Two-photon exchange in lepton-proton elastic scattering

Jan C. Bernauer

Jefferson Lab Nuclear Physics Seminar January 2016

Massachusetts Institute of Technology

Cross section and form factors for elastic lepton-proton scattering

The cross section:

$$\frac{\left(\frac{d\sigma}{d\Omega}\right)}{\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}}} = \frac{1}{\varepsilon \left(1 + \tau\right)} \left[\varepsilon G_E^2 \left(Q^2\right) + \tau G_M^2 \left(Q^2\right) \right]$$

with:
$$au = \frac{Q^2}{4m_p^2}, \quad \varepsilon = \left(1 + 2\left(1 + \tau\right)\tan^2\frac{\theta_e}{2}\right)^{-1}$$

Fourier-transform of G_E , $G_M \longrightarrow$ spatial distribution (Breit frame)

$$\left\langle r_{E}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}G_{E}}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0} \quad \left\langle r_{M}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}(G_{M}/\mu_{p})}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0}$$

History of unpolarized electron-proton scattering

Measurements with polarization: FF ratio

Ratio: Difference!

Impact of direct measurement

- Reconcile Rosenbluth and polarized data?
- How to treat (off-shell) hadron line?

Method

• Mixed term changes sign with lepton sign:

$$\sigma(e^{\pm}\mathcal{P})\propto \left|\mathcal{M}_{1\gamma}
ight|^{2}\pm2\Re\left\{\mathcal{M}_{1\gamma}^{\dagger}\mathcal{M}_{2\gamma}
ight\}+...$$

$$R_{2\gamma} = \frac{N_{exp}^{e^+}}{N_{exp}^{e^-}} / \frac{N_{MC}^{e^+}}{N_{MC}^{e^-}}$$

MC contains luminosity, acceptance, soft radiative corrections

Direct measurement: Three modern experiments

VEPP-3

- 1.6/1 GeV beam
- no field
- PRL 114, 062005
 - CLAS
- e^- to γ to $e^{+/-}$ -beam
- PRL 114, 062003

OLYMPUS

- DORIS @ DESY
- 2 GeV beam

PRL accepted

The OLYMPUS collaboration

- Arizona State University, USA
- DESY, Hamburg, Germany
- Hampton University, USA
- INFN, Bari, Italy
- INFN, Ferrara, Italy
- INFN, Rome, Italy
- MIT Laboratory for Nuclear Science, Cambridge, USA
- Petersburg Nuclear Physics Institute, Gatchina, Russia
- University of Bonn, Bonn, Germany
- University of Glasgow, United Kingdom
- University of Mainz, Mainz, Germany
- University of New Hampshire, USA
- Yerevan Physics Institute, Armenia

The OLYMPUS collaboration

- Arizona State University, USA
- DESY, Hamburg, Germany
- Hampton University, USA
- INFN, Bari, Italy
- INFN, Ferrara, Italy
- INFN, Rome, Italy

Analysis effort carried by students

Lauren Ice (ASU) Dmitry Khaneft (Mainz) Colton O'Connor (MIT) Brian Henderson (MIT) Rebecca Russell (MIT) Axel Schmidt (MIT)

At DESY: DORIS

Anatomy of the OLYMPUS detector

 Target chamber with target cell

R. Milner et al., NIMA 741 (2014) 1-17

Target

Target

Simulation by B. Henderson (thesis). For constr. see NIMA 755 20 (2014)

Anatomy of the OLYMPUS detector

- Target chamber with target cell
- Toroid magnet coils

R. Milner et al., NIMA 741 (2014) 1-17

Anatomy of the OLYMPUS detector

- Target chamber with target cell
- Toroid magnet coils (half shown)

R. Milner et al., NIMA 741 (2014) 1-17

Toroid magnet system

- Fit measurements with model of coil field
- Evaluate model for full volume
- Special form of spline interpolation

NIM A 823, 9 (2016) doi:10.1016/j.nima.2016.03.115

Anatomy of the OLYMPUS detector

- Target chamber with target cell
- Toroid magnet coils (half shown)
- Orift chambers

R. Milner et al., NIMA 741 (2014) 1-17

Drift chambers

- 3 chambers,
 - 2 planes each
- Tracking is hard
- Wrote three trackers!

Anatomy of the OLYMPUS detector

- Target chamber with target cell
- Toroid magnet coils (half shown)
- Orift chambers
- Time of flight scintillators

R. Milner et al., NIMA 741 (2014) 1-17

Time-of-flight scintillators

Reconstructed electrons in MC on ToF: SA 800 450400600 350400 300 Vertical position 200 2500 200 -200150-400100 -60050 -8000 -5000 500 1000 1500Horizontal position on first ToF group, relative to third ToF

- Trigger + particle ID
- Sophisticated simulation (see theses by L. Ice and R. Russell)
- The curse of old detectors

Anatomy of the OLYMPUS detector

- Target chamber with target cell
- Toroid magnet coils (half shown)
- Drift chambers
- Time of flight scintillators
- Dual luminosity monitors
 - 12°-detector
 - Symmetric Møller/Bhabha

R. Milner et al., NIMA 741 (2014) 1-17

12° telescopes

- Interleaved MWPCs + GEMs
- Scintillator+SiPM trigger
- Independent readout

Symmetric Møller-Bhabha

- A4 histogramming cards
- o dead-time free
- no event-by-event readout

NIM A 826, 6 (2016) doi:10.1016/j.nima.2016.04.071

OLYMPUS full proposal Experiment funded by DOE **BLAST** moved to Germany Target test experiment Drift chambers installed Luminosity monitors installed OLYMPUS roll-in First full OI YMPUS test Sym. Møller/Bhabha installed First data run Second data run DORIS shut down

September 2008 January 2010 Spring 2010 February 2011 Spring 2011 Summer 2011 July 2011 August 2011 Fall 2011 January 2012 October-December 2012 January 2013

Total data taken

- > 4 fb⁻¹ data taken
- Selected 3.2 fb⁻¹ high quality subset

Goal: $R_{2\gamma}$

Analysis software stack: Cooker

"Straight forward" analysis

- Measure data
- Model experiment in simulation
- Generate pseudo data
- Track data + pseudo data
- Define cuts
- Background subtraction
- Build ratio

$$R_{2\gamma} = rac{N_{exp}^{e^+}}{N_{exp}^{e^-}} / rac{N_{MC}^{e^+}}{N_{MC}^{e^-}}$$

- Measure data
- Model experiment in simulation
- Generate pseudo data
- Track data + pseudo data
- Define cuts
- Background subtraction
- Build ratio

$$R_{2\gamma} = rac{N_{exp}^{e^+}}{N_{exp}^{e^-}} / rac{N_{MC}^{e^+}}{N_{MC}^{e^-}}$$

- Measure data Lumi. asymmetry? Time stability?
- Model experiment in simulation
- Generate pseudo data
- Track data + pseudo data
- Define cuts
- Background subtraction
- Build ratio

$$R_{2\gamma} = rac{N_{exp}^{e^+}}{N_{exp}^{e^-}} / rac{N_{MC}^{e^+}}{N_{MC}^{e^-}}$$

- Measure data Lumi. asymmetry? Time stability?
- Model experiment in simulation Reality matched?
- Generate pseudo data Radiative corrections? F.F.?
- Track data + pseudo data
- Define cuts
- Background subtraction
- Build ratio

$$R_{2\gamma} = rac{N_{exp}^{e^+}}{N_{exp}^{e^-}} / rac{N_{MC}^{e^+}}{N_{MC}^{e^-}}$$

- Measure data Lumi. asymmetry? Time stability?
- Model experiment in simulation Reality matched?
- Generate pseudo data Radiative corrections? F.F.?
- Track data + pseudo data Tracker efficiency?
- Define cuts
- Background subtraction
- Build ratio

$$R_{2\gamma} = rac{N_{exp}^{e^+}}{N_{exp}^{e^-}} / rac{N_{MC}^{e^+}}{N_{MC}^{e^-}}$$

- Measure data Lumi. asymmetry? Time stability?
- Model experiment in simulation Reality matched?
- Generate pseudo data Radiative corrections? F.F.?
- Track data + pseudo data Tracker efficiency?
- Define cuts Cut bias?
- Background subtraction Background model?
- Build ratio

$$R_{2\gamma} = rac{N_{exp}^{e^+}}{N_{exp}^{e^-}} / rac{N_{MC}^{e^+}}{N_{MC}^{e^-}}$$

How to check systematics

Redundancy

- Multiple luminosity monitors
- Multiple MC generators
- Multiple trackers
- Multiple analyses
- Associated quantities
 - Lepton left vs. lepton right by species
 - Charge average: $\frac{\sigma_{exp}^{e^+} + \sigma_{exp}^{e^-}}{\sigma_{MC}^{e^+} + \sigma_{MC}^{e^-}} \approx 1$ \implies TPE cancels in first order

Effoot		Vardiat			
LIIECI	charge avg.	charge avg. left/right ratio		Verdici	
TPE	no	no	yes	signal	
Soft TPE model	no (1st ord.)	no			
F. F. model	yes	no			
Luminosity					
Total eff.					
Local eff.					
Proton accept.					
Lepton accept.					
Cuts					
Bkgd. subtr.					

MC model / form factor effects

Baseline: Dipole F. F., Maximon Tjon rad. corrections

Soft-photon corrections are sizeable

Upcoming workshop on two-boson diagrams at Amherst Center for Fundamental Interactions! Interested? Talk to Michael Ramsey-Musolf, Richard Milner, or me.

Effoot		Vardiat			
Elleci	charge avg. left/right		ratio	VEIGICI	
TPE	no	no	yes	signal	
Soft TPE model	no (1st ord.)	no	yes	use all	
F. F. model	yes	no	no	\checkmark	
Luminosity	yes	no	asymmetry		
Total eff.					
Local eff.					
Proton accept.					
Lepton accept.					
Cuts					
Bkgd. subtr.					

Redundant systems:

- Slow control luminosity
 - beam current, target flow, temperature
- Symmetric Møller/Bhabha monitor
 - MC of both processes
- e[±]e⁻ + e[±]p double coincidence in symmetric Møller/Bhabha detector (multi-interaction events, MIE)
- 12° monitor
 - two independent $e^{\pm}p$ measurements

Symmetric Møller/Bhabha monitor

- Calculate coincidence rate from e[±]p simulation and e[±]e⁻ rate measurement
- Correct for luminosity variance (time / bunch charge)
- Result is independent of:
 - o detector efficiency
 - Møller / Bhabha cross section
- Reduced sensitivity on beam position, geometry

$e^{\pm}e^{-}+e^{\pm}p$ double coincidence

- Slow control luminosity induced asymmetry: $\sim 0.55\%$
- Uncertainty: 0.10% stat. 0.35% syst.

• $< \varepsilon >= 0.99975$, $< Q^2 >= 0.002 \, (GeV/c)^2$

12° luminosity monitor

- Yields using SM double coinc. luminosity
- Left and right agrees to within 0.1%
- TPE at $Q^2 = 0.168 (GeV/c)^2$?
- Uncertainty: 0.03% stat., 0.46% syst.

Effoot		Vardiat			
Elleci	charge avg. left/right		ratio	Verdici	
TPE	no	no	yes	signal	
Soft TPE model	no (1st ord)	no	yes	use all	
F. F. model	yes	no	no	\checkmark	
Luminosity	yes	no	asymmetry	\checkmark	
Total eff.	yes	no	no		
Local eff.	yes	(yes)	reduced		
Proton accept.	yes	(yes)	no		
Lepton accept.	yes	(yes)	reduced		
Cuts					
Bkgd. subtr.					

- Calculate $R_{2\gamma}$ for lepton left/right
- Ratio should be 1
- MC corrects acceptance difference

Few deviations bigger than statistical. Take worst case as global systematic error.

Charge average

Charge average

52

Bonus physics

The crux: systematics

Effoot		Vardiat			
Elleci	charge avg.	charge avg. left/right rati		VEICICI	
TPE	no	no	yes	signal	
Soft TPE model	no (1st ord)	no	yes	use all	
F. F. model	yes	no	no	\checkmark	
Luminosity	yes	no asymmetry		\checkmark	
Total eff.	yes	no no		limited	
				knowledge	
Local eff.	yes	(yes)	reduced	\checkmark	
Proton accept.	yes	(yes)	no	\checkmark	
Lepton accept.	yes	(yes)	reduced	\checkmark	
Cuts	yes	reduced	reduced		
Bkgd. subtr.	yes	reduced	reduced		

Cuts and Background subtraction

- Multiple independent analyses of the same data set
- Different approaches in
 - Particle ID
 - Track / Event selection
 - Background subtraction
- Methods different, results similar!

Cuts and Background subtraction

- Multiple independent analyses of the same data set
- Different approaches in
 - Particle ID
 - Track / Event selection
 - Background subtraction
- Methods different, results similar!

Meta-analysis

- Take average of all analyses
- Standard deviation as systematic uncertainty

The crux: systematics

Effoot		Vardiat			
Elleci	charge avg.	harge avg. left/right ratio		Verdici	
TPE	no	no	yes	signal	
Soft TPE model	no (1st ord)	no	yes	use all	
F. F. model	yes	es no no		\checkmark	
Luminosity	yes	no asymmetry		\checkmark	
Total eff.	yes	no	no	limited	
				knowledge	
Local eff.	yes	(yes)	reduced	\checkmark	
Proton accept.	yes	(yes)	no	\checkmark	
Lepton accept.	yes	(yes)	reduced	\checkmark	
Cuts	yes	reduced	reduced	\checkmark	
Bkgd. subtr.	yes	reduced	reduced	\checkmark	

OLYMPUS results (B. Henderson et al., arXiv:1611.04685 (nucl-ex))

With exponentation, using Mo-Tsai soft photon calc.

2 1.5 0.5 0.5 1.5 0.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Borisyuk and Kobushkin	1	2.14	
Blunden, et al.	1	2.94	
Bernauer, et al.	1	4.19	
Tomasi-Gustafsson, et al.	1	5.09	
Arrington and Sick	1	7.72	
Qattan, et al.	1	25.0	
No hard TPE ($R_{2\gamma} \equiv 1$)	1	7.97	

	$R_{\rm o}^{\rm LNP}$	$R_{\rm a}^{\rm LNP}$ $\underline{\chi^2}$		$R_{2\gamma}^{LNP}$		
	$\kappa_{2\gamma}$	n _{d.f.}	Run-I	Run-II	n _{d.f.}	
Borisyuk and Kobushkin	1	2.14	0.998	0.997	3.80	
Blunden, et al.	1	2.94	0.998	0.997	4.75	
Bernauer, et al.	1	4.19	0.997	0.995	1.00	
Tomasi-Gustafsson, et al.	1	5.09	1.001	1.001	5.97	
Arrington and Sick	1	7.72	1.000	1.000	8.18	
Qattan, et al.	1	25.0	1.000	1.002	22.0	
No hard TPE ($R_{2\gamma} \equiv 1$)	1	7.97	1	1	7.97	

LAID

	R_{o}^{LNP}	χ^2	$R_{2\gamma}^{\text{LINP}}$		$\underline{\chi^2}$	
	$\gamma \gamma$	n _{d.f.}	Run-I	Run-II	n _{d.f.}	
Borisyuk and Kobushkin	1	2.14	0.998	0.997	3.80	
Blunden, et al.	1	2.94	0.998	0.997	4.75→4.01	
Bernauer, et al.	1	4.19	0.997	0.995	1.00→1.95	
Tomasi-Gustafsson, et al.	1	5.09	1.001	1.001	5.97	
Arrington and Sick	1	7.72	1.000	1.000	8.18	
Qattan, et al.	1	25.0	1.000	1.002	22.0	
No hard TPE ($R_{2\gamma} \equiv 1$)	1	7.97	1	1	7.97	

CLAS (D. Rimal et al., arXiv:1603.00315 , D. Adikaram et al., Phys. Rev. Lett 114, 062003)

CLAS (D. Rimal et al., arXiv:1603.00315 , D. Adikaram et al., Phys. Rev. Lett 114, 062003) (color adjusted)

Fit to world data set:

- 12 nonoverlapping points from CLAS
- 4 Vepp-3 points

	$\frac{\chi^2}{n_{\rm d.f.}}$
Z & Y (N)	1.09
Ζ&Υ(N+Δ)	1.03
Blunden (N)	1.06
No TPE	2.10
Point-proton	6.96

χ^2 of the world data set

	VEPP-3	CLAS		OLY	World	
	$\frac{\chi^2}{n_{\rm d.f.}}$	$\frac{\chi^2}{n_{\rm d.f.}}$	N.	$\frac{\chi^2}{n_{\rm d.f.}}$	N.	
Blunden	4.01	0.70	1.23σ	0.73	3.278σ	1.088
Bernauer	1.95	0.57	-0.36 σ	0.49	0.45σ	0.679

- Large normalization shifts for Blunden
- Point-wise syst. errors too large in CLAS/OLYMPUS?
- Need to check other models
- Non-trivial: Map to same soft-photon description

Difference data to prediction

68

Bernauer

Take away / my interpretation

In measured region

- Data agrees with Mainz extraction
 TPE dominant effect for f.f. ratio discrepancy
- Blunden has "better" slope, but scale is ruled out.

At larger Q²

- Slight hint that Mainz fit overpredicts slope \implies TPE might not explain full discrepancy at larger Q^2
- Cannot trust theoretical predictions if off for measured Q²

The book isn't closed on this one

Direct TPE measurement at large Q² needed!

OLYMPUS: Projected performance

Cuts (slice at $Q^2 = 1.175 \, (\text{GeV/c})^2$)

