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Introduction



Brief Overview of JLab Work

• Graduate work at JLab since 2013.

• SEOP of polarized 3He targets at W&M.

• Gas Ring ImagiNg CHerenkov (GRINCH):

– Built and tested the mirror system.

– Characterized the PMTs and assembled the

detector.

– Developed preliminary DAQ.

– Tested and implemented VETROC boards

allowing for real-time high rate triggering.

• Hall A for the Tritium Experiments:

– Maintained and prepared VDCs and EM

calorimeters.

– Counting house script maintenance and

development.

– Shift work and analysis shifts.

Figure 1: GRINCH

Detector.

• Worked on many JLab experiments:

– SRC X>2, An
1, GMp, Ar(e,e’p), DVCS, and the Tritium Experiments.
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Elastic Electron Scattering

Figure 2: Elastic Electron

Scattering. An incident electron

interacts with a target by exchanging a

virtual photon causing the electron to

scatter.

ν = E0 − E ′ (1)

E ′ =
E0

1 + 2E0

M sin2
(
θ
2

) (2)

Q2 = −q2 = 4E0E
′sin2

(
θ

2

)
(3)

XBj =
Q2

M(E0 − E ′)
(4)

• Elastic scattering is completely

determined by knowing two of

E0, θ, or E’.
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Rutherford Cross Section

• The differential cross section describes the likelihood of an electron

interacting with a target.

– Measures the ‘size’ of an interaction.

– Must be viewed within a detector’s solid angle acceptance.

• Rutherford Scattering: Charged particle scattering off a nucleus [1].

(
dσ

dΩ

)
Rutherford

=
4Z 2α2 (~c)2 E ′2

|qc|4
(5)

• Cross section falls off like 1
q4 .

– Likelihood of electrons interacting with a target decreases rapidly

with energy.

• Rutherford equation does not account for relativity, spin, or target

recoil.
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Mott Cross Section

• Now add a term to account for relativity obtaining the Mott

Equation [1]:(
dσ

dΩ

)
Mott

No Recoil

=

(
dσ

dΩ

)
Rutherford

(
1− β2sin2

(
θ

2

))
(6)

• In the relativistic limit β → 1 yielding [1]:(
dσ

dΩ

)
Mott

No Recoil

=
4Z 2α2 (~c)2 E ′2

|qc |4
cos2

(
θ

2

)
(7)

• Now we have accounted for relativity, but we have also accounted

for spin with the cos2
(
θ
2

)
term.

– Suppresses scattering through 180◦ for a spinless target which is

forbidden by conservation of helicity.
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Mott Cross Section Cont.

• At our E0 of 3.356 GeV an electron has 1.48 GeV of energy and a
3He nucleus has a mass of 2.81 GeV.

• Clearly neglecting recoil is no longer an option. Happily, the recoil

term is easily found from Equation 2 describing elastic scattering

E ′

E0
=

1

1 + 2E0

M sin2
(
θ
2

) (8)

• Now we can add the recoil term and rewrite the Mott cross section

with a few substitutions from earlier as [1]:

(
dσ

dΩ

)
Mott

=
4Z 2α2 (~c)2 E ′3

|qc |4E0
cos2

(
θ

2

)
= Z 2 E

′

E0

α2cos2
(
θ
2

)
4E 2

0 sin
4
(
θ
2

) (9)
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Nuclear Form Factors

• Now we have an equation that accounts for relativity, spin, and

recoil off of a point mass.

• Nuclei are not point masses! How do we describe the structure

inside of a nucleus?(
dσ

dΩ

)
exp

=

(
dσ

dΩ

)
Mott

|F (q2)|2 (10)

• The term |F (q2)|2 is called a form factor. It contains all of the

spatial and structural information about the target.

• If we assume the validity of the Born approximation (incident wave

function ≈ scattered wave function) and no recoil the form factor

can be written as a Fourier transform of the charge distribution.

7
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Form Factors Cont.

F (q2) =

∫
e

iq·x
~ ρ(x)d3x

x−→r−−−→ 4π

∫
ρ(r)

sin (|q|r/~)

|q|r/~
r2dr (11)

• This procedure can be inverted to find the charge distribution, ρ [1].

ρ(r) =
1

(2π)3

∫
F (q2)e

−iq·x
~ d3q (12)

• Let’s approximate a nucleus as a hard sphere of charge.

Figure 3: Hard Sphere Charge Distribution

Form Factor.

– Yields oscillatory form

factor.

– Charge radii can be

estimated by minima

location [1]!

R ≈ 4.5~
q

(13)
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Charge Radius

• We can find charge radii by taking r→0 in the form factor.

– The wavelength of the electron, ~
q

, is assumed to be much larger

than the charge radius: R � ~
q

=⇒ Rq
~ � 1.

• Next we apply the Euler formula to the form factor equation and

Taylor expand the cosine term [1]:

F (q2) =

∫ ∞
0

∫ 1

−1

∫ 2π

0

ρ(r)

(
1− 1

2

|q||r |cos(ω)

~

)
r2dφ dcos(ω) dr (14)

F (q2) = 4π

∫ ∞
0

ρ(r)r2dr − 4π
q2

6~2

∫ ∞
0

ρ(r)r4dr (15)

• Applying the normalization 4π
∫∞

0
ρ(r)r2dr = 1, and defining the

charge radius as 〈r2〉 = 4π
∫∞

0
r2ρ(r)r2dr , we find:

F (q2) = 1− q2

6~2
〈r2〉 → 〈r2〉 = −6~2 dF (q2)

dq2
|q2=0 (16)

9
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Rosenbluth Equation

• Now our cross section accounts for charge, relativity, spin, and

recoil. Great! Is there anything still missing?

– Magnetic interactions and internal structure are still not included.

– Introduce a new magnetic term as was done for relativity [1].(
dσ

dΩ

)
point

spin 1/2

=

(
dσ

dΩ

)
Mott

(
(1− 2τ tan2

(
θ

2

))
, τ =

Q2

4M
(17)

• Finally add in nuclear form factors to describe internal structure.(
dσ

dΩ

)
=

(
dσ

dΩ

)
Mott

∗

[
G 2

E

(
Q2
)

+ τG 2
M

(
Q2
)

1 + τ
+ 2τG 2

M

(
Q2
)
tan2

(
θ

2

)]
(18)

G p
E

(
Q2 = 0

)
= 1 and G p

M

(
Q2 = 0

)
= 2.79 (19)

G n
E

(
Q2 = 0

)
= 0 and G n

M

(
Q2 = 0

)
= −1.91 (20)
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dσ
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Rosenbluth Equation Cont.

• GE and GM are known as the Sach’s form factors. Several other

form factors are commonly used.

– F1 and F2 are called the Dirac and Pauli form factors respectively.

GE

(
Q2
)

= F1

(
Q2
)
− µτF2

(
Q2
)
(21)

GM

(
Q2
)

= F1

(
Q2
)

+µF2

(
Q2
)

(22)

– There are also the Fch and Fm form factors used in this analysis.

Fch

(
Q2
)

= GE

(
Q2
)

(23) Fm

(
Q2
)

=
GM

(
Q2
)

µ
(24)

• Now let’s rewrite the cross section for the final Rosenbluth equation:(
dσ

dΩ

)
exp

=

(
dσ

dΩ

)
Mott

∗ 1

1 + τ

[
G 2

E

(
Q2
)

+
τ

ε
G 2

M

(
Q2
)]

(25)

ε =

(
1 + 2(1 + τ)tan2

(
θ

2

))−1

(26)
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Experimental Setup



Experiment E08-014

• Experiment E08-014 ran in Jefferson Lab’s Hall A in 2011 [2].

– Measured inclusive cross sections of 2H, 3He, 4He, 12C, 40Ca, and
48Ca in the range of 1.1 GeV/c < Q2 < 2.5 GeV/c.

– Compared heavy targets to two and three-nucleon targets to study

short range correlations between two and three-nucleon clusters.

• E08-014 mostly took quasielastic data, but through a happy

coincidence, KIN 3.2 was able to view the 3He elastic peak.

– E0 = 3.356 GeV. Scattering angle of 20.51◦.

Figure 4: Elastic Band for 3He.
Figure 5: Elastic Peak in xBj .
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Hall A Configuration

• E08-014 used the standard Hall A configuration and detector

packages.

– Main trigger (S1 & S2m & GC).

Figure 6: Hall A Top View. Standard Hall A configuration. Image from [3].

13



Cross Section Extraction



Extracting a Cross Section

• We can rewrite the cross section in a more useful form:

(
dσ

dΩ

)
exp

=
ps ∗ Ne

Nin ∗ ρ ∗ LT ∗ εdet

1

∆Ω∆P∆Z
(27)

• Essentially, this is a game of electron counting.

– To count electrons we need the beam charge.

Figure 7: BCM Readouts for Run 4074.

Q = 〈Ibeam〉 ∗ time

(28)

Nin =
Q

e
(29)
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Particle Identification

• How many elastic electrons, Ne , were detected?

– We need a pure electron sample. Pions can contaminate the sample.

– The EM calorimeters and GC can discriminate electrons from pions.

Figure 8: PID with the Pion

Rejectors. Image from [2].

Figure 9: PID with the Gas

Cherenkov. Image from [2].
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Pion Rejectors PID

• For our six runs there appear to be very few pions.

• Some delta (knock-on) electrons are in the sample.

– These delta electrons and few pions can be removed with a simple

diagonal cut on the pion rejectors.

Figure 10: PID with the Pion Rejectors.

.
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Gas Cherenkov PID

• Does the gas Cherenkov agree with the pion rejectors?

• Again there appear to be almost no pions at our kinematics.

Figure 11: PID with the Gas Cherenkov.

.
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Target Density

• Now we need to know how many scattering centers are in the target.

• Let’s look at the target’s density profile to find ρ.

Figure 12: 3He Boiling Effect. Image from [2].

• The density is not constant along the cell due to boiling effects.

• CFD calculations by Silviu Covrig allowed ρ to be calculated [4].

– 0.013 g/cm3 ± 0.0004 g/cm3.

18
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Simulating Elastic Electrons

• How do we know how many events were elastic?

– Find the elastic electron yield.

– Count electrons in the elastic peak (XBj = 3).

• Before finding the experimental elastic electron yield we want a

point of comparison.

– We can simulate what the elastic electron spectrum is expected to

look like at our kinematics using SIMC.

• SIMC:

– Monte Carlo generates events randomly in given kinematic ranges.

– Transports electrons from scattering vertex through spectrometers to

detector stack.

– Contains old 3He elastic scattering model from Amroun et al [5].

– Shape of form factors and cross section should be accurate.

– Cross section magnitude is expected to be off at our kinematics.

– Can calculate radiative effects.

19
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SIMC Output

Figure 13: φ. In plane angle. Figure 14: θ. Out of plane angle.

• Red is SIMC and blue is data.

• φ and θ both look decent.

• There is a shift in dP.

– Known issue with SIMC.

– Little impact on final

measurement.

Figure 15: dP Momentum fraction. 20



Aluminium Background Subtraction

• Take a closer look at the XBj plot from earlier (blue histogram).

– What are the events above the 3He elastic peak?

Figure 16: Scaled Aluminium Background and XBj .

• Aluminium contamination from target cell (red histogram).

– Use dummy cell to subtract Al events.

– Scale dummy by charge, thickness, and radiative corrections.

21
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Aluminium Background Subtraction Cont.

• What happens when we subtract off the aluminium contamination

from the XBj spectrum?

Figure 17: Scaled Aluminium Background and XBj .

• Now most of the events above the elastic peak disappear!

22



Aluminium Background Subtraction Cont.

• What happens when we subtract off the aluminium contamination

from the XBj spectrum?

Figure 18: Aluminium Subtracted XBj .

• Now most of the events above the elastic peak disappear!
22



Fitting the Elastic Peak

• How do we count the number of electrons in the elastic peak, Ne?

– Fit the peak and integrate over the elastic peak.

• What kind of fit might be appropriate?

– QE background looks exponential and elastic peak looks Gaussian.

– Create a fit equation summing an exponential and a Gaussian:

Fcombined = e(P0+P1∗x) + P2 ∗ e

(
−1

2

(
x−P3

P4

)2
)

(30)

Figure 19: Combined Fit of XBj for E08-014.
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Comparing SIMC and Experimental Yields

• Now let’s look at the elastics from SIMC.

Figure 20: SIMC Elastically Scattered Electrons.

• The spectrum looks reasonable.

– Prominent elastic peak at XBj = 3.

– Nice radiative tail as expected.

24



Comparing SIMC and Experimental Yields

• Now let’s look at the elastics from SIMC.
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Comparing SIMC and Experimental Yields Cont.

• How do we compare simulated elastic events to experimental events

that are mostly quasielastic?

– We can fit only the QE background and then sum the fit with the

SIMC elastics.

– The QE fit is made in the region where few elastics are expected.

Figure 21: Histogram Binned to Fit of Quasielastic Background.
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Comparing SIMC and Experimental Yields Cont.

• Finally we can compare the elastic electron yield from SIMC and

experimental data.

– The area under the Gaussian of the two combined fits, but above the

QE background, represents the elastic electron yield.

– The elastic electron yield is directly proportional to the cross section.

– Note that the real data yield is increased slightly to correct for

live-time and various efficiencies.

• Recall that at our kinematics the old 3He model in SIMC has the

correct cross section shape but incorrect magnitude [5].
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Cross Section Value

• Yields plots for the experimental data and SIMC scaled to match.

– Red is SIMC + QE background fit and blue is experimental data.

Figure 22: SIMC + QE Scaled to Experimental Elastic Electron Yield.

• Yield shapes are similar. Slight shift is likely a Z offset issue.

• SIMC scale factor to match data = 1.01984.

• New 3He cross section value is 1.335 * 10−10 fm−2/sr.
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Cross Section Value

• Yields plots for the experimental data and SIMC scaled to match.

– Red is SIMC + QE background fit and blue is experimental data.

Figure 22: SIMC + QE Scaled to Experimental Elastic Electron Yield.

• Yield shapes are similar. Slight shift is likely a Z offset issue.

• SIMC scale factor to match data = 1.01984.

• New 3He cross section value is 1.335 * 10−10 fm−2/sr. 27



Where to Place the Data Point

• We now have the cross section’s magnitude. Great! We’re done

right?

– Wrong!

– Where do we put our point?

– What is the uncertainty?

• Can’t we just calculate Q2 from the center of our bin and be done?

• The bin center is only correct if the function is linear [6].

Figure 23: 3He Elastic Cross Section at 3.356 GeV.
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Where to Place the Data Point Cont.

• Now let’s zoom in and remove the log scale to see the true shape.

Figure 24: 3He Elastic Cross Section Q2 Bin at 3.356 GeV.

• Clearly not linear.

• Weight the Q2 values in the bin by the cross section magnitude.

• The bin center would place the Q2 at 35.90 fm−2.

• The weighted bin center is at Q2 = 34.19 fm−2.
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Uncertainty

• Lastly, we need to quantify the uncertainty on our point.

Uncertainty Source
Cross Section

Uncertainty

Statistical Sources

Electron Yield 4.21%

Al Background Subtraction 1.1%

Total Statistical 4.36%

Systematic Sources

Target Density 3.08%

Optics Calibration 2.248%

GC Efficiency 1.32%

Beam/Target Offsets 1.1%

Radiative Corrections 1%

Beam Charge 1%

VDC Single-Track Efficiency 1%

Trigger Efficiency 1%

Beam Energy 0.72%

SIMC Model Comparison to Reality 0.5%

PR Cut 0.055%

Ytarget Position 0.045%

Live-time 0.01145%

Total Systematic 4.72%

Total Uncertainty

Statistical & Systematic
6.42%

Table 1: Table of Uncertainties
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Comparison to Other Measurements

• Our cross section measurement is now 1.335 ± 0.086 * 10−6 µb/sr

at Q2 = 34.19 fm−2.

• JLab took high Q2 data for 3He [7].

– E0 = 3.304 GeV. Scattering angle of 20.83◦.

– Cross section = 1.57 ± 0.10 * 10−6 µb/sr at Q2 = 34.1 fm−2.

– This analysis’ cross section is ≈ 15% smaller.

– Accounting for our higher Q2 the error bars should nearly overlap.

• Cross section estimate from older SIMC model [5].

– E0 = 3.356 GeV. Scattering angle of 20.51◦.

– Cross section = 1.887 * 10−6 µb/sr at Q2 = 34.19 fm−2.

– This analysis’ cross section is ≈ 30% smaller.

– Old model had very little high Q2 data so we expect the magnitude

to not be extremely accurate.

• In sum this new point seems reasonably consistent with other data.
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Global Fits



World Data

• We now have a new cross section!

But what use is a single point?

• We need context to learn anything.

• For context we can gather the world data for 3He elastic cross

sections.

– We can also gather the 3H world data so we have mirror nuclei.

– The world data for 3H and 3He stretches back over 50 years!

– Experiments were done at at least nine different facilities.

– Many experiments used different methodologies.

• This analysis used as many of the data sets as possible.

– Some papers did not publish their data.

– Some published only form factors and/or did not publish scattering

angles and energies.

• This analysis adds new JLab high Q2 data for 3He as well as the new

cross section from SRC X>2.
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Sum of Gaussians Parametrization

• What do we want to get out of the world data?

– Form factors, charge densities, and charge radii.

• How do we find these quantities?

– We need some parametrization to fit the world data.

• Select a sum of Gaussians (SOG) parametrization [8].

– Parametrizes form factors using multiple Gaussians placed at

different radii.

– Disallows unphysically small structures in the charge density.

– qmax based on limited data: λ = 2π
qmax

.

ρ(r) =
Ze

2π3/2γ3

N∑
i=1

Qi

1 +
2R2

i

γ2

(
e−(r−Ri )

2/γ2

+ e−(r+Ri )
2/γ2
)

(31)

• With normalization:

4π

∫ ∞
0

ρ(r)r2dr = Ze (32)
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SOG Cont.

• When using the plane wave born approximation the form factors can

be written as [8]:

F(ch,m)(q) = exp

(
−1

4
q2γ2

) N∑
i=1

Qi (ch,m)

1 + 2R2
i /γ

2

(
cos(qRi ) +

2R2
i

γ2

sin(qRi )

qRi

)
(33)

• The Qi are the fit parameters.

– Represent the fraction of charge held by each Gaussian.

– Qi >0 and
∑

Qi = 1.

• The Ri represent the radii at which each Gaussian is placed.

– Selected pseudorandomly then optimized.

• The differential cross section can be written as [5]:

dσ

dΩ
=

(
dσ

dΩ

)
Mott

1

η

[
q2

q2
F 2

ch(q) +
µ2q2

2M2

(
1

2

q2

q2
+ tan2

(
θ

2

))
F 2

m(q)

]
(34)

η = 1 + q2/4M2 (35)
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SOG Cont.

• To account for the Born approximation we utilize Qeff in place of a

full phase shift code.

Q2
eff = Q2

(
1 +

1.5Zα

E0 ∗ 1.12 ∗ A 1
3

)2

(36)

• Next we need to decide how to generate our starting radii, Ri .

– There is an Rmax beyond which there is almost no charge density.

– Rmax ≈ 5 fm for our nuclei.

– Consecutive Ri spacing is closer at smaller radii.

– Ri < Rmax /2 ≈ half as far apart as spacing of Ri > Rmax /2.

• Essentially, the set of Ri constitute a model of the charge

distribution.

• Ri are generated within pseudorandom ranges initially to span the

model space.

• Ri are then adjusted up and down by 0.1 fm until χ2 is minimized.

35



SOG Cont.

• To account for the Born approximation we utilize Qeff in place of a

full phase shift code.

Q2
eff = Q2

(
1 +

1.5Zα

E0 ∗ 1.12 ∗ A 1
3

)2

(36)

• Next we need to decide how to generate our starting radii, Ri .

– There is an Rmax beyond which there is almost no charge density.

– Rmax ≈ 5 fm for our nuclei.

– Consecutive Ri spacing is closer at smaller radii.

– Ri < Rmax /2 ≈ half as far apart as spacing of Ri > Rmax /2.

• Essentially, the set of Ri constitute a model of the charge

distribution.

• Ri are generated within pseudorandom ranges initially to span the

model space.

• Ri are then adjusted up and down by 0.1 fm until χ2 is minimized.
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Selecting the Number of Gaussians

• How do we select how many Gaussians, NGaus , to use in our fit?

– χ2 is useful, but it can be misleading. Reduced χ2 can help.

χ2 =
N∑

n=1

(σexp − σfit)2

∆2
(37) rχ2 =

χ2

N − Nvar − 1
(38)

• Akaike and Bayesian information criterion are more powerful [9].

AIC = N ln

(
χ2

N

)
+ 2Nvar (39) BIC = N ln

(
χ2

N

)
+ ln (N)Nvar (40)

• The Qi are not forced to sum to unity.

– By not forcing
∑

Qi = 1 the
∑

Qi becomes a measure of how well

our fit and the current data approach physical requirements.

• Lastly the fits can be visually inspected for physicality.
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Selecting the Number of Gaussians Cont.

• Compare the metrics for different values of NGaus for 3He and 3H.

NGaus Avg. χ2 rχ2 BIC AIC
∑

Qich

∑
Qim χ2

max

‘Good’

Fits

8 584.902 2.41695 255.440 223.228 1.00769 1.11065 765 11

9 470.435 1.96014 204.590 172.375 1.00851 1.02161 521 58

10 469.177 1.97133 209.454 173.793 1.00812 1.08196 519 66

11 445.136 1.88617 201.387 162.233 1.00843 1.04007 503 67

12 436.264 1.86438 201.727 159.045 1.00839 1.02557 501 75

13 439.084 1.89260 208.924 162.685 1.00947 1.03975 500 56

Table 2: Determination of NGaus for 3He

NGaus Avg. χ2 rχ2 BIC AIC
∑

Qich

∑
Qim χ2

max

‘Good’

Fits

7 611.690 2.79310 263.039 238.851 1.08373 1.32730 611.7 1

8 close 601.836 2.77344 264.694 237.051 1.09013 1.32859 603 32

8 wide 601.752 2.79892 264.661 237.018 1.08970 1.33270 603 39

9 601.768 2.82579 270.123 239.025 1.08849 1.31982 604 95

10 601.893 2.84416 275.627 241.074 1.09248 1.29611 603 78

11 600.750 2.77305 280.637 242.629 1.08699 1.34100 602 88

Table 3: Determination of NGaus for 3H
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3He Fits

• Let’s look at the NGaus = 12 3He form factor plots.

Figure 25: Charge Form Factors from 1352 3He Fits with no χ2
max cut.

• Many of these fits look nonphysical. How do we remove them?

– Apply a cut on χ2.
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3He Charge Form Factor

NGaus Avg. χ2 rχ2 BIC AIC
∑

Qich

∑
Qim χ2

max

Below

Cut

12 523.743 2.23822 249.063 184.771 1.01018 1.04558 No Cut 1352

12 436.564 1.86566 201.908 159.223 1.00840 1.02235 500 852

Table 4: Metrics for Final 3He Fits

Figure 26: Charge Form Factors from 1352 3He Fits with no χ2
max cut.
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3He Charge Form Factor

NGaus Avg. χ2 rχ2 BIC AIC
∑

Qich

∑
Qim χ2

max

Below

Cut

12 523.743 2.23822 249.063 184.771 1.01018 1.04558 No Cut 1352

12 436.564 1.86566 201.908 159.223 1.00840 1.02235 500 852

Table 4: Metrics for Final 3He Fits

Figure 27: Charge Form Factors from 852 3He Fits surviving a χ2
max = 500 cut.
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3He Charge Density

• Now we can Fourier transform Fch to find the charge density.

– As expected the density falls off by r = 5 fm.

– Density turns over slightly and plateaus at small r.

Figure 28: Charge Densities from 1352 3He Fits with no χ2
max cut. 40



3He Charge Density

• Now we can Fourier transform Fch to find the charge density.

– As expected the density falls off by r = 5 fm.

– Density turns over slightly and plateaus at small r.

Figure 29: Charge Densities from 852 3He Fits surviving a χ2
max = 500 cut.40



3He Charge Radius

• Using the derivative of Fch we can obtain the charge radius.

– Higher radii disappear completely with the cut.

– Avg. 3He charge radius = 1.90 fm, SD = 0.00144 fm.

– Saclay 1.96 ± 0.03. Bates 1.87 ± 0.03 [10].

– GFMC 1.97 ± 0.01. χEFT 1.962 ± 0.004 [10].

Figure 30: Charge Radius from 1352 3He Fits with no χ2
max cut.
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• Using the derivative of Fch we can obtain the charge radius.
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– Saclay 1.96 ± 0.03. Bates 1.87 ± 0.03 [10].
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Figure 31: Charge Radius from 852 3He Fits surviving a χ2
max = 500 cut.
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New 3He Fch Fits in Context

• We can compare the new 3He Fch fits to older fits as well as theory

[11].

Figure 32: 3He Charge Form Factors. 42



New 3He Fch Fits in Context Cont.

• The Fch fits are very tightly

grouped due to an abundance

of low Q2 data.

– All Ri models strongly agree

up to 55-60 fm−2.

• The new fits almost perfectly

overlap the fits of Amroun et al.

• Conventional Approach: Simulates 2 and 3-body nucleon

interactions and relativistic corrections [11].

– Describes the Fch minima and magnitude very well.

• χEFT: Uses chiral symmetry of QDC to describe the internal strong

and EM interactions (momentum space cutoffs 500/600 MeV) [11].

– Underestimates magnitude of Fch. χEFT500 finds first minima.

• Covariant spectator theorem (CST): Covariant FT where nucleons

and light mesons are effective DOF (fully relativistic) [11].

– Misses Fch minima and underestimates magnitude.
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3He Magnetic Form Factor

Figure 33: Magnetic Form Factors from 1352 3He Fits with no χ2
max cut.
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3He Magnetic Form Factor

Figure 34: Magnetic Form Factors from 852 3He Fits surviving a χ2
max = 500

cut.
44



New 3He Fm Fits in Context

• We can compare the new 3He Fm fits to older fits as well as theory.

Figure 35: 3He Magnetic Form Factors.

45



New 3He Fm Fits in Context Cont.

• Fm fits more loosely grouped.

Lacking high Q2 data.

– The Ri models take divergent

paths above 40 fm−2.

• The first minima is shifted back

from Amroun et al.

• Magnitude decreased between

minima.

• Conventional Approach [11]:

– Minima shifted too low. Appropriate Fm magnitude above 25 fm−2.

• χEFT [11]:

– χEFT500 misses minima. χEFT600 closest to minima, but

underestimates Fm magnitude.

• CST [11]:

– Very poor description of the data.

• Data first minima moved further away from all predictions.

– Theory is having difficulty predicting the 3He Fm.
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3He Representative Cross Section Fit Statistics

• 259 3He points. χ2 = 436. rχ2 = 1.86.

Figure 36: 3He Representative Form Factors and World Data Distribution.
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3He Representative Cross Section Fit Statistics

• 259 3He points. χ2 = 436. rχ2 = 1.86.

Figure 37: 3He Representative Fit χ2 vs. Q2.
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3He Representative Cross Section Fit Statistics

• 259 3He points. χ2 = 436. rχ2 = 1.86.

Figure 38: 3He Representative Fit Residual vs. Q2.
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3He Representative Cross Section Fit Statistics

• 259 3He points. χ2 = 436. rχ2 = 1.86.

Figure 39: 3He Representative Fit Residual vs. Q2 Zoomed. Two large residual

points from not shown.
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3H Charge Form Factor

NGaus Avg. χ2 rχ2 BIC AIC
∑

Qich

∑
Qim χ2

max

Below

Cut

8 611.385 2.81744 266.175 238.532 1.08866 1.33481 No Cut 2600

8 601.840 2.77346 264.695 237.053 1.08991 1.32926 603 908

Table 5: Metrics for Final 3H Fits

Figure 40: Charge Form Factors from 2600 3H Fits with no χ2
max cut.
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3H Charge Form Factor

NGaus Avg. χ2 rχ2 BIC AIC
∑

Qich

∑
Qim χ2

max

Below

Cut

8 611.385 2.81744 266.175 238.532 1.08866 1.33481 No Cut 2600

8 601.840 2.77346 264.695 237.053 1.08991 1.32926 603 908

Table 5: Metrics for Final 3H Fits

Figure 41: Charge Form Factors from 908 3H Fits surviving a χ2
max = 603 cut.
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3H Charge Density

• Again we Fourier transform Fch to find the charge density.

– Plateaus at small r like 3He. Unclear if the density turns over.

– Magnitude at r = 0 has much more uncertainty than 3He.

Figure 42: Charge Densities from 2600 3H Fits with no χ2
max cut. 49



3H Charge Density

• Again we Fourier transform Fch to find the charge density.

– Plateaus at small r like 3He. Unclear if the density turns over.

– Magnitude at r = 0 has much more uncertainty than 3He.

Figure 43: Charge Densities from 908 3H Fits surviving a χ2
max = 603 cut. 49



3H Charge Radius

• Again, using the derivative of Fch we can obtain the charge radius.

– Avg. 3H charge radius = 2.02 fm, SD = 0.0133 fm.

– Saclay 1.76 ± 0.09. Bates 1.68 ± 0.03 [10].

– GFMC 1.77 ± 0.01. χEFT 1.756 ± 0.006 [10].

– This is the result of not forcing Qich = 1.

Figure 44: Charge Radius from 2600 3H Fits with no χ2
max cut.
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New 3H Fch Fits in Context

• We can compare the new 3H Fch fits to older fits.

Figure 46: 3H Charge Form Factors.
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New 3H Fch Fits in Context Cont.

• Results are comparable with

Amroun et al.

– No new 3H data added.

– Above Q2 ≈ 25 fm−2 the fits

diverge greatly.

• Demonstrates the consistency

of our method.

• Conventional Approach [11]:

– Describes minimum well. Fch magnitude a bit large.

• χEFT [11]:

– χEFT500 misses minima and magnitude. χEFT600 close to

minimum, and slightly large Fch magnitude.

• CST [11]:

– Poorly describes the data.

• Theory predicts data relatively well.

– Better understanding of Fch magnitude needed.
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3H Magnetic Form Factor

Figure 47: Magnetic Form Factors from 2600 3H Fits with no χ2
max cut.
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3H Magnetic Form Factor

Figure 48: Magnetic Form Factors from 908 3H Fits surviving a χ2
max = 603 cut.
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New 3H Fm Fits in Context

• We can compare the new 3H Fm fits to older fits.

Figure 49: 3H Magnetic Form Factors.
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New 3H Fm Fits in Context Cont.

• Results are comparable with

Amroun et al.

– No new 3H data added.

– Very little understanding of

Fm above Q2 = 35 fm−2.

• Need more high Q2 data.

• Conventional Approach [11]:

– Early first minimum. If minimum shifts right Fm magnitude looks

close.

• χEFT [11]:

– χEFT500 misses badly. χEFT600 is similar to the conventional

approach.

• CST [11]:

– Poorly describes the data.

• Theory struggles to predict data.

– Magnitude may be close to correct if minimum shifts up in Q2.
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3H Representative Cross Section Fit Statistics

• 234 3H points. χ2 = 602. rχ2 = 2.77.

Figure 50: 3H Representative Form Factors and World Data Distribution.
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3H Representative Cross Section Fit Statistics

• 234 3H points. χ2 = 602. rχ2 = 2.77.

Figure 51: 3H Representative Fit χ2 vs. Q2.
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3H Representative Cross Section Fit Statistics

• 234 3H points. χ2 = 602. rχ2 = 2.77.

Figure 52: 3H Representative Fit Residual vs. Q2.
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Conclusions

• New 3He elastic cross section of 1.335 ± 0.086 * 10−6 µb/sr.

• Modern SOG fits with new JLab and this analysis’ data point were

performed.

– 3He Fch and 3H Fch and Fm relatively unchanged.

– 3He Fm first minimum shift up several fm−2 in Q2.

– 3He charge radii agrees with past data.

– 3H charge radii disagrees with past data (
∑

Qi 6= 1).

• A conventional theoretical approach using 2 and 3-body nucleon

interactions and relativistic corrections reproduces Fch well. χEFT

also performs decently.

– Theory predictions struggle with predicting Fm.

• Need more high Q2 data to understand form factors beyond the first

minimum.

– JLab is well positioned to make these measurements!

– Hall A back angle max of 150◦ with 12 GeV available. Rates fall

extremely fast, but very high Q2 could be accessed.

– Probe transitional region where scattering off hadrons and mesons →
scattering off quarks and gluons.
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