =M(1) +M(2)

� Normal LaTeX class.

� Easy overlays.

� No external programs needed.
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Soft proton idea
• explains muon Lamb shift

• no change to electron Lamb shift

• no hyperfine interaction

• can adjust neutron term so Deuteron is OK

• easily testable in muon-proton scattering

• easily testable in heavier muonic atoms 
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Nuclear dependence of 
short-ranged mu-p effects

• Energy shift is proportional to square of 
muon wave function at the origin

• Suppose you have effect that gives energy 
shifts Ep (on proton) En (on neutron)

7

The first example we consider is the model of Ref. [4]. To make a prediction for the nucleus, one needs to know
the contribution of the neutrons. Using the single-quark dominance idea of Sect II gives a specific result obtained
by considering the factors of the square of the quark charge that would appear in the calcuation. A proton contains
two up quarks and one down quark, with a resulting quark charge squared factor of 2(2/3)2e2 + 1(1/3)2e2 = e2 . For
a neutron one would have 1(2/3)2e2 + 2(1/3)2e2 = 2/3e2. Thus the neutron contribution would be 2/3 that of the
proton. As result, if one considers the Lamb shift in the electron-deuteron atom, the e↵ect would 5/3 as large as for
a proton. Such an e↵ect would contradict the existing good agreement between theory and experiment [11].

More generally, suppose the contribution of a proton to the Lamb shift is Ep (0.3meV) to resolve the proton radius
puzzle) and that of the neutron is En. Then for a nucleus with A nucleons and Z protons, we find

EA =

 
1 + mµ

mp

1 + mµ

Amp

!3

Z3(ZEp + NEn)

✓
1 � O(

R2
A

a2
µ

)

◆
⇡
 

1 + mµ

mp

1 + mµ

Amp

!3

Z3(ZEp + NEn), (23)

where aµ is the muon Bohr radius (>100 times larger than nuclear radius, RA). The meaning of Eq. (23) is that the
contributions of such contact interactions increase very rapidly with atomic number.

In particular, the prediction of Ref. [4](with En = 2/3Ep) for 4He is a Lamb shift that is (1.27) 8 (2)5/3⇡ 10 meV,
a huge number. The expression Eq. (23) applies to all models in which the contribution to the Lamb shift enters
as a delta function (or of very short range) in the lepton-nucleon coordinate, including [9, 10]. In Ref. [9], which
concerns polarizability corrections, the neutron contribution, En could vanish, so that the contribution for 4He would
be 20 Ep=6 meV. In Ref. [10], which concerns a gravitational e↵ect, En = Ep, so the prediction for 4He would be
40Ep=12 meV. These various predictions will be tested in an upcoming experiment [12]. It is also worth mentioning
the MUon proton Scattering Experiment (MUSE) [13], a simultaneous measurement of µ+ p and e+ p scattering and
also a simultaneous measurement of µ� p and e� p scattering that is particularly sensitive to the presence of contact
interactions [9] .

VII. SUMMARY

The work presented here supports the idea of the existence of a non-perturbative lepton-pair content of the proton.
Such components are not forbidden by any symmetry principle and therefore must appear. However, the presented
calculations show that such a content is not a candidate to explain the proton radius puzzle. This is because
computation of the necessary loop e↵ects is cannot yield an e↵ective Hamiltonian of the strength and form of Eq. (2).
The 1/m2

l behavior of that equation in Ref. [4] is necessary to obtain the needed magnitude of the separate electron
and muon Lamb shifts. Instead, loop calculations are expected to lead to a a dependence of 1/m2, with m the
constituent quark mass. This means that the e↵ect of Ref. [4] is expected to be entirely negligible. This is in accord
with the estimate: (↵/⇡) times the polarizability correction that is obtained from evaluating the relevant Feynman
diagrams.

More generally: it can be said that the proton does have Fock -space components containing lepton pairs. However,
the simplest and most reliable method of treating such pairs is to compute gauge-invariant sets of Feynman diagrams
using QED perturbation theory.
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Two photon effect is 
not zero

• Doesn’t explain proton radius puzzle but

• largest source of uncertainty in the analysis 
of muonic-atom experiments

• MUSE experiment!

21



Possible resolutions
• QED bound-state calculations not accurate-

very unlikely- this includes recoil effects

• Electron experiments not so  accurate    

• Strong interaction effect in two photon 
exchange diagram-my work- soft proton

• More e+e- pairs than μ+ μ- pairs in the proton

• Muon interacts differently than electron!-new 
particles, gravity, non-commutative geometry
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Another muon opportunity-anomalous moment
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1. INTRODUCTION

One of the great successes of the Dirac equation (1) was its prediction that the
magnetic dipole moment, µ⃗, of a spin |s⃗| = 1/2 particle such as the electron (or
muon) is given by

µ⃗l = gl
e

2ml
s⃗, l = e, µ . . . , 1.

with gyromagnetic ratio gl = 2, a value already implied by early atomic spec-
troscopy. Later it was realized that a relativistic quantum field theory such as
quantum electrodynamics (QED) can give rise via quantum fluctuations to a shift
in gl ,

al ≡ gl − 2
2

, 2.

called the magnetic anomaly. In a now classic QED calculation, Schwinger (2)
found the leading (one-loop) effect (Figure 1),

al = α

2π
≃ 0.00116

α ≡ e2

4π
≃ 1/137.036. 3.

This agreed beautifully with experiment (3), thereby providing strong confidence
in the validity of perturbative QED. Today, we continue the tradition of testing QED
and its SU(3)C× SU(2)L× U(1)Y standard-model (SM) extension (which includes
strong and electroweak interactions) by measuring aexp

l for the electron and muon
ever more precisely and comparing these measurements with aSM

l expectations,
calculated to much higher order in perturbation theory. Such comparisons test

Figure 1 The first-order
QED correction to g-2 of the
muon.
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p(1.88MeV) +19 F ! ↵+16 O⇤(6.05)
16O⇤(6.05) !16 O(GS) + �

Kohler et al PRL 33, 1628 (1974)   

c

Freedman et al. PRL 52, 240 (1984)   

p+3 H !4 He(20.1) ! 4He(GS) + �

Looking for new scalars is not new
Low mass  Higgs  searches 

25

No Scalars found, but assumed coupling constants were
much larger than what we will use



Lepton-universality violating one boson 
exchange 

• Tucker-Smith & Yavin PRD83, 101702 new particle scalar 
or vector coupling

• Brax & Burrage scalar particles PRD 83, 035020 &’14

• Batell, McKeen & Pospelov PRL 107, 011803 new gauge 
boson kinetically mixing with Fμν plus scalar for muon 
mag. mom.

• Carlson Rislow PRD 86, 035013 fine tune scalar 
pseudoscalar or polar and axial vector couplings

• Barger et al PRL106,153001 - new particles ruled out 
but assumes universal coupling 

• Kaon decays provide constraints  

1401.6154 W decays enhanced

26



New scalar bosons must
• give  μ-p Lamb shift

• almost no hyperfine in μ proton

• small effect for D,  almost no effect 4He

• consistent with g-2 of  μ and electron

• many other constraints

• be found

�

Electrophobic Scalar Boson and Muonic Puzzles

Yu-Sheng Liu,* David McKeen,† and Gerald A. Miller‡

Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
(Received 24 May 2016; published 2 September 2016)

A new scalar boson which couples to the muon and proton can simultaneously solve the proton radius
puzzle and the muon anomalous magnetic moment discrepancy. Using a variety of measurements, we
constrain the mass of this scalar and its couplings to the electron, muon, neutron, and proton. Making no
assumptions about the underlying model, these constraints and the requirement that it solve both problems
limit the mass of the scalar to between about 100 keVand 100 MeV. We identify two unexplored regions in
the coupling constant-mass plane. Potential future experiments and their implications for theories with
mass-weighted lepton couplings are discussed.

DOI: 10.1103/PhysRevLett.117.101801

Recent measurements of the proton charge radius using
the Lamb shift in muonic hydrogen are troublingly dis-
crepant with values extracted from hydrogen spectroscopy
and electron-proton scattering. The value from muonic
hydrogen is 0.84087(39) fm [1,2] while the CODATA
average of data from hydrogen spectroscopy and e-p
scattering yields 0.8751(61) fm [3]; these differ at more
than 5σ. Although the discrepancy may arise from subtle
lepton-nucleon nonperturbative effects within the standard
model or experimental uncertainties [4,5], it could also be a
signal of new physics involving a violation of lepton
universality.
The muon anomalous magnetic moment provides

another potential signal of new physics. The BNL [6]
measurement differs from the standard model prediction
by at least 3 standard deviations, Δaμ ¼ aexpμ − athμ ¼
287ð80Þ × 10−11 [7,8].
A new scalar boson ϕ that couples to the muon and

proton could explain both the proton radius and ðg − 2Þμ
puzzles [9]. We investigate the couplings of this boson to
standard model fermions f, which appear as terms in the
Lagrangian, L ⊃ eϵfϕf̄f, where ϵf ¼ gf=e and e is the
electric charge of the proton. Other authors have pursued
this idea, but made further assumptions relating the
couplings to different species; e.g., in Ref. [9] ϵp is taken
equal to ϵμ and in Ref. [10], mass-weighted couplings are
assumed. References [9] and [10] both neglect ϵn. We make
no a priori assumptions regarding signs or magnitudes of
the coupling constants. The Lamb shift in muonic hydrogen
fixes ϵμ and ϵp to have the same sign which we take to be
positive. ϵe and ϵn are allowed to have either sign.
We focus on the scalar boson possibility because scalar

exchange produces no hyperfine interaction, in accord with
observation [1,2]. The emission of possible new vector
particles becomes copious at high energies, and in the
absence of an ultraviolet completion, is ruled out [11].
Scalar boson exchange can account for both the proton

radius puzzle and the ðg − 2Þμ discrepancy [9]. The shift of

the lepton ðl ¼ μ; eÞ muon’s magnetic moment due to
one-loop ϕ exchange is given by [12]

Δal ¼ αϵ2l
2π

Z
1

0
dz

ð1 − zÞ2ð1þ zÞ
ð1 − zÞ2 þ ðmϕ=mlÞ2z

: ð1Þ

Scalar exchange between fermions f1 and f2 leads to a
Yukawa potential, VðrÞ ¼ −ϵf1ϵf2αe

−mϕr=r. In atomic
systems, this leads to an additional contribution to the
Lamb shift in the 2S-2P transition. For an atom of A and
Z this shift is given by [13]

δElN
L ¼ −

α
2alN

ϵl½Zϵp þ ðA − ZÞϵn&fðalNmϕÞ; ð2Þ

where fðxÞ ¼ x2=ð1þ xÞ4 [9,14], with alN ¼ ðZαmlNÞ−1
the Bohr radius and mlN the reduced mass of the lepton-
nucleus system. Throughout this Letter we set

Δaμ ¼ 287ð80Þ × 10−11; δEμH
L ¼ −0.307ð56Þ meV

ð3Þ

within 2 standard deviations. This value of δEμH
L is equal

to the energy shift caused by using the different values of
the proton radius [1–3,15]. Using Eq. (3) allows us to
determine both ϵp and ϵμ as functions of mϕ. The
unshaded regions in Figs. 1 and 3 show the values of
ϵp and ϵμ, as functions of the scalar’s mass, which lead to
the values of Δaμ and δEμH

L in Eq. (3).
We study several observables sensitive to the couplings

of the scalar to neutrons ϵn and protons ϵp to obtain new
bounds on mϕ.
(i) Low energy scattering of neutrons on 208Pb has been

used to constrain light force carriers coupled to nucleons
[16], assuming a coupling of a scalar to nucleons of gN .
Using the replacement

PRL 117, 101801 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

2 SEPTEMBER 2016

0031-9007=16=117(10)=101801(6) 101801-1 © 2016 American Physical Society
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Our approach

• Exchange of �, accounts proton radius and (g � 2)µ

• L � e✏f� ¯ff , ✏f = gf/e and e is the electric charge of the proton.

• TuckerSmith, Izaguirre et al. made assumptions on coupling constants

• We make no assumptions re signs, magnitudes of coupling constants.

• The Lamb shift in muonic hydrogen fixes ✏µ✏p > 0 each > 0

• ✏e and ✏n are allowed to have either sign.
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�a` =
↵✏2`
2⇡

Z 1

0
dz

(1� z)2(1 + z)

(1� z)2 + (m�/m`)2z
.

�aµ = 287(80)⇥ 10

�11, �ae = 1.5⇥ 10

�12
From

87Rb

�
V (r) = �✏f1✏f2↵

e�m�r

r .

�E`N
L = � ↵

2a`N
✏`[Z✏p + (A� Z)✏n]

(a`Nm�)2

(1 + (a`Nm�))4

Bohr radius

|✏e| ⌧ ✏µ

�EµH
L = �0.307(56) meV

 g-2
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Unshaded allowed by
muon g-2 and muon-p

Lamb shift

Unshaded allowed by
muon g-2
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Nuclear Physics constraints 

• Low energy scattering of neutrons on

208
Pb using �-nucleon coupling gN .

g2
N
e2 ! A�Z

A ✏2n +

Z
A✏p✏n cancellation evades previous limits

• NN charge-independence breaking scattering length

�a = (app + ann)/2� anp, measured: 5.64(60) fm, theory: 5.6(5)

Scalar boson exchange: �a� /
R1
0 �V ūunpdr  1.6 fm (2 S.D.)

• Change in binding energy/A infinite nuclear matter: less than 1 MeV

• binding energy B(

3He)�B(

3H)= 763.76 keV due to Coulomb (693 keV)

+ strong force charge symmetry breaking (68 keV) � exchange < 30 keV

✏n/✏p

31



Muonic D, 3,4He

There is a (smaller) effect in the neutron as well

�EµD
L = �0.438(59) meV compared with 0.307 in proton

3,4He data are coming, providing additional constraints
µ4He, preliminary radii muonic Lamb shift, + elastic electron scattering,

! �Eµ4He
L ⇡ �1.4(1.5) meV

10-1 1 10 102
-2

-1

0
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ϵ n
/ϵ
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δELμ
4He+

δELμD
NN

n-208Pb
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Coupling to electron ✏e
�aµ = 287(80)⇥ 10

�11, �ae = 1.5⇥ 10

�12
From

87Rb

Anomalous magnetic moment

e+ e+

e� e�

e+e� resonant (?) scattering Tsertos et al PRD 40, 
1397

claim experimental 
sensitivity

of 0.5 b eV/sr

not seen
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e
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e
-
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Hydrogen atom Lamb shift �EH
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BD is beam dump
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Beam dump experiments
Beam dumps absorb beam of charged particles

e+27Al to dissipate energy
e+27Al  makes penetrating particles

�
e+

e-

?

1

?

1

�

Validity of the Weizsäcker-Williams approximation and the analysis
of beam dump experiments: Production of a new scalar boson

Yu-Sheng Liu,* David McKeen,† and Gerald A. Miller‡

Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
(Received 15 October 2016; published 14 February 2017)

Beam dump experiments have been used to search for new particles with null results interpreted in terms
of limits on masses mϕ and coupling constants ϵ. However these limits have been obtained by using
approximations [including the Weizsäcker-Williams (WW) approximation] or Monte-Carlo simulations.
We display methods, using a new scalar boson as an example, to obtain the cross section and the resulting
particle production numbers without using approximations or Monte-Carlo simulations. We show that the
approximations cannot be used to obtain accurate values of cross sections. The corresponding exclusion
plots differ by substantial amounts when seen on a linear scale. In the event of a discovery, we generate
pseudodata (assuming given values of mϕ and ϵ) in the currently allowed regions of parameter space. The
use of approximations to analyze the pseudodata for the future experiments is shown to lead to considerable
errors in determining the parameters. Furthermore, a new region of parameter space can be explored
without using one of the common approximations, mϕ ≫ me. Our method can be used as a consistency
check for Monte-Carlo simulations.

DOI: 10.1103/PhysRevD.95.036010

I. INTRODUCTION

Beam dump experiments have been aimed at searching
for new particles, such as dark photons and axions (see, e.g.
[1] and references therein) that decay to lepton and/or
photon pairs. Electron beam dumps in particular have
received a large amount of theoretical attention in recent
years [2,3]. The typical setup of an electron beam dump
experiment is to dump an electron beam into a target, in
which the electrons are stopped (For a discussion of proton
beam dumps, which is beyond the scope of this work, see,
e.g. [4,5]). The new particles produced by the bremsstrah-
lung-like process pass through a shield region and decay.
These new particles can be detected by their decay
products, electron and/or photon pairs, measured by the
detector downstream of the decay region. Previous work
simplified the necessary phase space integral by using the
Weizsäcker-Williams (WW) approximation [6,7] which,
also known as method of virtual quanta, is a semiclassical
approximation. The idea is that the electromagnetic field
generated by a fast moving charged particle is nearly
transverse which is like a plane wave and can be approxi-
mated by real photon. The use of the WWapproximation in
bremsstrahlung processes was developed in Refs. [8,9] and
applied to beam dump experiments in Refs. [2,10]. The
WW approximation simplifies evaluation of the integral
over phase space and approximates the 2 particle to 3
particle (2 to 3) cross section in terms of a 2 particle to 2
particle (2 to 2) cross section. For theWWapproximation to

work in a beam dump experiment, it needs the incoming
beam energy to be much greater than the mass of the new
particle, mϕ, and electron mass me.
The previous work [2] used the following three

approximations:
(1) WW approximation;
(2) a further simplification of the phase space integral,

see Eq. (31);
(3) mϕ ≫ me.

The combination of the first two approximations has been
denoted [8] the improved WW (IWW) approximation. The
name “improved WW” might be somewhat misleading
since the procedure reduces the computational time but not
to improve accuracy). In this paper, we will focus on
examining the validity of WW and IWW approximations
(The validity of WW approximation is also discussed in
other processes, e.g. [11]). The third approximation used to
simplify the calculation of amplitude, however, is not in our
scope because it is merely a special case by cutting off our
results when mϕ ≲ 2me. Nevertheless, we should point out
that without using the third approximation we can use beam
dump experiments to explore a larger parameter space.
As an example, we use the beam dump experiment E137

[12] and the production of a new scalar boson, which we
denote ϕ. Interest in a new scalar boson arose recently
because such particle which couples to standard model
fermions can solve the proton radius puzzle and muonic
anomalous magnetic moment discrepancy simultaneously
[13,14]. However, the techniques we introduce can be used
for the production and possible detection of other particles.
The outline of this paper is as follows. In Sec. II, we

calculate the squared amplitude for 2 to 3 and 2 to 2

*mestelqure@gmail.com
†dmckeen@pitt.edu
‡miller@phys.washington.edu
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processes. In Sec. III, the cross sections for the 2 to 3 and 2
to 2 processes are calculated in the lab frame without any
approximation. In Sec. IV, we introduce the WW approxi-
mation. In Sec. V, we derive and compare the cross sections
with and without approximations. In Sec. VI, we compare
the number of new particles produced in beam dump
experiments with and without approximations. In
Sec. VII, we assume that this new scalar boson is observed
and measured in beam dump experiment, determine the
mass and coupling constant, and compare the results with
and without approximations. A discussion is presented in
Sec. VIII.

II. DYNAMICS—A NEW SCALAR BOSON
AS AN EXAMPLE

For simplicity, we assume that the new scalar boson ϕ
only couples to electron by a Yukawa interaction, i.e. the
scalar boson does not couple to other standard model
fermions other than electron. The Lagrangian in the mostly-
plus metric is

L ⊃ −
1

2
ð∂ϕÞ2 − 1

2
m2

ϕϕ
2 þ eϵϕψ̄ψ ð1Þ

where ϵ ¼ g=e, e is the electric charge, and ψ is the electron
field. Once the scalar boson is produced, it will decay to
photons pairs through the electron loop,

Γϕ→γγ ¼ ϵ2
α3

4π2
m3

ϕ

m2
e
f
!
m2

ϕ

4m2
e

"
; ð2Þ

where me is the electron mass and fðτÞ ¼
1
4τ2 j1þ ð1 − 1

τÞðsin
−1 ffiffiffi

τ
p

Þ2j2. If mϕ > 2me, the scalar boson
can also decay to electron pairs,

Γϕ→eþe− ¼ ϵ2
α
2
mϕ

!
1 −

4m2
e

m2
ϕ

"
3=2

: ð3Þ

A. 2 to 3 production

The leading production process is the bremsstrahlung-
like radiation of the scalar from the electron, shown in
Fig. 1,

eðpÞ þ AðPiÞ → eðp0Þ þ AðPfÞ þ ϕðkÞ ð4Þ

where e, A, and ϕ stand for electron, target atom, and the
new scalar boson, respectively. We define the following
quantities using the mostly-plus metric

~s ¼ −ðp0 þ kÞ2 −m2
e ¼ −2p0 · kþm2

ϕ

~u ¼ −ðp − kÞ2 −m2
e ¼ 2p · kþm2

ϕ

t2 ¼ −ðp0 − pÞ2 ¼ 2p0 · pþ 2m2
e

q ¼ Pi − Pf

t ¼ q2 ð5Þ

which satisfy

~sþ t2 þ ~uþ t ¼ m2
ϕ: ð6Þ

For definiteness, we assume the atom is a scalar boson
(its spin is not consequential here) so that the Feynman rule
for the photon-atom vertex is

ieFðq2ÞðPi þ PfÞμ ≡ ieFðq2ÞPμ ð7Þ

where Fðq2Þ is the form factor which accounts for the
nuclear form factor [15] and the atomic form factor [16].
Here, we only include the elastic form factor since the
contribution of the inelastic one is much smaller and can be
neglected in computing the cross section. The amplitude of
the process in Fig. 1 is

M2→3 ¼ e2g
Fðq2Þ
q2

ūp0;s0

×
$
P
−ðp − kÞ þme

− ~u
þ −ðp0 þ kÞ þme

−~s
P
%
up;s

ð8Þ

where up;s is the electron spinor; s and s0 are equal to %1.
After averaging and summing over initial and final spins,
we have

jM2~3j2 ¼
!
1

2

X

s

"X

s0
jM2→3j2¼ e4g2

Fðq2Þ2

q4
A2→3 ð9Þ

where

FIG. 1. Lowest order 2 to 3 production process:
eðpÞ þ AðPiÞ → eðp0Þ þ AðPfÞ þ ϕðkÞ. A, γ, e, and ϕ stand
for the target atom, photon, electron, and the new scalar boson.
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• previous cross sections obtained w. WW approximation

• cross sections not accurate 

• exclusion plots changed substantially

• if discovery, WW gives wrong parameters

• not necessary to assume mass of new particle is much 
much greater than mass of electron
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Beam dump experiments have been used to search for new particles with null results interpreted in terms
of limits on masses mϕ and coupling constants ϵ. However these limits have been obtained by using
approximations [including the Weizsäcker-Williams (WW) approximation] or Monte-Carlo simulations.
We display methods, using a new scalar boson as an example, to obtain the cross section and the resulting
particle production numbers without using approximations or Monte-Carlo simulations. We show that the
approximations cannot be used to obtain accurate values of cross sections. The corresponding exclusion
plots differ by substantial amounts when seen on a linear scale. In the event of a discovery, we generate
pseudodata (assuming given values of mϕ and ϵ) in the currently allowed regions of parameter space. The
use of approximations to analyze the pseudodata for the future experiments is shown to lead to considerable
errors in determining the parameters. Furthermore, a new region of parameter space can be explored
without using one of the common approximations, mϕ ≫ me. Our method can be used as a consistency
check for Monte-Carlo simulations.
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I. INTRODUCTION

Beam dump experiments have been aimed at searching
for new particles, such as dark photons and axions (see, e.g.
[1] and references therein) that decay to lepton and/or
photon pairs. Electron beam dumps in particular have
received a large amount of theoretical attention in recent
years [2,3]. The typical setup of an electron beam dump
experiment is to dump an electron beam into a target, in
which the electrons are stopped (For a discussion of proton
beam dumps, which is beyond the scope of this work, see,
e.g. [4,5]). The new particles produced by the bremsstrah-
lung-like process pass through a shield region and decay.
These new particles can be detected by their decay
products, electron and/or photon pairs, measured by the
detector downstream of the decay region. Previous work
simplified the necessary phase space integral by using the
Weizsäcker-Williams (WW) approximation [6,7] which,
also known as method of virtual quanta, is a semiclassical
approximation. The idea is that the electromagnetic field
generated by a fast moving charged particle is nearly
transverse which is like a plane wave and can be approxi-
mated by real photon. The use of the WWapproximation in
bremsstrahlung processes was developed in Refs. [8,9] and
applied to beam dump experiments in Refs. [2,10]. The
WW approximation simplifies evaluation of the integral
over phase space and approximates the 2 particle to 3
particle (2 to 3) cross section in terms of a 2 particle to 2
particle (2 to 2) cross section. For theWWapproximation to

work in a beam dump experiment, it needs the incoming
beam energy to be much greater than the mass of the new
particle, mϕ, and electron mass me.
The previous work [2] used the following three

approximations:
(1) WW approximation;
(2) a further simplification of the phase space integral,

see Eq. (31);
(3) mϕ ≫ me.

The combination of the first two approximations has been
denoted [8] the improved WW (IWW) approximation. The
name “improved WW” might be somewhat misleading
since the procedure reduces the computational time but not
to improve accuracy). In this paper, we will focus on
examining the validity of WW and IWW approximations
(The validity of WW approximation is also discussed in
other processes, e.g. [11]). The third approximation used to
simplify the calculation of amplitude, however, is not in our
scope because it is merely a special case by cutting off our
results when mϕ ≲ 2me. Nevertheless, we should point out
that without using the third approximation we can use beam
dump experiments to explore a larger parameter space.
As an example, we use the beam dump experiment E137

[12] and the production of a new scalar boson, which we
denote ϕ. Interest in a new scalar boson arose recently
because such particle which couples to standard model
fermions can solve the proton radius puzzle and muonic
anomalous magnetic moment discrepancy simultaneously
[13,14]. However, the techniques we introduce can be used
for the production and possible detection of other particles.
The outline of this paper is as follows. In Sec. II, we

calculate the squared amplitude for 2 to 3 and 2 to 2

*mestelqure@gmail.com
†dmckeen@pitt.edu
‡miller@phys.washington.edu

PHYSICAL REVIEW D 95, 036010 (2017)

2470-0010=2017=95(3)=036010(11) 036010-1 © 2017 American Physical Society

We increase the incoming beam luminosities by 36, 36, and 137 times (increasing the total number of electrons 
dumped into the target), so that the expected total number of events is around 100, 100, and 400. We assume that the 
resolution of the detector is 1 GeV (which means that there are 18 bins) and generate the “observed” number of 
events using a Poisson distribution with the mean value from the complete calculation for each bin. Finally, we can fit 
the “observed” data with the calculation with no, WW, and IWW approximation 

Generate pseudo data -E137 set up

36



Pseudodata
luminosity of E137 increased by 36 

absorption process is the same as Eq. (15) but differs by a
factor 2 from summing over final state instead of averaging
over initial state in Eq. (14)

A2→2
abs ¼ 2A2→2: ð37Þ

The cross section of the process (34) is

dσ
dΩ

¼ 1

64π2me

jqj
jkj

jM2~2
absj2

Ek þme − jkj cos θγ
ð38Þ

σabs ¼
πϵ2α2

mejkj

Z
1

−1
d cos θγ

jqjA2→2

Ek þme − jkj cos θγ
; ð39Þ

where θγ is the angle between outgoing photon and
incoming new particle. The new particle, after produced,
must not be absorbed by the target and shield to be
detected. If the target is thick (much greater than absorption
length), the production rate will be approximately propor-
tional to the probability e−Lsh=λ.

The number of the new particles produced in terms of the
cross section (without considering the absorption process)
can be found in, e.g., Refs. [2,3,10]. Using the thick target
approximation and including the absorption process, we
find

Nϕ ≈
NeX
M

Z
E0

Emin

dE
Z

xmax

xmin

dx
Z

T

0
dtIeðE0; E; tÞ

×
dσ
dx

e
−Lshð 1

lϕ
þ1

λÞð1 − e−Ldec=lϕÞ; ð40Þ

where M is the mass of the target atom (aluminium); Ne is
the number of incident electrons; X is the unit radiation
length of the target; E0 is the incoming electron beam
energy, Emin ¼ me þmaxðmϕ; EcutÞ and xmin ¼

maxðmϕ;EcutÞ
E

where Ecut is the measured energy cutoff depending on the
detectors; xmax, which is smaller but very close to 1 (xmax
can be approximated to be 1 − me

E if the new particle and
electron initial and final state are collinear); T ¼ ρLsh=X
where ρ is the density of the target; lϕ is the decay length of
the new particle in lab frame; λ is the absorption length of

FIG. 5. Assuming the scalar boson exists with ðmϕ; ϵÞ ¼ ð110 MeV; 10−7Þ and is observed in E137 with 36 times luminosity. (a) The
number of events distribution with respect to the energy of the scalar boson: the thin red line is obtained by the complete calculation (no
approximation), and the thick black lines is the “data” generated by Poisson distribution with mean value given by the complete
calculation. (b) The best fit point, 1σ range, and 2σ range with no, WW, and IWWapproximation: the star is the “true” value; the circle,
triangle, and squares are the best fit parameters with no, WW, and IWW approximation, respectively; the black, dashed red, and dotted
blue inner (outer) loop correspond to the 1σ (2σ) range with no, WW, and IWW approximation, respectively; the shaded area is the
excluded region with no approximation from Fig. 4. The top and bottom rows correspond to the results of two separate
pseudoexperiments.
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Exclusion plot

10-1 1 10 102
10-8

10-6

10-4

10-2

mϕ (MeV)

|ϵ
e
|

B

A
E141

Orsay

E137

scalar

δELH
e
+
e
-

Δae

B.D.

Izaguirre
et al

 PLB740
61

                 allowed mass range

APEX
HPS

DarkLight
VEPP-3
MESA

38



Parameter space

1. ✏p 6= ✏n ! widens m� to between 130 keV to 73 MeV

2. ✏n 6= 0: ✏n✏p < 0 opens up the parameter space.

3. electron beam dump experiments ! constraint on ✏e at m� = 1 MeV

improved by two orders of magnitude

4. Near maximum allowed m� ⇠ 70 MeV,

|✏e| < 1.8⇥ 10

�3
; 10

�3 < ✏µ < 2⇥ 10

�3
; ✏p . 0.4; �0.3 . ✏p . 0,

large, testable
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MUSE and scalar

• No scattering experiment can detect a coupling 
this weak

• If this scalar exists  (and other experiments 
correct) MUSE will find  electrons/positrons  see 
the same large radius and

• muons and anti-muons will see the same large 
radius 

V�(r) = �1.7⇥ 10�6 ↵
e�m� r

r

40



Other possible experiments
• pp ! pp+ �

• muon beam dump experiments

• proton beam dump experiments

• improved muon g-2

41



Summary

• If all of the experiments, and their analyses,  
are correct a new scalar boson of mass  
must exist

• Direct detection is needed.

Does 4%  matter?
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Summary

• If all of the experiments, and their analyses,  
are correct a new scalar boson of mass  
must exist

• Direct detection is needed.

Does 4%  matter? YYes
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Spares follow



Does 4%  matter?



Does 4%  matter?
YES
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� couplings to µ, p greater than to e, n� couplings to µ, p greater than to e, n

than the corresponding shift in the !-p system [5]. If the
force is attractive in both systems, the apparent proton-
radius will always appear smaller in the e-p system, con-
trary to observations. An attractive force must therefore
couple more strongly to muons than to electrons if it is to
explain the discrepancy in the proton-radius determination.

A different possibility is that ge is not suppressed rela-
tive to g!, but the force is repulsive, leading to a larger
apparent proton-radius in the e-p system. This possibility
is consistent with the ðg" 2Þe constraint discussed in the
next section. However, since the effects of such a light
force are suppressed at higher momentum transfer, this
possibility seems in tension with the value of the proton-
radius extracted from scattering data which generally also
imply a larger proton-radius [6]. Therefore, for the purpose
of this paper, we concentrate on the possibility that it is a
new attractive force that modifies the !-p system.

III. CONTRIBUTIONS TO ðg" 2Þe;!
The scalar and vector-boson contributions to the elec-

tron and muon anomalous magnetic moments are [7,8],

!al ¼
"

2#

!
g!
e

"
2
$ðm%=mlÞ; (4)

where ml is the mass of the electron or muon, and

$ðxÞscalar ¼
Z 1

0

ð1" zÞ2ð1þ zÞ
ð1" zÞ2 þ x2z

dz (5)

$ðxÞvector ¼
Z 1

0

2zð1" zÞ2
ð1" zÞ2 þ x2z

dz: (6)

For ml & m% we have the asymptotic behaviors
$scalar ! 3=2 and $vector ! 1.

We begin with the electron system. As emphasized in
Ref. [9], the ðg" 2Þe measurement is currently used to
define the fine-structure constant ". The additional contri-
bution to ðg" 2Þe therefore acts as a shift of the fine-
structure constant as !" ¼ 2#!ae. Comparing this
correction to measurements made in Rb and Cs atoms
[10,11], the shift in " must not exceed 15 ppb, which
constrains the coupling to electrons as [9]

!
ge
e

"
2
$ðm%=mlÞ< 15' 10"9: (7)

For m% ( MeV, this constraint translates to ge=e & 2:3'
10"4 and ge=e & 4:0' 10"4 for scalar and vector media-
tors, respectively. The constraint is weakened for larger
values of m%. A similar analysis and limit were recently
presented in Ref. [12].

More important for the purpose of a direct comparison
with the Lamb shift in the !-p system is the constraint
coming from measurement of ðg" 2Þ! [13]. At present,
the theoretical prediction for ath! seems to indicate a deficit
of 302ð88Þ ' 10"11 compared with the experimental value

aexp! [14]. For a given massm%, we can extract the values of
g! that bring the theoretical and experimental values of
ðg" 2Þ! into agreement. In fact, these values are insensi-
tive to m% provided m% ) m! is satisfied, giving g!=e (
1:6' 10"3 for a vector and g!=e ( 1:3' 10"3 for a
scalar. In Fig. 1, we plot the 2S1=2-2P3=2 energy-shift,
Eq. (2), against the mass of the mediator, m%, fixing the
coupling to muons in this way. For the purpose of the plot,
we take gp ¼ g!, but the result for other choices is easily
obtained, as the energy-shift is proportional to gp.
As the plot indicates, a new force with a mass ( MeV

and a coupling to muons that explains the discrepancy in
the muon anomalous magnetic moment can also give the
required energy-shift in muonic hydrogen to reconcile the
proton-radius extracted from this system with the one
extracted from hydrogen and electron-proton scattering.
The mediator mass that gives the maximum energy-shift
is near an MeV because it is essentially determined by the
Bohr radius of the !-p system, a"1

! ¼ 0:69 MeV. The
choice gp ( g! favors m% ( MeV, but a different mass
can be accommodated by increasing gp accordingly.
For m% & MeV (m% ) MeV), the required coupling
becomes large and scales as m2

% (m"2
% ).

For m% ( MeV, the coupling to muons necessary to
explain both discrepancies turns out to be close to the
muon mass divided by the electroweak scale, m!=v ¼
4:3' 10"4. A Higgs-like coupling proportional to the
mass would resolve any tension with the constraint from
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FIG. 1 (color online). The contribution to the energy-shift in
muonic hydrogen, Eq. (2), plotted against the mass of the
mediator. In the central solid-blue curve, we require the coupling
to the muon, g!, to be such that the scalar contribution to

ðg" 2Þ! equals the theoretical deficit. In the upper/lower

solid-blue curve, the scalar contribution to ðg" 2Þ! is deter-

mined to be*1 s:d. away from the theoretical deficit. The vector
case is similarly given by the dashed-red curves. The coupling
to the proton is fixed at gp ¼ g!. The solid horizontal line

is the discrepancy between the experimentally measured value of
the energy and the theoretical prediction assuming the CODATA
value [2] for the proton-radius, rp ¼ 0:8768 fm. The dotted
horizontal lines represent the *1 s:d. uncertainty about this
value.
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Solid is scalar
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central curve gives
g-2 of muon

V�(r) = �1.7⇥ 10�6 ↵
e�m� r
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IV. CONSTRAINTS

The most model-independent constraint on an MeV-
scale interaction between muons and protons comes from
measurements of the 3d

5/2-2p3/2 transitions in 24Mg
and 28Si [12]. A weighted-average between the re-
sults from 24Mg and 28Si was used to obtain the limit,
(�exp � �QED) /�QED = (�0.2 ± 3.1) ⇥ 10�6. For
m� ⇡ MeV this translates to a 95% CL limit gpgµ/e2 <

3.1⇥10�6, assuming coupling only to protons. This mea-
surement therefore allows the couplings necessary to ex-
plain the muonic hydrogen and (g � 2)µ discrepancies.
Mild tension does arise if one assumes that the new force
carrier also couples to neutrons since the bound improves
by a factor of 2. However, as we now discuss, such a
coupling to the neutron is much better constrained by
neutron scattering experiments.

A new force carrier with an MeV mass that couples
to neutrons produces sizable corrections to the scatter-
ing cross-section of neutrons on heavy nuclei. This was
first realized by Barbieri and Ericson [13] who used the
results of an old experiment [14] on the polarizability
of the neutron to set a limit on any additional force car-
rier that interferes with the strong interaction amplitude.
They showed that such a force will contribute to the an-
gular dependence of the di↵erential cross-section in a dis-
tinct manner as compared with the contribution from the
strong interactions. Assuming that the new force couples
equally to both protons and neutrons, the bound on the
nucleon coupling is

gn . 2⇥ 10�5 (m�/ MeV)2 . (8)

This is about an order of magnitude smaller than the nec-
essary coupling to muons and protons discussed above.
A more recent analysis arrived at a similar result [15, 16]
although the claimed precision of that experiment was
later questioned (see Ref. [17] and references therein).

The bound in Eq. (8) arises from an interference term
between the strong amplitude and the amplitude due to
the new force. As such, it may be susceptible to can-
cellations involving other parts of the amplitude, and it
also depends on the relative phase of the strong and new-
physics amplitudes. Nevertheless, the constraint is suf-
ficiently strong to disfavor gn ⇡ gp. The bound on the
neutron coupling would have to be invalidated by more
than an order of magnitude to allow for a simultaneous
explanation of (g� 2)µ and the muonic hydrogen results
while requiring gn ⇡ gp, a possibility which we therefore
eschew in this letter.

There are several other constraints on such a light bo-
son, but they all involve further assumptions about its
couplings to matter. Refs. [18, 19] use 16O and 4He atoms
to search for 0+ ! 0+ + � transitions to constrain light
bosons with Higgs-like couplings. These bounds are not
very useful for m� ⇡ MeV and in any case depend sen-
sitively on the decay properties of �. For example, the
bounds do not apply if � decays promptly, or if � is too
light to decay into an electron-positron pair. Ref. [20]
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FIG. 2: The contribution to the 2S-2P energy splitting in
muonic helium, Eq. (9), plotted against the mediator’s mass.
The curve is normalized to �EµH = �0.31 meV, which is
the discrepancy between the experimentally measured value
and the theoretical prediction, assuming the CODATA value
for the proton-radius, rp = 0.8768 fm. The dotted curves
represent the ±1 s.d. uncertainty about this value.

has searched for a light boson emitted in the scattering
of electrons against the nucleus. It sets a strong bound
on the coupling to the electron for masses in the range
1.2 < m� < 52 MeV. However, it too relies on the �

lifetime being in a certain range. Ref. [21] sets a very
strong limit on the decay ⇡

+ ! e

+

⌫e(� ! e

+

e

�) and
excludes masses in the range 10 < m� < 110 MeV, but
again relies on the coupling to electrons. Finally, we note
that any coupling to neutrinos must also be strongly sup-
pressed as such an interaction will strongly a↵ect the well
measured interactions of neutrinos with matter.

V. CONTRIBUTIONS TO ENERGY SHIFTS IN
OTHER MUONIC SYSTEMS

We now move on to discuss predictions concerning
other muonic systems such as muonic deuterium and he-
lium, and true muonium. Neglecting any possible cou-
pling to the neutrons, the energy shift in the 2S-2P tran-
sition due to the new force is given by a simple gener-
alization of Eq. (2). Accounting for the change in the
reduced mass and the atomic number, it can be written
in terms of the contribution to the energy shift in muonic
hydrogen,

�E

(µN)

� = Z

f(aµNm�)

f(aµHm�)

 
a

3

µH

a

3

µN

!
�E

(µH)

� (9)

where N stands for the di↵erent possible nuclei (deu-
terium, helium, and etc.) and Z is the atomic number.
The most straightforward prediction is that, more or

less independent of the mediator’s mass, the muonic deu-
terium system, µ-D, should exhibit almost exactly the

Muonic H

Shift in 4He
1 meV shift  is OK
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than the corresponding shift in the !-p system [5]. If the
force is attractive in both systems, the apparent proton-
radius will always appear smaller in the e-p system, con-
trary to observations. An attractive force must therefore
couple more strongly to muons than to electrons if it is to
explain the discrepancy in the proton-radius determination.

A different possibility is that ge is not suppressed rela-
tive to g!, but the force is repulsive, leading to a larger
apparent proton-radius in the e-p system. This possibility
is consistent with the ðg" 2Þe constraint discussed in the
next section. However, since the effects of such a light
force are suppressed at higher momentum transfer, this
possibility seems in tension with the value of the proton-
radius extracted from scattering data which generally also
imply a larger proton-radius [6]. Therefore, for the purpose
of this paper, we concentrate on the possibility that it is a
new attractive force that modifies the !-p system.

III. CONTRIBUTIONS TO ðg" 2Þe;!
The scalar and vector-boson contributions to the elec-

tron and muon anomalous magnetic moments are [7,8],

!al ¼
"

2#

!
g!
e

"
2
$ðm%=mlÞ; (4)

where ml is the mass of the electron or muon, and

$ðxÞscalar ¼
Z 1

0

ð1" zÞ2ð1þ zÞ
ð1" zÞ2 þ x2z

dz (5)

$ðxÞvector ¼
Z 1

0

2zð1" zÞ2
ð1" zÞ2 þ x2z

dz: (6)

For ml & m% we have the asymptotic behaviors
$scalar ! 3=2 and $vector ! 1.

We begin with the electron system. As emphasized in
Ref. [9], the ðg" 2Þe measurement is currently used to
define the fine-structure constant ". The additional contri-
bution to ðg" 2Þe therefore acts as a shift of the fine-
structure constant as !" ¼ 2#!ae. Comparing this
correction to measurements made in Rb and Cs atoms
[10,11], the shift in " must not exceed 15 ppb, which
constrains the coupling to electrons as [9]

!
ge
e

"
2
$ðm%=mlÞ< 15' 10"9: (7)

For m% ( MeV, this constraint translates to ge=e & 2:3'
10"4 and ge=e & 4:0' 10"4 for scalar and vector media-
tors, respectively. The constraint is weakened for larger
values of m%. A similar analysis and limit were recently
presented in Ref. [12].

More important for the purpose of a direct comparison
with the Lamb shift in the !-p system is the constraint
coming from measurement of ðg" 2Þ! [13]. At present,
the theoretical prediction for ath! seems to indicate a deficit
of 302ð88Þ ' 10"11 compared with the experimental value

aexp! [14]. For a given massm%, we can extract the values of
g! that bring the theoretical and experimental values of
ðg" 2Þ! into agreement. In fact, these values are insensi-
tive to m% provided m% ) m! is satisfied, giving g!=e (
1:6' 10"3 for a vector and g!=e ( 1:3' 10"3 for a
scalar. In Fig. 1, we plot the 2S1=2-2P3=2 energy-shift,
Eq. (2), against the mass of the mediator, m%, fixing the
coupling to muons in this way. For the purpose of the plot,
we take gp ¼ g!, but the result for other choices is easily
obtained, as the energy-shift is proportional to gp.
As the plot indicates, a new force with a mass ( MeV

and a coupling to muons that explains the discrepancy in
the muon anomalous magnetic moment can also give the
required energy-shift in muonic hydrogen to reconcile the
proton-radius extracted from this system with the one
extracted from hydrogen and electron-proton scattering.
The mediator mass that gives the maximum energy-shift
is near an MeV because it is essentially determined by the
Bohr radius of the !-p system, a"1

! ¼ 0:69 MeV. The
choice gp ( g! favors m% ( MeV, but a different mass
can be accommodated by increasing gp accordingly.
For m% & MeV (m% ) MeV), the required coupling
becomes large and scales as m2

% (m"2
% ).

For m% ( MeV, the coupling to muons necessary to
explain both discrepancies turns out to be close to the
muon mass divided by the electroweak scale, m!=v ¼
4:3' 10"4. A Higgs-like coupling proportional to the
mass would resolve any tension with the constraint from
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FIG. 1 (color online). The contribution to the energy-shift in
muonic hydrogen, Eq. (2), plotted against the mass of the
mediator. In the central solid-blue curve, we require the coupling
to the muon, g!, to be such that the scalar contribution to

ðg" 2Þ! equals the theoretical deficit. In the upper/lower

solid-blue curve, the scalar contribution to ðg" 2Þ! is deter-

mined to be*1 s:d. away from the theoretical deficit. The vector
case is similarly given by the dashed-red curves. The coupling
to the proton is fixed at gp ¼ g!. The solid horizontal line

is the discrepancy between the experimentally measured value of
the energy and the theoretical prediction assuming the CODATA
value [2] for the proton-radius, rp ¼ 0:8768 fm. The dotted
horizontal lines represent the *1 s:d. uncertainty about this
value.
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IV. CONSTRAINTS

The most model-independent constraint on an MeV-
scale interaction between muons and protons comes from
measurements of the 3d

5/2-2p3/2 transitions in 24Mg
and 28Si [12]. A weighted-average between the re-
sults from 24Mg and 28Si was used to obtain the limit,
(�exp � �QED) /�QED = (�0.2 ± 3.1) ⇥ 10�6. For
m� ⇡ MeV this translates to a 95% CL limit gpgµ/e2 <

3.1⇥10�6, assuming coupling only to protons. This mea-
surement therefore allows the couplings necessary to ex-
plain the muonic hydrogen and (g � 2)µ discrepancies.
Mild tension does arise if one assumes that the new force
carrier also couples to neutrons since the bound improves
by a factor of 2. However, as we now discuss, such a
coupling to the neutron is much better constrained by
neutron scattering experiments.

A new force carrier with an MeV mass that couples
to neutrons produces sizable corrections to the scatter-
ing cross-section of neutrons on heavy nuclei. This was
first realized by Barbieri and Ericson [13] who used the
results of an old experiment [14] on the polarizability
of the neutron to set a limit on any additional force car-
rier that interferes with the strong interaction amplitude.
They showed that such a force will contribute to the an-
gular dependence of the di↵erential cross-section in a dis-
tinct manner as compared with the contribution from the
strong interactions. Assuming that the new force couples
equally to both protons and neutrons, the bound on the
nucleon coupling is

gn . 2⇥ 10�5 (m�/ MeV)2 . (8)

This is about an order of magnitude smaller than the nec-
essary coupling to muons and protons discussed above.
A more recent analysis arrived at a similar result [15, 16]
although the claimed precision of that experiment was
later questioned (see Ref. [17] and references therein).

The bound in Eq. (8) arises from an interference term
between the strong amplitude and the amplitude due to
the new force. As such, it may be susceptible to can-
cellations involving other parts of the amplitude, and it
also depends on the relative phase of the strong and new-
physics amplitudes. Nevertheless, the constraint is suf-
ficiently strong to disfavor gn ⇡ gp. The bound on the
neutron coupling would have to be invalidated by more
than an order of magnitude to allow for a simultaneous
explanation of (g� 2)µ and the muonic hydrogen results
while requiring gn ⇡ gp, a possibility which we therefore
eschew in this letter.

There are several other constraints on such a light bo-
son, but they all involve further assumptions about its
couplings to matter. Refs. [18, 19] use 16O and 4He atoms
to search for 0+ ! 0+ + � transitions to constrain light
bosons with Higgs-like couplings. These bounds are not
very useful for m� ⇡ MeV and in any case depend sen-
sitively on the decay properties of �. For example, the
bounds do not apply if � decays promptly, or if � is too
light to decay into an electron-positron pair. Ref. [20]
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FIG. 2: The contribution to the 2S-2P energy splitting in
muonic helium, Eq. (9), plotted against the mediator’s mass.
The curve is normalized to �EµH = �0.31 meV, which is
the discrepancy between the experimentally measured value
and the theoretical prediction, assuming the CODATA value
for the proton-radius, rp = 0.8768 fm. The dotted curves
represent the ±1 s.d. uncertainty about this value.

has searched for a light boson emitted in the scattering
of electrons against the nucleus. It sets a strong bound
on the coupling to the electron for masses in the range
1.2 < m� < 52 MeV. However, it too relies on the �

lifetime being in a certain range. Ref. [21] sets a very
strong limit on the decay ⇡

+ ! e

+

⌫e(� ! e

+

e

�) and
excludes masses in the range 10 < m� < 110 MeV, but
again relies on the coupling to electrons. Finally, we note
that any coupling to neutrinos must also be strongly sup-
pressed as such an interaction will strongly a↵ect the well
measured interactions of neutrinos with matter.

V. CONTRIBUTIONS TO ENERGY SHIFTS IN
OTHER MUONIC SYSTEMS

We now move on to discuss predictions concerning
other muonic systems such as muonic deuterium and he-
lium, and true muonium. Neglecting any possible cou-
pling to the neutrons, the energy shift in the 2S-2P tran-
sition due to the new force is given by a simple gener-
alization of Eq. (2). Accounting for the change in the
reduced mass and the atomic number, it can be written
in terms of the contribution to the energy shift in muonic
hydrogen,

�E

(µN)

� = Z

f(aµNm�)

f(aµHm�)

 
a

3

µH

a

3

µN

!
�E

(µH)

� (9)

where N stands for the di↵erent possible nuclei (deu-
terium, helium, and etc.) and Z is the atomic number.
The most straightforward prediction is that, more or

less independent of the mediator’s mass, the muonic deu-
terium system, µ-D, should exhibit almost exactly the

Muonic H

Shift in 4He
1 meV shift  is OK

Vertical line- e+e� threshold



~1 MeV scalar consistent 
• muonic Lamb shifts H,D, 4He

• no hyperfine

• K decays (Carlson 2015 review)

• Upsilon decay 

• neutron scattering by model assumption

• g-2 of muon

• muonic atom (24Mg 28Si) transitions
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1. Introduction

In recent years, there has emerged a universal appreciation for 
new light, weakly-coupled degrees of freedom as generic possi-
bilities for New Physics (NP) beyond Standard Model (SM). Con-
siderable effort in “intensity frontier” experiments is now devoted 
to NP searches [1]. In this paper we argue that there is a pow-
erful new possibility for probing these states by combining large 
underground neutrino-detectors with either high luminosity un-
derground accelerators or radioactive sources.

Underground laboratories, typically located a few km under-
ground, are shielded from most environmental backgrounds and 
are ideal venues for studying rare processes such as low-rate nu-
clear reactions and solar neutrinos. Thus far, these physics goals 
have been achieved with very different instruments: nuclear re-
actions relevant for astrophysics involve low-energy, high-intensity 
proton or ion beams colliding with fixed targets (such as the LUNA 
experiment at Gran Sasso), while solar neutrinos are detected with 
large volume ultra-clean liquid scintillator or water Cerenkov de-
tectors (SNO, SNO+, Borexino, Super-K, etc.).

* Corresponding author.
E-mail address: gkrnjaic@perimeterinstitute.ca (G. Krnjaic).

In this paper we outline a novel experimental strategy in which 
light, “invisible” states φ are produced in underground accelerators 
or radioactive materials with O (MeV) energy release, and observed 
in nearby neutrino detectors in the same facilities as depicted in 
Fig. 1:

X∗ → X + φ, production at “LUNA” or “SOX” (1)

e + φ → e + γ , detection at “Borexino”. (2)

Here X∗ is an excited state of element X , accessed via a nuclear 
reaction initiated by an underground accelerator (“LUNA”) or by a 
radioactive material (“SOX”).1 In the “LUNA”-type setup a proton 
beam collides against a fixed target, emitting a new light parti-
cle that travels unimpeded through the rock and scatters inside 
a “Borexino”-type detector. Alternatively, in the “SOX” production 
scenario, designed to study neutrino oscillations at short baselines, 
a radioactive material placed near a neutrino detector gives rise to 
the reaction in Eq. (1) as an intermediate step of the radioactive 
material’s decay chain.

We study one particularly well-motivated NP scenario with a 
! MeV scalar particle, very weakly O (10−4) coupled to nucleons 

1 Our idea is very generic, not specific to any single experiment or location, which 
is why quotation marks are used.

http://dx.doi.org/10.1016/j.physletb.2014.11.037
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
SCOAP3.
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Here X∗ is an excited state of element X , accessed via a nuclear 
reaction initiated by an underground accelerator (“LUNA”) or by a 
radioactive material (“SOX”).1 In the “LUNA”-type setup a proton 
beam collides against a fixed target, emitting a new light parti-
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III. RKSUI.TS AND DISCUSSION

Figure 8 displays the counting rate per 5-keV step ob-
tained for Bhabha and Mott scattering [Figs. 8(a) and
8(b), respectively] as a function of the beam energy, for
all data taken with the Be target. For each energy step,
the sum of the events (-1.6X10 and —8.0X10 for
Bhabha and Mott scattering, respectively) were gained
from the corresponding energy spectra (see Fig. 4) by an
integration of the full-energy peaks using the uniform
window: [0.991 + (ED„/Ep, ) ~ 1.009]. With a statistical
accuracy of 0.25%%uo and 0.11%%uo, respectively, both excita-
tion functions are smooth, demonstrating the excellent
time stability of the e beam. This implies, furthermore,
that the systematic errors occurring in our measurements
must be significantly lower than the statistical ones. The
general features of the measured excitation functions are
in agreement with the expected beam-energy dependence
of the scattering process according to Eqs. (10) and (11),
respectively. The steeper falloff for Mott scattering is due
to the smooth decrease of the detection e%ciency at the
higher e+ energies, as discussed in the previous section.
In accounting for remaining Auctuations in the counting
rates, the Bhabha-scattering events were normalized to
those obtained by Mott scattering for each measuring
point. This is shown in Fig. 9(a) as a function of the
beam energy (lower scale) and of the c.m. excitation ener-
gy (upper scale). Since the corresponding rate for Mott
scattering is by a factor of 5 larger, the statistical uncer-
tainties are mainly determined by the counting rate for
Bhabha scattering.
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FIG. 9. Measured ratio of Bhabha to Mott scattering ob-
tained from the sum of our data (Fig. 8) as a function of the
bombarding energy [(a)]; the corresponding c.m. energy is indi-
cated in the upper scale. The solid line represents a fit of a sim-
ple smooth function to the data. The relative as well as the
standard deviations from the fitted curve are shown in (b) and
(c), respectively.
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FIG. 8. Total counting rate per 5-keV incident-energy step
for Bhabha and Mott scattering [{a}and {b), respectively] as a
function of the beam energy. The total measuring time per step
amounts to -400 min.

We now compare the measured ratio with that expect-
ed by Eq. (13) at an incident energy of 2.2 MeV. By an
integration of the differential cross section for Bhabha
and Mott scattering [Eqs. (10) and (11), respectively] we
obtain within the full angular range of observation (Fig.
6): (o~/o I ) =0.032. From a calibration of the detection
efBciencies as a function of the incident energy we esti-
mate: [eM(2.2 MeV)/e~(1. 1 MeV)] = 14.3%; this matches
well with calculations showing that the full-energy-peak
efficiency of a 2-mm-thick Si(Li) detector only amounts to—15% at this incident energy. ' With these values and
taking (b,Eslb, E~)= —,', =0.2, (X, /Kk)=4 we get from
Eq. (13): (Xii /NM)th =(0.18+0.03). As indicated, the
calculated ratio is affected by experimental un-
certainties concerning mainly the determination of the
detection efFiciency at the corresponding Bhabha and
Mott energies as well as the effective solid angle for Mott
scattering. The estimated value agrees we11 with the mea-
sured ratio of (0. 1972+0.0005) at .this beam energy.
Since our aim, however, was to search for a deviation
from a smooth excitation function we did not apply an
efticiency correction to the data. For the same reason,
the contribution of the random coincidences of about
0.05% was not subtracted from the data, since it was
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• Dark (heavy) photon is ruled out as 
explanation of muon g-2

• Complete parameter space has been 
searched and nothing is found 

• But other scalar  boson not searched 
completely



Yes it really is GE

• Non-relativistic reduction of one-photon 
exchange leads to  the spin independent 
interaction being GE (Q2)/Q2

• All recoil effects properly accounted for:Breit-
Pauli Hamiltonian computed for non-zero 
lepton and proton momentum
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Light Sea Fermions in Electron–Proton and Muon–Proton Interactions

U. D. Jentschura
Department of Physics, Missouri University of Science and Technology, Rolla, Missouri, MO65409-0640, USA and

MTA–DE Particle Physics Research Group, P.O.Box 51, H–4001 Debrecen, Hungary

The proton radius conundrum [R. Pohl et al., Nature 466, 213 (2010) and A. Antognini et al.
Science 339, 417 (2013)] highlights the need to revisit any conceivable sources of electron-muon
nonuniversality in lepton-proton interactions within the Standard Model. Superficially, a number of
perturbative processes could appear to lead to such a nonunversality. One of these is a coupling of
the scattered electron into an electronic as opposed to a muonic vacuum polarization loop in the
photon exchange of two valence quarks, which is present only for electron projectiles as opposed to
muon projectiles. However, we can show that this effect actually is part of the radiative correction
to the proton’s polarizability contribution to the Lamb shift, equivalent to a radiative correction
to double scattering. We conclude that any conceivable genuine nonuniversality must be connected
with a nonperturbative feature of the proton’s structure, e.g., with the possible presence of light sea
fermions as constituent components of the proton. If we assume an average of roughly 0.7 × 10−7

light sea positrons per valence quark, then we can show that virtual electron-positron annihiliation
processes lead to an extra term in the electron-proton versus muon-proton interaction, which has
the right sign and magnitude to explain the proton radius discrepancy.

PACS numbers: 31.30.js, 36.10.-k, 12.20.Ds, 31.15.-p

I. INTRODUCTION

The electromagnetic aspects of the proton and neutron
structure are somewhat elusive. It is well known that
the mass difference of proton and neutron is responsi-
ble for the stability of the universe (the hydrogen atom
would otherwise be unstable against beta decay into an
electron-positron pair, a neutrino and a neutron). There
have been attempts to explain the mass difference on the
basis of the electromagnetic interaction among the con-
stituent quarks [1–4]. A priori, one would think that the
electrostatic interaction among the constituent quarks
leads to an inversion of the mass hierarchy of proton
versus neutron. Namely, the Coulomb interaction among
valence quarks actually lowers the energy of the neutron
as compared to the proton, as a naive counting argu-
ment shows. A hadron with valence quarks uud has in-
terquark electromagnetic interactions proportional to the
fractional charge numbers, 2

3×
(

− 1
3

)

+ 2
3×

(

− 1
3

)

+ 2
3×

2
3 = 0

whereas for the neutron with valence quarks udd, we have
2
3 ×

(

− 1
3

)

+ 2
3 ×

(

− 1
3

)

+
(

− 1
3

)

×
(

− 1
3

)

= − 1
3 . The latter

expression, being negative, would suggest that the neu-
tron is lighter than the proton if the mass difference were
of electromagnetic origin and due to Coulomb exchange.

However, the radiative correction is not constrained
to have any particular sign, and warrants further in-
vestigation especially because the electromagnetic wave
functions of the valence quarks bound in an MIT bag
model [1] have a rather peculiar structure [4] and might
give rise to significant radiative effects. The conclusion
reached in Refs. [1–4] is that the electromagnetic self-
energy of the quarks remains positive for all masses con-
sidered. Thus, the quantum electrodynamic (QED) ra-
diative energy shift cannot explain the mass difference of
proton and neutron, where a negative self-energy would
otherwise be required in view of the larger fractional

charge of the up as compared to the down quarks.

Still, the investigations [1–4] as well as the proton ra-
dius conundrum [5, 6] highlight the need for a closer look
at the internal structure of the proton if one is inter-
ested in its own “internal” electromagnetic interactions,
as well as the interactions of the proton with the “outside
world”. If the interaction of the bound or scattered lep-
ton with the proton is nonuniversal, then it is conceivable
that the proton radius depends on the projectile parti-
cle. However, one can show that a number of perturbative
higher-order effects which could appear to lead to such
a nonuniversality of electron-proton versus muon-proton
interactions are in fact absorbed into correction terms of
known physical origin.

Let us consider electromagnetic interactions among the
constituent particles of the proton, for example, a higher-
order effect generated by a coupling of the scattered
projectile (electron or muon) into a vacuum-polarization
loop which in turn is inserted into a photon exchanged
between two valence quarks. We here show that, because
Feynman propagators take care of all possible time or-
derings of virtual particle creation and annihilation pro-
cesses, this effect actually constitutes a radiative correc-
tion to double scattering, and is absorbed, in Lamb shift
calculations, into the radiative correction to the proton’s
polarizability contribution to the Lamb shift. A quanti-
tative parametric estimate for the order-of-magnitude of
the effect is provided.

The second process is more speculative and conjectures
the presence of light sea fermions as a nonperturbative
physical property of the hadron, an admixture to the gen-
uine particle content of the proton. We here show that
the conceivable presence of these fermions would give rise
to a Dirac-δ potential, in view of a virtual annihilation
channel, with the right sign to explain the muonic hy-
drogen puzzle [5, 6]. These two mechanism are described
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 If we assume an average of roughly 0.7×10−7 light sea positrons per valence quark, 
then we can show that virtual electron-positron annihilation processes lead to an extra 
term in the electron-proton versus muon-proton interaction, which has the right sign 

and magnitude to explain the proton radius discrepancy.
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A potential explanation [U. D. Jentschura, Phys. Rev. A 88, 062514 (2013)] of the proton radius
puzzle originating from the non-perturbative lepton-pair content of the proton is studied. Well-
defined quantities that depend on this lepton-pair content are evaluated. Each is found to be of
the order of 10(↵

⇡ )2, so that we find such a lepton-pair content exists in the proton. However, we
argue that this relatively large result and general features of loop diagrams rule out the possibility
of lepton-pair content as an explanation of the proton radius puzzle. The contributions of a class
of potential explanations of the proton radius puzzle (for which the dependence on the µp relative
distance is as contact interaction) are shown to be increase very rapidly with atomic number.

I. INTRODUCTION

Recent high precision experimental studies of muonic hydrogen [1, 2] obtain a value of the proton radius that is
about 4% smaller than that obtained from ordinary electronic hydrogen. The problem of understanding this di↵erence
has become known as the proton radius puzzle, and has generated a vast array of possible solutions, see the review
[3]. One of the novel suggested solutions [4] is that a non-perturbative feature of the proton’s structure, namely the
possible presence of light sea fermions as constituent components of the proton, could account for the di↵erence in
the extracted radii. In particular, it is argued that the assumption that the presence of 2.1 ⇥ 10�7 light sea positrons
per quark, leads to an an extra term in the electron-proton versus muon-proton interaction, which has the right sign
and magnitude to explain the proton radius puzzle .

The basic idea is that a bound electron may annihilate with a positron that is part of the non-perturbative e�e+

cloud of the proton. The annihilation leads to a virtual photon, which in turn decays to a bound electron and a
positron that is also part of the e�e+ cloud of the proton. See Fig. 1. The term non-perturbative here refers to a
component of the proton Fock-space wave function that can be seen at small values of momentum transfer. If one
could take a snapshot of a proton in isolation one would see electron-positron or muon-anti-muon pairs pop in and
out of existence. This e↵ect is therefore di↵erent from the generation of pairs by evolution in momentum transfer
that is akin to the source of the qq̄ sea of perturbative QCD. 4

Let � ⇠ rp be a characteristic de Broglie wavelength of
the quarks inside the nucleus. Then, the associated mo-
mentum scale is p ⇠ h/rp where h is Planck’s unit of
action and the corresponding energy scale is obtained as
E ⇠ p c ⇠ 1.32 mp, which in turn is commensurate with
the excitation energy of the proton into its first reso-
nance, the � resonance at 1232 MeV. It is easy to check,
based on the running of the QED coupling, that the ef-
fective coupling at the scale of the proton’s momentum
di↵ers from the value of ↵QED at zero momentum trans-
fer by less than 5%. The leading finite-size Hamiltonian
is given as follows,

Hfs =
2⇡↵QED

3m2
e

�
m2

e

�
r2
p

��
�3(r) . (8)

The ratio is given as

R / hHvpi
hHfsi ⇠ ↵2

QED
m2

e

m2
e�

1

m2
e

�
r2
p

� ⇠ 2.2 ⇥ 10�6 , (9)

where we take into account that m2
e

�
r2
p

� ⇠ (1/386)2, and
me/me� ⇠ me/mp ⇠ 5.4⇥10�4. The ratio R is too small
to make a significant contribution to a solution of the pro-
ton radius puzzle. It is interesting to note that the simple-
minded parametric estimate described above, with one
radiative factor ↵QED from the self-energy loop excluded,
gives the right order-of-magnitude for the leading proton
polarizability contribution evaluated in Ref. [15].

III. LIGHT SEA FERMIONS

Let us consider the possible presence of light sea
fermions as nonperturbative contributions to the proton’s
structure, inspired by a possible importance of virtual
electron-positron pairs in the lepton nonuniversality in
interactions with protons. We consider a thought exper-
iment: If we switched o↵ the electroweak interactions of
quarks inside the proton, the resulting “proton” would
of course be neutral but otherwise rather comparable
in its mass and in its nuclear properties to a real pro-
ton with some nonperturbative quantum chromodynamic
(QCD) “wave function.” Now, if we include back the
electroweak interactions of quarks, virtual photons and
electron-positron pairs would backreact on the previous
“wave function” leading to a reshaping, and the actual
“proton wave function” which now additionally contains
photons and the electron-positron pairs. Due to highly
nonlinear nonperturbative nature of QCD, this reshaping
can be much larger than the electromagnetic perturba-
tion itself, and therefore there is a room for the conceiv-
able presence of electron-positron pairs inside the pro-
ton, which cannot be accounted for by perturbative QED
considerations alone (see Fig. 3). This density (probabil-
ity) of electron-positron pairs, because of the inherently
nonperturbative nature of QCD, is di�cult if not impos-
sible to quantitatively estimate, but its presence is not

e�

e+ e+

e�

d

u

d

u

u u

d

d

FIG. 3: (Color online.) Typical Feynman diagram illustrating
the virtual annihilation of a bound electron with a “light sea
lepton” (positron) inside the proton. The up (u) and down
(d) quarks, which carry non-integer charge numbers, interact
electromagnetically. The dashed lines mark the formation of
the asymptotic state of the proton in the distant past or
future, with its valence and sea quark contents, and with
a light sea lepton that annihilates with the bound electron.
The given Feynman diagram is not included if the proton is
treated perturbatively as a spin-1/2 particle with charge e.
An exemplary quantum chromodynamic (QCD) interaction
via a blue-antigreen gluon also is indicated in the figure.

excluded by any known experiments. In fact, a signifi-
cant photon content of the proton is well confirmed in
the so-called Deep Inelastic Compton Scattering (DICS,
see Refs. [21–26] and Fig. 3).

If the proton contains these electron-positron pairs,
which are not accounted for in any perturbative higher-
order QED term, then the interaction between the pro-
ton and electron is given by both photon exchange and
annihilation diagrams. In natural units, the photon anni-
hilation diagram in the case of positronium leads to the
e↵ective interaction [27]

�H =
⇡↵QED

2m2
e

(3 + ~�+ · ~��) �3(r) . (10)

This Hamiltonian gives a nonvanishing interaction of the
bound electron and the light sea positron if their spins
add up to one. Assuming that the electron-positron pairs
within the proton are not polarized, we can replace ~�+ ·
~�� ! 0 after averaging over the polarizations of the sea
leptons. For atomic (electronic) hydrogen, the additional
interaction of the electron with the proton due to the
annihilation channel therefore is of the form

Hann = ✏p
3⇡↵QED

2m2
e

�3(r) , (11)

where ✏p measures the amount of electron-positron pairs
within the proton. For muonic hydrogen, the e↵ect is ex-
pected to vanish because the dominant contribution to
the sea leptons comes from the lightest leptons, namely,
electron-positron pairs and thus the annihilation channel
is not available. By comparison, the finite nuclear size

FIG. 1: (color online) Typical Feynman diagram of Ref. [4] illustrating the virtual annihilation of a bound electron with a
“light sea lepton” (positron) inside the proton. The up (u) and down (d) quarks, which carry non-integer charge numbers,
interact electromagnetically. The vertical dashed lines indicate the lepton-sea component of the proton wave function. The
light sea lepton that annihilates with the bound electron. An example of a non-perturbative quantum chromodynamic (QCD)
interaction via a blue-antigreen gluon also is indicated in the figure.

A natural question to ask is whether or not this diagram is part of a contribution that is already included. In
particular, a look at Fig 1 might lead one to conclude that the intermediate baryonic state is that of an excited
nucleon. If so, this diagram would be a particular time-ordering of the proton polarizability contribution to the two-
photon exchange diagram. However, if the lepton pair is a specific Fock-space component of the complete proton wave
function (including QED e↵ects) one may argue [4] that the intermediate state is part of the proton wave function,
and therefore not part of the proton polarizability contribution. Here we accept this argument and seek to determine
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Arbitrary functions

The function h(t) is monotonically falling, approaching 1/
⌅

t for small values of t, and

falling as 3/(4t) large values of t. The subtraction function T1(0, Q2) is not available

from experimental measurements, except at the real photon point Q2 = 0. It comes from

the excitation of the proton, and can be described, at small values of Q2, in terms of the

electric (�E) and magnetic (⇥M) polarizabilities. For small values of Q and ⌅ = 0 one

sees [23] lim⌅2,Q2⇤0 T1(0, Q2) = Q2

� ⇥M, where � is the fine structure constant. Using this

simple linear Q2-dependence in Eq. (2) shows that the integral over T1(0, Q2) converges

at the lower limit, but diverges logarithmically at the upper limit. Thus obtaining a non-

infinite result depends on including an arbitrary form factor that cuts off the integrand

for large values of Q2 or some other renormalization procedure.

We note that limQ2⇤⇥ T̄1(0, Q2) can be obtained from the operator production expan-

sion [26, 27]. Using Eq. (2.18) of Ref. [26], neglecting the term proportional to light quark

masses, and accounting for different conventions yields T̄1(0, Q2) ⇥ 2.1 fm�1/Q2. This

1/Q2 behavior removes the putative logarithmic divergence of T̄1(0, Q2), but this func-

tion is far from determined.

We follow the previous literature by including a form factor defined as Floop. Then

T1(0, Q2) =
⇥M
�

Q2Floop(Q2) . (4)

Using Eqs. (2,3,4) one finds the energy shift to be

�Esubt =
�2⇤2(0)

m
⇥M
�

 ⇥

0
dQ2

⇤

⇧(1� 2Q2/(4m2))

�

⌥
⌦

1 +
4m2

Q2 � 1

⇥

�+ 1

⌅

⌃ Floop(Q2).

(5)

The issue here is the arbitrary nature of the function Floop(Q2). Pachucki [24] used the

dipole form, ⇥ 1/Q4, often used to characterize the proton electromagnetic form factors.

But the subtraction function should not be computed from the proton form factors, be-

cause virtual component scattering includes a term in which the photon is absorbed and

emitted from the same quark [28]. Carlson and Vanderhaeghen [17] evaluated a loop di-

agram using a specific model and found a form factor ⇥ 1/Q2 log Q2, leading to a larger

contribution to the subtraction term than previous authors. Birse & McGovern [20] eval-

4

uate terms up to fourth-order in chiral perturbation theory to find

TBM
1 (0, Q2) ⇧ ⇥M

�
Q2

⇤
1� Q2

M2
⇥

+O(Q4)

⌅
⌅ ⇥M

�
Q2 1

�
1 + Q2

2M2
⇥

⇥2 , (6)

with M⇥ = 460± 50 MeV. They also use the most recent evaluation of ⇥M, based on a fit

to real Compton scattering [29] that finds

⇥M = (3.1± 0.5)⇥ 10�4 fm3, (7)

where only statistical and Baldin Sum Rule errors are included. Their result is a negligible

�Esubt = 4.1µ eV [20]. The form Eq. (6) achieves the correct 1/Q2 asymptotic behavior

of T1(0, Q2) but the coefficient ⇥M/� is not the same as obtained from the operator prod-

uct expansion. The coefficient of Eq. (6) is about twice the asymptotic limit obtained by

Collins [26].

Previous authors [17, 20] noted the sensitivity of the integrand of Eq. (5) to large values

of Q2. Our aim here is to more fully explore the uncertainty in the subtraction term

that arises from the logarithmic divergence. We shall use a form of Floop(Q2) that is

consistent with the constraint on the Q4 term found Birse & McGovern [20]. This is done

by postulating a term that begins at order Q6 in Eq. (4), such as

Floop(Q2) =

⇤
Q2

M2
0

⌅n
1

(1 + aQ2)N , n ⇤ 2, N ⇤ n + 3, (8)

where M0, a are parameters to be determined by requiring that the computed contribu-

tion to the Lamb shift reproduce the desired 0.31 meV. With Eq. (8) the low Q2 behavior

of T̄1(0, Q2) is of order Q6 or greater and it falls as 1/Q4 or greater for large values of Q2.

So far as we know, there are no constraints on the coefficient of the Q6 term or the 1/Q4

term. However, we shall determine the subtraction term’s contribution to the Lamb shift

as a general function of n, N. We note that ⇥M is anomalously small due to a cancellation

between pion cloud and intermediate � terms [30] , so that one can use a value ten times

larger than appears in Eq. (7) to set the overall scale of the subtraction term. Thus we

replace the term ⇥M of Eq. (4) by a general form of the same dimensions ⇥: ⇥M ⌅ ⇥.

The use of Eq. (8) in Eq. (5) allows one to state the expression for the energy shift in

5

T 1(0, Q2
) ⇠ 1

Q4
or faster, �M ! �

�Esubt ⇡ 3↵2m 2
S(0)

�

↵
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New 1 MeV scalar boson 

• give  μ-p Lamb shift

• almost no hyperfine in μ proton

• consistent with g-2 of  μ    

• almost no effect for D, 4He

• evade existing constraints 

• be found
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• Batell, McKeen, Pospelov PRL 107,081802 New force differentiates between lepton 
species. Models with gauged right-handed muon number, contain new vector and scalar force 
carriers at the 100 MeV scale or lighter. Such forces would lead to an enhancement by several 
orders-of-magnitude of the parity-violating asymmetries in the scattering of low-energy muons 
on nuclei. Related to muon g-2-- 

• Karshenboim, McKeen Pospelov arXiv:1401.6154 Hyperfine effects in muonium> 
“completely disfavoring the remainder of  the parameter space,

              

µ 6= e

No BSM idea solves  puzzle at this time,
but maybe

http://arxiv.org/find/hep-ph/1/au:+Batell_B/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+McKeen_D/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Pospelov_M/0/1/0/all/0/1


R. Essig

Three experiments  at JLab

Muon data is g-2 - BNL exp’t, 
Hertzog- Kammel ...
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2010 Experimental summary

• Rydberg is known to 12 figures

• Puzzle- why muon H different than e H?

Pulsed laser spectroscopy

LETTERS

The size of the proton
Randolf Pohl1, Aldo Antognini1, François Nez2, Fernando D. Amaro3, François Biraben2, João M. R. Cardoso3,
Daniel S. Covita3,4, Andreas Dax5, Satish Dhawan5, Luis M. P. Fernandes3, Adolf Giesen6{, Thomas Graf6,
Theodor W. Hänsch1, Paul Indelicato2, Lucile Julien2, Cheng-Yang Kao7, Paul Knowles8, Eric-Olivier Le Bigot2,
Yi-Wei Liu7, José A. M. Lopes3, Livia Ludhova8, Cristina M. B. Monteiro3, Françoise Mulhauser8{, Tobias Nebel1,
Paul Rabinowitz9, Joaquim M. F. dos Santos3, Lukas A. Schaller8, Karsten Schuhmann10, Catherine Schwob2,
David Taqqu11, João F. C. A. Veloso4 & Franz Kottmann12

The proton is the primary building block of the visible Universe,
butmany of its properties—such as its charge radius and its anom-
alousmagneticmoment—arenotwell understood. The root-mean-
square charge radius, rp, has been determinedwith an accuracy of 2
per cent (at best) by electron–proton scattering experiments1,2. The
presentmost accurate value of rp (with an uncertainty of 1 per cent)
is given by the CODATA compilation of physical constants3. This
value is based mainly on precision spectroscopy of atomic
hydrogen4–7 and calculations of bound-state quantum electrody-
namics (QED; refs 8, 9). The accuracy of rp as deduced from elec-
tron–proton scattering limits the testing of bound-state QED in
atomic hydrogen as well as the determination of the Rydberg
constant (currently the most accurately measured fundamental
physical constant3). An attractive means to improve the accuracy
in themeasurementof rp is providedbymuonichydrogen (a proton
orbited by a negative muon); its much smaller Bohr radius com-
pared to ordinary atomic hydrogen causes enhancement of effects
related to the finite size of theproton. Inparticular, theLamb shift10

(the energy difference between the 2S1/2 and 2P1/2 states) is affected
by as much as 2 per cent. Here we use pulsed laser spectroscopy to
measure amuonic Lamb shift of 49,881.88(76)GHz.On the basis of
present calculations11–15 of fine and hyperfine splittings and QED
terms, we find rp5 0.84184(67) fm, which differs by 5.0 standard
deviations from the CODATA value3 of 0.8768(69) fm. Our result
implies that either the Rydberg constant has to be shifted by
2110 kHz/c (4.9 standard deviations), or the calculations of the
QED effects in atomic hydrogen or muonic hydrogen atoms are
insufficient.

Bound-state QED was initiated in 1947 when a subtle difference
between the binding energies of the 2S1/2 and 2P1/2 states of H atoms
was established, denoted as the Lamb shift10. It is dominated by
purely radiative effects8, such as ‘self energy’ and ‘vacuum polariza-
tion’. More recently, precision optical spectroscopy of H atoms4–7

and the corresponding calculations8,9 have improved tremendously
and reached a point where the proton size (expressed by its root-

mean-square charge radius, rp~

ffiffiffiffiffiffiffiffiffiffi
r2p

D Er
) is the limiting factor when

comparing experiment with theory16.
The CODATA value3 of rp5 0.8768(69) fm is extracted mainly

fromH atom spectroscopy and thus relies on bound-state QED (here
and elsewhere numbers in parenthesis indicate the 1 s.d. uncertainty

of the trailing digits of the given number). AnH-independent but less
precise value of rp5 0.897(18) fm was obtained in a recent reanalysis
of electron-scattering experiments1,2.

A much better determination of the proton radius is possible by
measuring the Lamb shift in muonic hydrogen (mp, an atom formed
by a proton, p, and a negative muon, m2). The muon is about 200
times heavier than the electron. The atomic Bohr radius is corre-
spondingly about 200 times smaller in mp than in H. Effects of the
finite size of the proton on the muonic S states are thus enhanced. S
states are shifted because the muon’s wavefunction at the location of
the proton is non-zero. In contrast, P states are not significantly
shifted. The total predicted 2SF~1

1=2 {2PF~2
3=2 energy difference, DẼ,

in muonic hydrogen is the sum of radiative, recoil, and proton struc-
ture contributions, and the fine and hyperfine splittings for our par-
ticular transition, and it is given8,11–15 by

D~EE~209:9779 49ð Þ{5:2262 r2pz0:0347 r3p meV ð1Þ

where rp~

ffiffiffiffiffiffiffiffiffiffi
r2p

D Er
is given in fm. A detailed derivation of equation

(1) is given in Supplementary Information.
The first term in equation (1) is dominated by vacuum polariza-

tion, which causes the 2S states to be more tightly bound than the 2P
states (Fig. 1). The mp fine and hyperfine splittings (due to spin–orbit
and spin–spin interactions) are an order of magnitude smaller than
the Lamb shift (Fig. 1c). The uncertainty of 0.0049meV in DẼ is
dominated by the proton polarizability term13 of 0.015(4)meV.
The second and third terms in equation (1) are the finite size con-
tributions. They amount to 1.8% of DẼ, two orders of magnitude
more than for H.

For more than forty years, a measurement of the mp Lamb shift has
been considered one of the fundamental experiments in atomic spec-
troscopy, but only recent progress in muon beams and laser techno-
logy made such an experiment feasible. We report the first successful
measurement of the mp Lamb shift. The energy difference between the
2SF~1

1=2 and 2PF~2
3=2 states of mp atoms has been determined bymeans of

pulsed laser spectroscopy at wavelengths around 6.01mm. This
transition was chosen because it gives the largest signal of all six
allowed optical 2S–2P transitions. All transitions are spectrally well
separated.

The experiment was performed at the pE5 beam-line of the proton
accelerator at the Paul Scherrer Institute (PSI) in Switzerland. We
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What  theorists do

• make up new particles- compute shift

• study constraints - 

• non-observation of new particles that 
couple mainly to muons

Constraints are obtained from the decay of the Υ resonances; 
neutron interactions with nuclei; 
the  anomalous magnetic moment of the muon
 x-ray transitions in 24Mg and 28Mg, Si atoms; 
J/Ψ decay;
neutral pion decay 
eta decay Any time a photon appears can also 

have a diagram with heavy photon
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• Compute Feynman diagram, remove log 
divergence using dimensional regularization

• include counter term in Lagrangian

EFT of µp interaction

I. INTRODUCTION

The proton radius puzzle is one of the most perplexing physics issues of recent times.

The extremely precise extraction of the proton radius [1] from the measured energy dif-

ference between the 2P

F=2
3/2 and 2S

F=1
1/2 states of muonic hydrogen disagrees with that ex-

tracted from electronic hydrogen. The extracted value of the proton radius is smaller than

the CODATA [2] value (based mainly on electronic H) by about 4% or 5.0 standard devi-

ations. This implies [1] that either the Rydberg constant has to be shifted by 4.9 standard

deviations or that present QED calculations for hydrogen are insufficient. The Rydberg

constant is extremely well measured and the QED calculations seem to be very extensive

and highly accurate, so the muonic H finding is a significant puzzle for the entire physics

community.

Pohl et al. show that the energy difference between the 2P

F=2
3/2 and 2S

F=1
1/2 states, De

E is

given by

De
E = 209.9779(49)� 5.2262r

2
p

+ 0.0347r

3
p

meV, (1)

where r

p

is given in units of fm. Using this equation, one can see that the difference

between the Pohl and CODATA values of the proton radius would be removed by an

increase of the first term on the rhs of Eq. (1) by 0.31 meV=3.1 ⇥ 10�10 MeV.

This proton radius puzzle has been attacked from many different directions [3]-[21]

The present communication is intended to investigate the hypothesis that the proton po-

larizability contributions, that enter in the two-photon exchange term, see Fig. 1, can

account for the 0.31 meV. This idea is worthy of consideration because the computed ef-

fect is proportional to the lepton mass to the fourth power, and so is capable of being

relevant for muonic atoms, but irrelevant for electronic atoms.

q q 

FIG. 1: The box diagram for the O(a5
m

4) corrections. The graph in which the photons cross is

also included.

2

where nmin is chosen to be one order higher than the power determined by chiral per-

turbation theory. The free parameters a

n

, c

n

, M

n

could then be varied to reproduce the

desired 0.31 meV shift in energy. This means that the application of chiral perturbation

theory to any finite order does not prevent the choice of a subtraction function that gives

the necessary shift in energy.

The above paragraphs show that the current procedure used to estimate the size of the

subtraction term is rather arbitrary. This arises because the chiral EFT is being applied

to the virtual-photon nucleon scattering amplitude. Another effective field theory tech-

nique would be to develop an procedure to determine the short-distance lepton-nucleon

amplitude implied by the subtraction term. This is the direction we pursue now.

III. EFFECTIVE FIELD THEORY FOR THE µp INTERACTION

The previous considerations show the sensitivity to assumptions regarding the behav-

ior of T1(0, Q

2) for large values Q

2 about which little or nothing is known. This results

form the logarithmic divergence in the integral of Eq. (5) for the case Floop = 1, and is a

symptom that an inefficient technique has been used [27]. A more efficient way to pro-

ceed would be us to use an effective field theory (EFT) for the lepton-proton interaction.

In EFT logarithmic divergences identified through dimensional regularization are renor-

malized away by including a lepton-proton contact interaction in the Lagrangian.

We may handle the divergence using standard dimensional regularization (DR) tech-

niques by evaluating the scattering amplitude of Fig. 1. The term of interest is obtained

by including only T1(0, Q

2) of Eq. (3) with Floop = 1. We evaluate the integral in d = 4� e

dimensions and obtain the result:

MDR

2 =
3
2

i a2
m

b
M

a

⇥2
e
+ log

µ2

m

2 +
5
6
� g

E

+ log 4p
⇤
u

f

u

i

U

f

U

i

, (13)

where lower case spinors represent leptons of mass m, and upper case proton of mass M,

q is momentum transferred to the proton, and g
E

is Euler’s constant, 0.577216· · · .

The result Eq. (13) corresponds to an infinite contribution to the Lamb shift in the

limit that e goes to zero. In EFT one removes the divergent piece by adding a contact

interaction to the Lagrangian that removes the divergence, replacing it by an unknown

finite part. The finite part is obtained by fitting to a relevant piece of data. Here the only

6

relevant data is the 0.31 meV needed to account for the proton radius puzzle. Thus we

write the resulting scattering amplitude as

MDR

2 = i a2
m

b
M

a
(l + 5/4) u

f

u

i

U

f

U

i

(14)

where l is determined by fitting to the Lamb shift. The µ dependence of the counter term

is chosen so that the result is independent of µ. Eq. (14) corresponds to using the MS

scheme because the term log(4p)� g
E

is absorbed into l.

The corresponding contribution to the Lamb shift is given by

DE

DR = a2
m

b
M

a
f2(0)(l + 5/4). (15)

Setting DE

DR to 0.31 meV in the above equation requires that l = 769 which seems like

a large number. However b
M

is extraordinarily small. The natural units of polarizability

are b
M

a ⇠ 4p/L3
c, [28] where Lc ⌘ 4p fp, ( fp is the pion decay constant). Then Eq. (14)

becomes

MDR

2 = i 3.84 a2
m

4p

L3
c

u

f

u

i

U

f

U

i

. (16)

The coefficient 3.84 is of natural size. Thus standard EFT techniques result in an effective

lepton-proton interaction of natural size that is proportional to the lepton mass.

The present results, Eq. (11) and Eq. (15) represent an assumption that there is a lepton-

proton interaction of standard-model origin, caused by the high-momentum behavior of

the virtual scattering amplitude, that is sufficiently large to account for the proton radius

puzzle. Fortunately, our hypothesis can be tested in an upcoming low-energy µ±
p, e

±
p

scattering experiment [22] planned to occur at PSI.

IV. LEPTON PROTON SCATTERING AT LOW ENERGIES

Our aim is to provide a prediction for the PSI experiment. It is well-known that two-

photon exchange effects in electron-proton scattering are small at low energies. Our con-

tact interaction is proportional to the lepton mass, so it could provide a measurable effect

for muon-proton scattering but be ignorable for electron-proton scattering. We shall in-

vestigate the two consequences of using form factors (FF) and EFT.

7
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contact interaction to the Lagrangian that removes the divergence, replacing it by an

unknown finite part. The finite part is obtained by fitting to a relevant piece of data. Here

the only relevant data is the 0.31 meV needed to account for the proton radius puzzle.

The low energy term contributes

MDR

2 (LET) = iC(µ), (14)

where C(µ) is chosen such that the sum of the terms of Eq. (13) and Eq. (14), ⌘ MDR

2 , is

finite and independent of the value of µ. Thus we write the resulting scattering amplitude

as

MDR

2 = i a2
m

b
M

a
(l + 5/4) u

f

u

i

U

f

U

i

(15)

where l is determined by fitting to the Lamb shift. Eq. (15) corresponds to using the MS

scheme because the term log(4p)� g
E

is absorbed into l.

The corresponding contribution to the Lamb shift is given by

DE

DR = a2
m

b
M

a
f2(0)(l + 5/4). (16)

Setting DE

DR to 0.31 meV in the above equation requires that l = 769 which seems

like a large number. However, b
M

is extraordinarily small due to a cancellation between

paramagnetic effects of an intermediate D and diamagnetic effects of the pion cloud [30].

The natural units of polarizability are b
M

a ⇠ 4p/L3
c, [31] where Lc ⌘ 4p fp, ( fp is the

pion decay constant). Then Eq. (15) becomes

MDR

2 = i 3.95 a2
m

4p

L3
c

u

f

u

i

U

f

U

i

. (17)

The coefficient 3.95 is of natural size. Thus standard EFT techniques result in an effective

lepton-proton interaction of natural size that is proportional to the lepton mass.

The present results, Eq. (11) and Eq. (16) represent an assumption that there is a lepton-

proton interaction of standard-model origin, caused by the high-momentum behavior of

the virtual scattering amplitude, that is sufficiently large to account for the proton radius

puzzle. Fortunately, our hypothesis can be tested in an upcoming low-energy µ±
p, e

±
p

scattering experiment [23] planned to occur at PSI.
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3.95 =natural

�Esubt(DR) = ↵2m
�M

↵
 2

S(0)(�+ 5/4)

�Esubt(DR) = 0.31 meV ! � = 769

�M (magnetic polarizability) = 3.1⇥ 10

�4
fm

3
very small

Natural units �M/↵ ⇠ 4⇡/(4⇡f⇡)
3
Butler & Savage
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