Extraction and Parametrization of Isobaric Trinucleon Elastic Cross Sections and Form Factors

Scott Barcus February 5th 2019

The College of William & Mary, Jefferson Lab

- 1. Introduction
- 2. Experimental Setup
- 3. Cross Section Extraction
- 4. Global Fits
- 5. Conclusions

Introduction

• Graduate work at JLab since 2013.

- Graduate work at JLab since 2013.
- SEOP of polarized ³He targets at W&M.

Figure 1: GRINCH Detector.

- Graduate work at JLab since 2013.
- SEOP of polarized ³He targets at W&M.
- Gas Ring ImagiNg CHerenkov (GRINCH):
 - Built and tested the mirror system.
 - Characterized the PMTs and assembled the detector.
 - Developed preliminary DAQ.
 - Tested and implemented VETROC boards allowing for real-time high rate triggering.

Figure 1: GRINCH Detector.

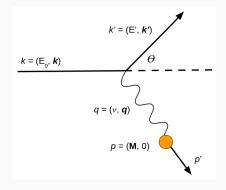
- Graduate work at JLab since 2013.
- SEOP of polarized ³He targets at W&M.
- Gas Ring ImagiNg CHerenkov (GRINCH):
 - Built and tested the mirror system.
 - Characterized the PMTs and assembled the detector.
 - Developed preliminary DAQ.
 - Tested and implemented VETROC boards allowing for real-time high rate triggering.
- Hall A for the Tritium Experiments:
 - Maintained and prepared VDCs and EM calorimeters.
 - Counting house script maintenance and development.
 - Shift work and analysis shifts.

Figure 1: GRINCH Detector.

- Graduate work at JLab since 2013.
- SEOP of polarized ³He targets at W&M.
- Gas Ring ImagiNg CHerenkov (GRINCH):
 - Built and tested the mirror system.
 - Characterized the PMTs and assembled the detector.
 - Developed preliminary DAQ.
 - Tested and implemented VETROC boards allowing for real-time high rate triggering.
- Hall A for the Tritium Experiments:
 - Maintained and prepared VDCs and EM calorimeters.
 - Counting house script maintenance and development.
 - Shift work and analysis shifts.
- Worked on many JLab experiments:
 - SRC X>2, A₁ⁿ, GMp, Ar(e,e'p), DVCS, and the Tritium Experiments.

Figure 1: GRINCH Detector.

Elastic Electron Scattering



$$\nu = E_0 - E' \tag{1}$$

$$E' = \frac{E_0}{1 + \frac{2E_0}{M}\sin^2\left(\frac{\theta}{2}\right)} \qquad (2)$$

$$Q^2 = -q^2 = 4E_0 E' \sin^2\left(\frac{\theta}{2}\right) \quad (3)$$

Figure 2: Elastic Electron Scattering. An incident electron interacts with a target by exchanging a virtual photon causing the electron to scatter.

$$X_{Bj} = rac{Q^2}{M(E_0 - E')}$$
 (4)

Elastic Electron Scattering

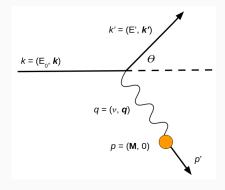


Figure 2: Elastic Electron Scattering. An incident electron interacts with a target by exchanging a virtual photon causing the electron to scatter.

$$\nu = E_0 - E' \tag{1}$$

$$E' = \frac{E_0}{1 + \frac{2E_0}{M}\sin^2\left(\frac{\theta}{2}\right)} \qquad (2)$$

$$Q^2 = -q^2 = 4E_0 E' \sin^2\left(\frac{\theta}{2}\right) \quad (3)$$

$$X_{Bj} = \frac{Q^2}{M(E_0 - E')} \tag{4}$$

 Elastic scattering is completely determined by knowing two of E₀, θ, or E'.

- The differential cross section describes the likelihood of an electron interacting with a target.
 - Measures the 'size' of an interaction.
 - Must be viewed within a detector's solid angle acceptance.
- Rutherford Scattering: Charged particle scattering off a nucleus [1].

- The differential cross section describes the likelihood of an electron interacting with a target.
 - Measures the 'size' of an interaction.
 - Must be viewed within a detector's solid angle acceptance.
- Rutherford Scattering: Charged particle scattering off a nucleus [1].

$$\left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} = \frac{4Z^2 \alpha^2 \left(\hbar c\right)^2 E'^2}{|qc|^4} \tag{5}$$

- The differential cross section describes the likelihood of an electron interacting with a target.
 - Measures the 'size' of an interaction.
 - Must be viewed within a detector's solid angle acceptance.
- Rutherford Scattering: Charged particle scattering off a nucleus [1].

$$\left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} = \frac{4Z^2 \alpha^2 \left(\hbar c\right)^2 E'^2}{|qc|^4} \tag{5}$$

- Cross section falls off like $\frac{1}{a^4}$.
 - Likelihood of electrons interacting with a target decreases rapidly with energy.

- The differential cross section describes the likelihood of an electron interacting with a target.
 - Measures the 'size' of an interaction.
 - Must be viewed within a detector's solid angle acceptance.
- Rutherford Scattering: Charged particle scattering off a nucleus [1].

$$\left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} = \frac{4Z^2 \alpha^2 \left(\hbar c\right)^2 E'^2}{|qc|^4} \tag{5}$$

- Cross section falls off like $\frac{1}{a^4}$.
 - Likelihood of electrons interacting with a target decreases rapidly with energy.
- Rutherford equation does not account for relativity, spin, or target recoil.

Mott Cross Section

• Now add a term to account for relativity obtaining the Mott Equation [1]:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\substack{\text{Mott}\\\text{No Recoil}}} = \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} \left(1 - \beta^2 \sin^2\left(\frac{\theta}{2}\right)\right) \tag{6}$$

Mott Cross Section

• Now add a term to account for relativity obtaining the Mott Equation [1]:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\substack{\text{Nott}\\\text{No Recoil}}} = \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} \left(1 - \beta^2 \sin^2\left(\frac{\theta}{2}\right)\right) \tag{6}$$

• In the relativistic limit $\beta \rightarrow 1$ yielding [1]:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\substack{\text{Mott}\\\text{No Recoil}}} = \frac{4Z^2 \alpha^2 \left(\hbar c\right)^2 E'^2}{|qc|^4} \cos^2\left(\frac{\theta}{2}\right) \tag{7}$$

Mott Cross Section

• Now add a term to account for relativity obtaining the Mott Equation [1]:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\substack{\text{Mott}\\\text{No Recoil}}} = \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} \left(1 - \beta^2 \sin^2\left(\frac{\theta}{2}\right)\right) \tag{6}$$

• In the relativistic limit $\beta \rightarrow 1$ yielding [1]:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\substack{\text{Mott}\\\text{No Recoil}}} = \frac{4Z^2\alpha^2\left(\hbar c\right)^2 E'^2}{|qc|^4}\cos^2\left(\frac{\theta}{2}\right) \tag{7}$$

- Now we have accounted for relativity, but we have also accounted for spin with the $cos^2 \left(\frac{\theta}{2}\right)$ term.
 - Suppresses scattering through 180° for a spinless target which is forbidden by conservation of helicity.

Mott Cross Section Cont.

• At our E_0 of 3.356 GeV an electron has 1.48 GeV of energy and a 3 He nucleus has a mass of 2.81 GeV.

Mott Cross Section Cont.

- At our E_0 of 3.356 GeV an electron has 1.48 GeV of energy and a 3 He nucleus has a mass of 2.81 GeV.
- Clearly neglecting recoil is no longer an option. Happily, the recoil term is easily found from Equation 2 describing elastic scattering

$$\frac{E'}{E_0} = \frac{1}{1 + \frac{2E_0}{M}\sin^2\left(\frac{\theta}{2}\right)} \tag{8}$$

Mott Cross Section Cont.

- At our E_0 of 3.356 GeV an electron has 1.48 GeV of energy and a 3 He nucleus has a mass of 2.81 GeV.
- Clearly neglecting recoil is no longer an option. Happily, the recoil term is easily found from Equation 2 describing elastic scattering

$$\frac{E'}{E_0} = \frac{1}{1 + \frac{2E_0}{M}\sin^2\left(\frac{\theta}{2}\right)} \tag{8}$$

• Now we can add the recoil term and rewrite the Mott cross section with a few substitutions from earlier as [1]:

$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \frac{4Z^2\alpha^2\left(\hbar c\right)^2 E'^3}{|qc|^4 E_0} \cos^2\left(\frac{\theta}{2}\right) = Z^2 \frac{E'}{E_0} \frac{\alpha^2 \cos^2\left(\frac{\theta}{2}\right)}{4E_0^2 \sin^4\left(\frac{\theta}{2}\right)}$$
(9)

• Now we have an equation that accounts for relativity, spin, and recoil off of a point mass.

- Now we have an equation that accounts for relativity, spin, and recoil off of a point mass.
- Nuclei are not point masses! How do we describe the structure inside of a nucleus?

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} |F(q^2)|^2$$
(10)

- Now we have an equation that accounts for relativity, spin, and recoil off of a point mass.
- Nuclei are not point masses! How do we describe the structure inside of a nucleus?

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} |F(q^2)|^2$$
(10)

- The term |F(q²)|² is called a form factor. It contains all of the spatial and structural information about the target.
- If we assume the validity of the Born approximation (incident wave function ≈ scattered wave function) and no recoil the form factor can be written as a Fourier transform of the charge distribution.

$$F(q^2) = \int e^{\frac{iq\cdot x}{\hbar}} \rho(x) d^3 x \xrightarrow{x \to r} 4\pi \int \rho(r) \frac{\sin\left(|q|r/\hbar\right)}{|q|r/\hbar} r^2 dr \qquad (11)$$

Form Factors Cont.

$$F(q^2) = \int e^{\frac{iq\cdot x}{\hbar}} \rho(x) d^3 x \xrightarrow{x \to r} 4\pi \int \rho(r) \frac{\sin\left(|q|r/\hbar\right)}{|q|r/\hbar} r^2 dr \qquad (11)$$

• This procedure can be inverted to find the charge distribution, ρ [1].

$$\rho(r) = \frac{1}{(2\pi)^3} \int F(q^2) e^{\frac{-iq\cdot x}{\hbar}} d^3q$$
(12)

Form Factors Cont.

$$F(q^{2}) = \int e^{\frac{iq \cdot x}{\hbar}} \rho(x) d^{3}x \xrightarrow{x \to r} 4\pi \int \rho(r) \frac{\sin(|q|r/\hbar)}{|q|r/\hbar} r^{2} dr \qquad (11)$$

• This procedure can be inverted to find the charge distribution, ρ [1].

$$\rho(r) = \frac{1}{(2\pi)^3} \int F(q^2) e^{\frac{-iq \cdot x}{\hbar}} d^3 q \tag{12}$$

• Let's approximate a nucleus as a hard sphere of charge.

Form Factors Cont.

$$F(q^{2}) = \int e^{\frac{iq \cdot x}{\hbar}} \rho(x) d^{3}x \xrightarrow{x \to r} 4\pi \int \rho(r) \frac{\sin(|q|r/\hbar)}{|q|r/\hbar} r^{2} dr \qquad (11)$$

• This procedure can be inverted to find the charge distribution, ρ [1].

$$\rho(r) = \frac{1}{(2\pi)^3} \int F(q^2) e^{\frac{-iq \cdot x}{\hbar}} d^3 q \tag{12}$$

• Let's approximate a nucleus as a hard sphere of charge.

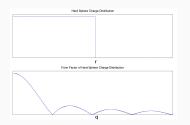


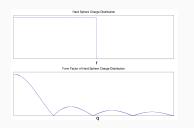
Figure 3: Hard Sphere Charge Distribution

$$F(q^2) = \int e^{\frac{iq\cdot x}{\hbar}} \rho(x) d^3 x \xrightarrow{x \to r} 4\pi \int \rho(r) \frac{\sin\left(|q|r/\hbar\right)}{|q|r/\hbar} r^2 dr \qquad (11)$$

• This procedure can be inverted to find the charge distribution, ρ [1].

$$\rho(r) = \frac{1}{(2\pi)^3} \int F(q^2) e^{\frac{-iq \cdot x}{\hbar}} d^3 q \tag{12}$$

• Let's approximate a nucleus as a hard sphere of charge.



- Yields oscillatory form factor.
- Charge radii can be estimated by minima location [1]! $R \approx \frac{4.5\hbar}{q}$ (13)

Figure 3: Hard Sphere Charge Distribution

- We can find charge radii by taking $r \rightarrow 0$ in the form factor.
 - The wavelength of the electron, $\frac{\hbar}{q}$, is assumed to be much larger than the charge radius: $R \ll \frac{\hbar}{q} \implies \frac{Rq}{\hbar} \ll 1$.

- We can find charge radii by taking $r \rightarrow 0$ in the form factor.
 - The wavelength of the electron, $\frac{\hbar}{q}$, is assumed to be much larger than the charge radius: $R \ll \frac{\hbar}{a} \implies \frac{Rq}{\hbar} \ll 1$.
- Next we apply the Euler formula to the form factor equation and Taylor expand the cosine term [1]:

$$F(q^{2}) = \int_{0}^{\infty} \int_{-1}^{1} \int_{0}^{2\pi} \rho(r) \left(1 - \frac{1}{2} \frac{|q||r|cos(\omega)}{\hbar}\right) r^{2} d\phi \ dcos(\omega) \ dr \ (14)$$

- We can find charge radii by taking $r \rightarrow 0$ in the form factor.
 - The wavelength of the electron, $\frac{\hbar}{q}$, is assumed to be much larger than the charge radius: $R \ll \frac{\hbar}{q} \implies \frac{Rq}{\hbar} \ll 1$.
- Next we apply the Euler formula to the form factor equation and Taylor expand the cosine term [1]:

$$F(q^{2}) = \int_{0}^{\infty} \int_{-1}^{1} \int_{0}^{2\pi} \rho(r) \left(1 - \frac{1}{2} \frac{|q||r| \cos(\omega)}{\hbar}\right) r^{2} d\phi \, d\cos(\omega) \, dr \quad (14)$$

$$F(q^{2}) = 4\pi \int_{0}^{\infty} \rho(r)r^{2}dr - 4\pi \frac{q^{2}}{6\hbar^{2}} \int_{0}^{\infty} \rho(r)r^{4}dr$$
(15)

- We can find charge radii by taking $r \rightarrow 0$ in the form factor.
 - The wavelength of the electron, $\frac{\hbar}{q}$, is assumed to be much larger than the charge radius: $R \ll \frac{\hbar}{q} \implies \frac{Rq}{\hbar} \ll 1$.
- Next we apply the Euler formula to the form factor equation and Taylor expand the cosine term [1]:

$$F(q^{2}) = \int_{0}^{\infty} \int_{-1}^{1} \int_{0}^{2\pi} \rho(r) \left(1 - \frac{1}{2} \frac{|q||r| \cos(\omega)}{\hbar}\right) r^{2} d\phi \, d\cos(\omega) \, dr \quad (14)$$

$$F(q^2) = 4\pi \int_0^\infty \rho(r) r^2 dr - 4\pi \frac{q^2}{6\hbar^2} \int_0^\infty \rho(r) r^4 dr$$
(15)

• Applying the normalization $4\pi \int_0^\infty \rho(r)r^2 dr = 1$, and defining the charge radius as $\langle r^2 \rangle = 4\pi \int_0^\infty r^2 \rho(r)r^2 dr$, we find:

- We can find charge radii by taking $r \rightarrow 0$ in the form factor.
 - The wavelength of the electron, $\frac{\hbar}{q}$, is assumed to be much larger than the charge radius: $R \ll \frac{\hbar}{q} \implies \frac{Rq}{\hbar} \ll 1$.
- Next we apply the Euler formula to the form factor equation and Taylor expand the cosine term [1]:

$$F(q^{2}) = \int_{0}^{\infty} \int_{-1}^{1} \int_{0}^{2\pi} \rho(r) \left(1 - \frac{1}{2} \frac{|q||r| \cos(\omega)}{\hbar}\right) r^{2} d\phi \, d\cos(\omega) \, dr \quad (14)$$

$$F(q^2) = 4\pi \int_0^\infty \rho(r) r^2 dr - 4\pi \frac{q^2}{6\hbar^2} \int_0^\infty \rho(r) r^4 dr$$
(15)

• Applying the normalization $4\pi \int_0^\infty \rho(r)r^2 dr = 1$, and defining the charge radius as $\langle r^2 \rangle = 4\pi \int_0^\infty r^2 \rho(r)r^2 dr$, we find:

$$F(q^2) = 1 - \frac{q^2}{6\hbar^2} \langle r^2 \rangle \quad \rightarrow \quad \langle r^2 \rangle = -6\hbar^2 \frac{dF(q^2)}{dq^2}|_{q^2=0} \tag{16}$$

Rosenbluth Equation

• Now our cross section accounts for charge, relativity, spin, and recoil. Great! Is there anything still missing?

Rosenbluth Equation

- Now our cross section accounts for charge, relativity, spin, and recoil. Great! Is there anything still missing?
 - Magnetic interactions and internal structure are still not included.
 - Introduce a new magnetic term as was done for relativity [1].

Rosenbluth Equation

- Now our cross section accounts for charge, relativity, spin, and recoil. Great! Is there anything still missing?
 - Magnetic interactions and internal structure are still not included.
 - Introduce a new magnetic term as was done for relativity [1].

$$\left(\frac{d\sigma}{d\Omega}\right)_{\substack{\text{point}\\\text{spin }1/2}} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left(\left(1 - 2\tau \ \tan^2\left(\frac{\theta}{2}\right)\right), \quad \tau = \frac{Q^2}{4M} \quad (17)$$

Rosenbluth Equation

- Now our cross section accounts for charge, relativity, spin, and recoil. Great! Is there anything still missing?
 - Magnetic interactions and internal structure are still not included.
 - Introduce a new magnetic term as was done for relativity [1].

$$\left(\frac{d\sigma}{d\Omega}\right)_{\substack{\text{point}\\\text{spin }1/2}} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left(\left(1 - 2\tau \ \tan^2\left(\frac{\theta}{2}\right)\right), \quad \tau = \frac{Q^2}{4M} \quad (17)$$

• Finally add in nuclear form factors to describe internal structure.

Rosenbluth Equation

- Now our cross section accounts for charge, relativity, spin, and recoil. Great! Is there anything still missing?
 - Magnetic interactions and internal structure are still not included.
 - Introduce a new magnetic term as was done for relativity [1].

$$\left(\frac{d\sigma}{d\Omega}\right)_{\substack{\text{point}\\\text{spin }1/2}} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left(\left(1 - 2\tau \ \tan^2\left(\frac{\theta}{2}\right)\right), \quad \tau = \frac{Q^2}{4M} \quad (17)$$

• Finally add in nuclear form factors to describe internal structure.

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} * \left[\frac{G_{E}^{2}\left(Q^{2}\right) + \tau G_{M}^{2}\left(Q^{2}\right)}{1 + \tau} + 2\tau G_{M}^{2}\left(Q^{2}\right) \tan^{2}\left(\frac{\theta}{2}\right)\right]$$
(18)

Rosenbluth Equation

- Now our cross section accounts for charge, relativity, spin, and recoil. Great! Is there anything still missing?
 - Magnetic interactions and internal structure are still not included.
 - Introduce a new magnetic term as was done for relativity [1].

$$\left(\frac{d\sigma}{d\Omega}\right)_{\substack{\text{point}\\\text{spin }1/2}} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left(\left(1 - 2\tau \ \tan^2\left(\frac{\theta}{2}\right)\right), \quad \tau = \frac{Q^2}{4M} \quad (17)$$

• Finally add in nuclear form factors to describe internal structure.

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} * \left[\frac{G_E^2\left(Q^2\right) + \tau G_M^2\left(Q^2\right)}{1 + \tau} + 2\tau G_M^2\left(Q^2\right) \tan^2\left(\frac{\theta}{2}\right)\right]$$
(18)

$$G_{E}^{p}\left(Q^{2}=0
ight)=1 \;\; and \;\; G_{M}^{p}\left(Q^{2}=0
ight)=2.79 \;\; (19)$$

$$G_E^n(Q^2=0)=0 \text{ and } G_M^n(Q^2=0)=-1.91$$
 (20)

• G_E and G_M are known as the Sach's form factors. Several other form factors are commonly used.

• G_E and G_M are known as the Sach's form factors. Several other form factors are commonly used.

- F_1 and F_2 are called the Dirac and Pauli form factors respectively.

$$G_{E}\left(Q^{2}\right) = F_{1}\left(Q^{2}\right) - \mu\tau F_{2}\left(Q^{2}\right) \qquad G_{M}\left(Q^{2}\right) = F_{1}\left(Q^{2}\right) + \mu F_{2}\left(Q^{2}\right) \tag{22}$$

- G_F and G_M are known as the Sach's form factors. Several other form factors are commonly used.
 - F₁ and F₂ are called the Dirac and Pauli form factors respectively.

$$G_E\left(Q^2\right) = F_1\left(Q^2\right) - \mu\tau F_2\left(Q^2\right) \qquad G_M\left(Q^2\right) = F_1\left(Q^2\right) + \mu F_2\left(Q^2\right) \tag{22}$$

- There are also the E , and E form factors used in this analysis

the Γ_{ch} and Γ_m form factors used in this analysis.

$$F_{ch}\left(Q^{2}\right) = G_{E}\left(Q^{2}\right) \qquad (23) \qquad F_{m}\left(Q^{2}\right) = \frac{G_{M}\left(Q^{2}\right)}{\mu} \qquad (24)$$

- G_E and G_M are known as the Sach's form factors. Several other form factors are commonly used.
 - F_1 and F_2 are called the Dirac and Pauli form factors respectively.

$$G_E\left(Q^2\right) = F_1\left(Q^2\right) - \mu\tau F_2\left(Q^2\right) \qquad G_M\left(Q^2\right) = F_1\left(Q^2\right) + \mu F_2\left(Q^2\right)$$
(22)
- There are also the **E** μ and **E** μ form factors used in this analysis

There are also the F_{ch} and F_m form factors used in this analysis.

$$F_{ch}\left(Q^{2}\right) = G_{E}\left(Q^{2}\right) \qquad (23) \qquad F_{m}\left(Q^{2}\right) = \frac{G_{M}\left(Q^{2}\right)}{\mu} \qquad (24)$$

• Now let's rewrite the cross section for the final Rosenbluth equation:

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} * \frac{1}{1+\tau} \left[G_E^2\left(Q^2\right) + \frac{\tau}{\epsilon}G_M^2\left(Q^2\right)\right]$$
(25)
$$\epsilon = \left(1 + 2(1+\tau)\tan^2\left(\frac{\theta}{2}\right)\right)^{-1}$$
(26)

Experimental Setup

- Experiment E08-014 ran in Jefferson Lab's Hall A in 2011 [2].
 - Measured inclusive cross sections of 2 H, 3 He, 4 He, 12 C, 40 Ca, and 48 Ca in the range of 1.1 GeV/c $< Q^2 < 2.5$ GeV/c.
 - Compared heavy targets to two and three-nucleon targets to study short range correlations between two and three-nucleon clusters.

- Experiment E08-014 ran in Jefferson Lab's Hall A in 2011 [2].
 - Measured inclusive cross sections of 2 H, 3 He, 4 He, 12 C, 40 Ca, and 48 Ca in the range of 1.1 GeV/c < Q 2 < 2.5 GeV/c.
 - Compared heavy targets to two and three-nucleon targets to study short range correlations between two and three-nucleon clusters.
- E08-014 mostly took quasielastic data, but through a happy coincidence, KIN 3.2 was able to view the ³He elastic peak.

– $E_0 = 3.356$ GeV. Scattering angle of 20.51° .

- Experiment E08-014 ran in Jefferson Lab's Hall A in 2011 [2].
 - Measured inclusive cross sections of $^2H,~^3He,~^4He,~^{12}C,~^{40}Ca,$ and ^{48}Ca in the range of 1.1 GeV/c $< Q^2 < 2.5$ GeV/c.
 - Compared heavy targets to two and three-nucleon targets to study short range correlations between two and three-nucleon clusters.
- E08-014 mostly took quasielastic data, but through a happy coincidence, KIN 3.2 was able to view the ³He elastic peak.

- $E_0 = 3.356$ GeV. Scattering angle of 20.51° .

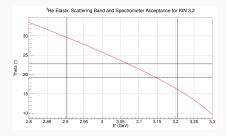


Figure 4: Elastic Band for ³He.

- Experiment E08-014 ran in Jefferson Lab's Hall A in 2011 [2].
 - Measured inclusive cross sections of 2 H, 3 He, 4 He, 12 C, 40 Ca, and 48 Ca in the range of 1.1 GeV/c < Q 2 < 2.5 GeV/c.
 - Compared heavy targets to two and three-nucleon targets to study short range correlations between two and three-nucleon clusters.
- E08-014 mostly took quasielastic data, but through a happy coincidence, KIN 3.2 was able to view the ³He elastic peak.

- $E_0 = 3.356$ GeV. Scattering angle of 20.51° .

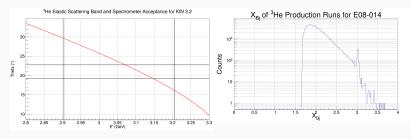


Figure 4: Elastic Band for ³He.

Figure 5: Elastic Peak in x_{Bj} .

Hall A Configuration

- E08-014 used the standard Hall A configuration and detector packages.
 - Main trigger ($S_1 \& S_{2m} \& GC$).

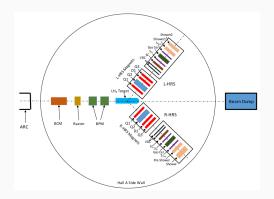


Figure 6: Hall A Top View. Standard Hall A configuration. Image from [3].

Cross Section Extraction

• We can rewrite the cross section in a more useful form:

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} = \frac{ps * N_e}{N_{in} * \rho * LT * \epsilon_{det}} \frac{1}{\Delta \Omega \Delta P \Delta Z}$$
(27)

• We can rewrite the cross section in a more useful form:

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} = \frac{ps * N_e}{N_{in} * \rho * LT * \epsilon_{det}} \frac{1}{\Delta \Omega \Delta P \Delta Z}$$
(27)

• Essentially, this is a game of electron counting.

• We can rewrite the cross section in a more useful form:

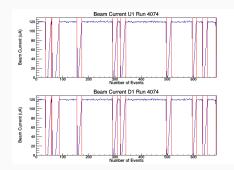
$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} = \frac{ps * N_e}{N_{in} * \rho * LT * \epsilon_{det}} \frac{1}{\Delta \Omega \Delta P \Delta Z}$$
(27)

- Essentially, this is a game of electron counting.
 - To count electrons we need the beam charge.

• We can rewrite the cross section in a more useful form:

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} = \frac{ps * N_e}{N_{in} * \rho * LT * \epsilon_{det}} \frac{1}{\Delta \Omega \Delta P \Delta Z}$$
(27)

- Essentially, this is a game of electron counting.
 - To count electrons we need the beam charge.



$$Q = \langle I_{beam} \rangle * time$$
(28)

$$N_{in} = \frac{Q}{2}$$
 (29)

Particle Identification

- How many elastic electrons, N_e , were detected?
 - We need a pure electron sample. Pions can contaminate the sample.

Particle Identification

- How many elastic electrons, N_e, were detected?
 - We need a pure electron sample. Pions can contaminate the sample.
 - The EM calorimeters and GC can discriminate electrons from pions.

Particle Identification

- How many elastic electrons, N_e, were detected?
 - We need a pure electron sample. Pions can contaminate the sample.
 - The EM calorimeters and GC can discriminate electrons from pions.

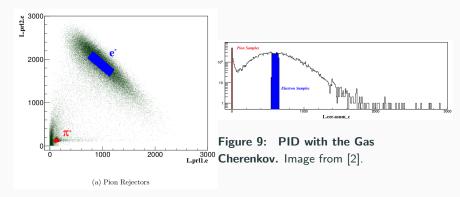
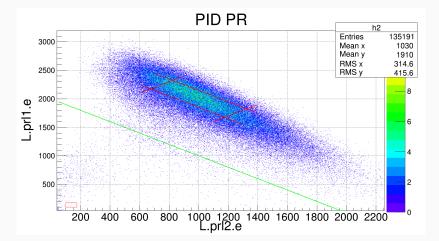


Figure 8: PID with the Pion Rejectors. Image from [2].

Pion Rejectors PID

- For our six runs there appear to be very few pions.
- Some delta (knock-on) electrons are in the sample.
 - These delta electrons and few pions can be removed with a simple diagonal cut on the pion rejectors.



Gas Cherenkov PID

• Does the gas Cherenkov agree with the pion rejectors?

Gas Cherenkov PID

- Does the gas Cherenkov agree with the pion rejectors?
- Again there appear to be almost no pions at our kinematics.

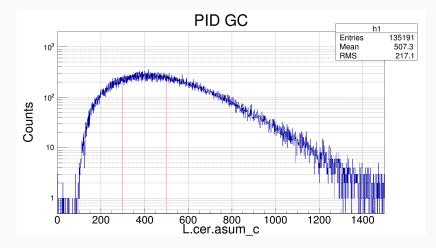


Figure 11: PID with the Gas Cherenkov.

Target Density

• Now we need to know how many scattering centers are in the target.

Target Density

- Now we need to know how many scattering centers are in the target.
- Let's look at the target's density profile to find ρ .

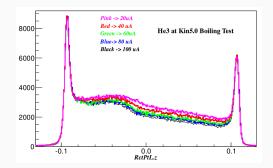


Figure 12: ³He Boiling Effect. Image from [2].

Target Density

- Now we need to know how many scattering centers are in the target.
- Let's look at the target's density profile to find ρ .

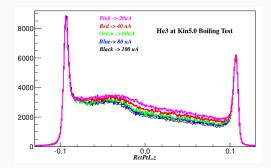


Figure 12: ³He Boiling Effect. Image from [2].

- The density is not constant along the cell due to boiling effects.
- CFD calculations by Silviu Covrig allowed ρ to be calculated [4].
 - 0.013 g/cm³ \pm 0.0004 g/cm³.

• How do we know how many events were elastic?

- How do we know how many events were elastic?
 - Find the elastic electron yield.
 - Count electrons in the elastic peak ($X_{Bj} = 3$).

- How do we know how many events were elastic?
 - Find the elastic electron yield.
 - Count electrons in the elastic peak ($X_{Bj} = 3$).
- Before finding the experimental elastic electron yield we want a point of comparison.

- How do we know how many events were elastic?
 - Find the elastic electron yield.
 - Count electrons in the elastic peak ($X_{Bj} = 3$).
- Before finding the experimental elastic electron yield we want a point of comparison.
 - We can simulate what the elastic electron spectrum is expected to look like at our kinematics using SIMC.

- How do we know how many events were elastic?
 - Find the elastic electron yield.
 - Count electrons in the elastic peak ($X_{Bj} = 3$).
- Before finding the experimental elastic electron yield we want a point of comparison.
 - We can simulate what the elastic electron spectrum is expected to look like at our kinematics using SIMC.
- SIMC:
 - Monte Carlo generates events randomly in given kinematic ranges.
 - Transports electrons from scattering vertex through spectrometers to detector stack.
 - Contains old ³He elastic scattering model from Amroun *et al* [5].
 - Shape of form factors and cross section should be accurate.
 - Cross section magnitude is expected to be off at our kinematics.
 - Can calculate radiative effects.

SIMC Output

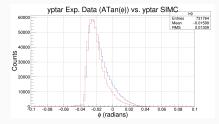


Figure 13: ϕ . In plane angle.

- Red is SIMC and blue is data.
- ϕ and θ both look decent.
- There is a shift in dP.
 - Known issue with SIMC.
 - Little impact on final measurement.

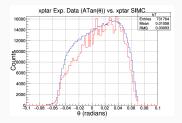


Figure 14: θ . Out of plane angle.

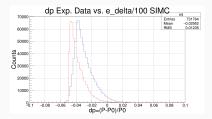


Figure 15: dP Momentum fraction.

Aluminium Background Subtraction

- Take a closer look at the X_{Bj} plot from earlier (blue histogram).
 - What are the events above the ³He elastic peak?

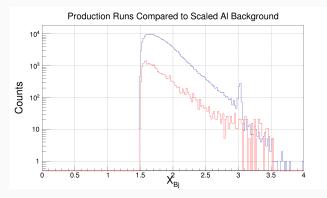


Figure 16: Scaled Aluminium Background and X_{Bj}.

Aluminium Background Subtraction

- Take a closer look at the X_{Bj} plot from earlier (blue histogram).
 - What are the events above the ³He elastic peak?

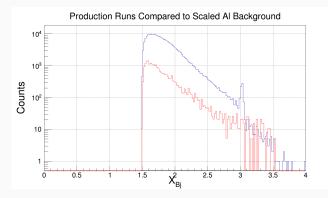


Figure 16: Scaled Aluminium Background and X_{Bj}.

- Aluminium contamination from target cell (red histogram).
 - Use dummy cell to subtract AI events.
 - Scale dummy by charge, thickness, and radiative corrections.

Aluminium Background Subtraction Cont.

• What happens when we subtract off the aluminium contamination from the X_{Bj} spectrum?

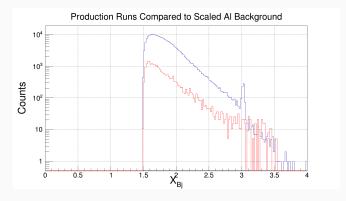


Figure 17: Scaled Aluminium Background and X_{Bj}.

Aluminium Background Subtraction Cont.

• What happens when we subtract off the aluminium contamination from the X_{Bj} spectrum?

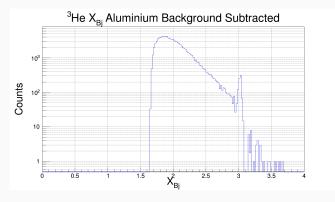


Figure 18: Aluminium Subtracted X_{Bj}.

• Now most of the events above the elastic peak disappear!

• How do we count the number of electrons in the elastic peak, N_e?

- How do we count the number of electrons in the elastic peak, N_e ?
 - Fit the peak and integrate over the elastic peak.

- How do we count the number of electrons in the elastic peak, N_e?
 - Fit the peak and integrate over the elastic peak.
- What kind of fit might be appropriate?

- How do we count the number of electrons in the elastic peak, N_e?
 - Fit the peak and integrate over the elastic peak.
- What kind of fit might be appropriate?
 - QE background looks exponential and elastic peak looks Gaussian.
 - Create a fit equation summing an exponential and a Gaussian:

- How do we count the number of electrons in the elastic peak, N_e?
 - Fit the peak and integrate over the elastic peak.
- What kind of fit might be appropriate?
 - QE background looks exponential and elastic peak looks Gaussian.
 - Create a fit equation summing an exponential and a Gaussian:

$$F_{combined} = e^{(P_0 + P_1 * x)} + P_2 * e^{\left(\frac{-1}{2} \left(\frac{x - P_3}{P_4}\right)^2\right)}$$
(30)

- How do we count the number of electrons in the elastic peak, N_e?
 - Fit the peak and integrate over the elastic peak.
- What kind of fit might be appropriate?
 - QE background looks exponential and elastic peak looks Gaussian.
 - Create a fit equation summing an exponential and a Gaussian:

$$F_{combined} = e^{(P_0 + P_1 * x)} + P_2 * e^{\left(\frac{-1}{2}\left(\frac{x - P_3}{P_4}\right)^2\right)}$$
(30)

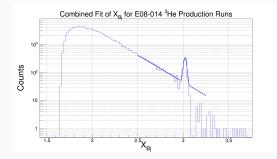


Figure 19: Combined Fit of X_{Bj} for E08-014.

• Now let's look at the elastics from SIMC.

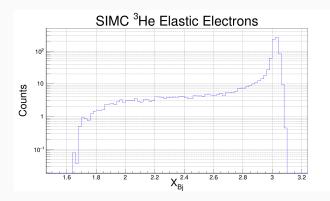


Figure 20: SIMC Elastically Scattered Electrons.

• Now let's look at the elastics from SIMC.

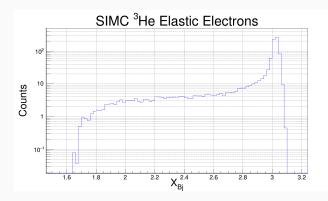


Figure 20: SIMC Elastically Scattered Electrons.

- The spectrum looks reasonable.
 - Prominent elastic peak at $X_{Bj} = 3$.
 - Nice radiative tail as expected.

• How do we compare simulated elastic events to experimental events that are mostly quasielastic?

- How do we compare simulated elastic events to experimental events that are mostly quasielastic?
 - We can fit only the QE background and then sum the fit with the SIMC elastics.
 - The QE fit is made in the region where few elastics are expected.

- How do we compare simulated elastic events to experimental events that are mostly quasielastic?
 - We can fit only the QE background and then sum the fit with the SIMC elastics.

- The QE fit is made in the region where few elastics are expected.

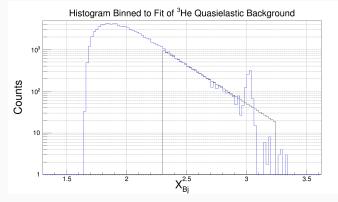


Figure 21: Histogram Binned to Fit of Quasielastic Background.

• Finally we can compare the elastic electron yield from SIMC and experimental data.

- Finally we can compare the elastic electron yield from SIMC and experimental data.
 - The area under the Gaussian of the two combined fits, but above the QE background, represents the elastic electron yield.
 - The elastic electron yield is directly proportional to the cross section.

- Finally we can compare the elastic electron yield from SIMC and experimental data.
 - The area under the Gaussian of the two combined fits, but above the QE background, represents the elastic electron yield.
 - The elastic electron yield is directly proportional to the cross section.
 - Note that the real data yield is increased slightly to correct for live-time and various efficiencies.

- Finally we can compare the elastic electron yield from SIMC and experimental data.
 - The area under the Gaussian of the two combined fits, but above the QE background, represents the elastic electron yield.
 - The elastic electron yield is directly proportional to the cross section.
 - Note that the real data yield is increased slightly to correct for live-time and various efficiencies.
- Recall that at our kinematics the old ³He model in SIMC has the correct cross section shape but incorrect magnitude [5].
- SIMC produces the average cross section for this experiment based on the previous model.

- Finally we can compare the elastic electron yield from SIMC and experimental data.
 - The area under the Gaussian of the two combined fits, but above the QE background, represents the elastic electron yield.
 - The elastic electron yield is directly proportional to the cross section.
 - Note that the real data yield is increased slightly to correct for live-time and various efficiencies.
- Recall that at our kinematics the old ³He model in SIMC has the correct cross section shape but incorrect magnitude [5].
- SIMC produces the average cross section for this experiment based on the previous model.
- If the SIMC cross section is scaled by a constant until the SIMC yield matches the experimental yield then the average cross section SIMC produces will equal the experimental cross section.

Cross Section Value

- Yields plots for the experimental data and SIMC scaled to match.
 - Red is SIMC + QE background fit and blue is experimental data.

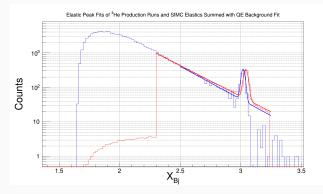


Figure 22: SIMC + QE Scaled to Experimental Elastic Electron Yield.

Cross Section Value

- Yields plots for the experimental data and SIMC scaled to match.
 - Red is SIMC + QE background fit and blue is experimental data.

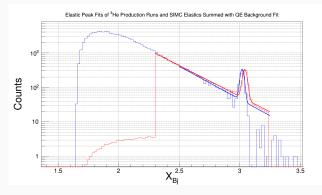


Figure 22: SIMC + QE Scaled to Experimental Elastic Electron Yield.

- Yield shapes are similar. Slight shift is likely a Z offset issue.
- SIMC scale factor to match data = 1.01984.
- New ³He cross section value is $1.335 * 10^{-10} \text{ fm}^{-2}/\text{sr}$.

• We now have the cross section's magnitude. Great! We're done right?

- We now have the cross section's magnitude. Great! We're done right?
 - Wrong!

- We now have the cross section's magnitude. Great! We're done right?
 - Wrong!
 - Where do we put our point?
 - What is the uncertainty?

- We now have the cross section's magnitude. Great! We're done right?
 - Wrong!
 - Where do we put our point?
 - What is the uncertainty?
- Can't we just calculate Q^2 from the center of our bin and be done?
- The bin center is only correct if the function is linear [6].

- We now have the cross section's magnitude. Great! We're done right?
 - Wrong!
 - Where do we put our point?
 - What is the uncertainty?
- Can't we just calculate Q² from the center of our bin and be done?
- The bin center is only correct if the function is linear [6].

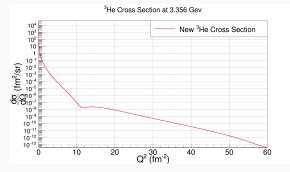


Figure 23: ³He Elastic Cross Section at 3.356 GeV.

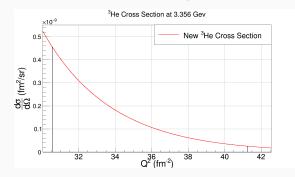


Figure 24: ³He Elastic Cross Section Q² Bin at 3.356 GeV.

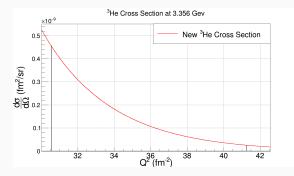


Figure 24: ³He Elastic Cross Section Q² Bin at 3.356 GeV.

- Clearly not linear.
- Weight the Q² values in the bin by the cross section magnitude.

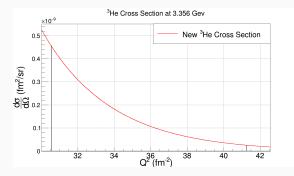


Figure 24: ³He Elastic Cross Section Q² Bin at 3.356 GeV.

- Clearly not linear.
- Weight the Q² values in the bin by the cross section magnitude.
- The bin center would place the Q^2 at 35.90 fm⁻².
- The weighted bin center is at $Q^2 = 34.19 \text{ fm}^{-2}$.

Uncertainty

• Lastly, we need to quantify the uncertainty on our point.

Uncertainty Source	Cross Section
	Uncertainty
Statistical Sources	
Electron Yield	4.21%
AI Background Subtraction	1.1%
Total Statistical	4.36%
Systematic Sources	
Target Density	3.08%
Optics Calibration	2.248%
GC Efficiency	1.32%
Beam/Target Offsets	1.1%
Radiative Corrections	1%
Beam Charge	1%
VDC Single-Track Efficiency	1%
Trigger Efficiency	1%
Beam Energy	0.72%
SIMC Model Comparison to Reality	0.5%
PR Cut	0.055%
Y _{target} Position	0.045%
Live-time	0.01145%
Total Systematic	4.72%
Total Uncertainty	6.42%
Statistical & Systematic	

Comparison to Other Measurements

• Our cross section measurement is now 1.335 \pm 0.086 * 10^{-6} $\mu b/sr$ at Q² = 34.19 fm^{-2}.

Comparison to Other Measurements

- Our cross section measurement is now 1.335 \pm 0.086 * 10^{-6} $\mu b/sr$ at Q² = 34.19 fm^-2.
- JLab took high Q² data for ³He [7].
 - E_0 = 3.304 GeV. Scattering angle of $20.83^\circ.$
 - Cross section = 1.57 \pm 0.10 * 10⁻⁶ μ b/sr at Q² = 34.1 fm⁻².
 - This analysis' cross section is $\approx 15\%$ smaller.
 - Accounting for our higher Q^2 the error bars should nearly overlap.

- Our cross section measurement is now 1.335 \pm 0.086 * 10^{-6} $\mu b/sr$ at Q² = 34.19 fm^-2.
- JLab took high Q^2 data for ³He [7].
 - E_0 = 3.304 GeV. Scattering angle of $20.83^\circ.$
 - Cross section = 1.57 \pm 0.10 * 10⁻⁶ μ b/sr at Q² = 34.1 fm⁻².
 - This analysis' cross section is $\approx 15\%$ smaller.
 - Accounting for our higher Q^2 the error bars should nearly overlap.
- Cross section estimate from older SIMC model [5].
 - $E_0=3.356$ GeV. Scattering angle of $20.51^\circ.$
 - Cross section = $1.887 * 10^{-6} \mu \text{b/sr}$ at $Q^2 = 34.19 \text{ fm}^{-2}$.
 - This analysis' cross section is $\approx 30\%$ smaller.
 - Old model had very little high Q² data so we expect the magnitude to not be extremely accurate.

- Our cross section measurement is now 1.335 \pm 0.086 * 10^{-6} $\mu b/sr$ at Q² = 34.19 fm^-2.
- JLab took high Q^2 data for ³He [7].
 - E_0 = 3.304 GeV. Scattering angle of $20.83^\circ.$
 - Cross section = 1.57 \pm 0.10 * 10⁻⁶ μ b/sr at Q² = 34.1 fm⁻².
 - This analysis' cross section is $\approx 15\%$ smaller.
 - Accounting for our higher Q^2 the error bars should nearly overlap.
- Cross section estimate from older SIMC model [5].
 - $E_0=3.356$ GeV. Scattering angle of $20.51^\circ.$
 - Cross section = $1.887 * 10^{-6} \ \mu b/sr$ at Q² = 34.19 fm⁻².
 - This analysis' cross section is $\approx 30\%$ smaller.
 - Old model had very little high Q² data so we expect the magnitude to not be extremely accurate.
- In sum this new point seems reasonably consistent with other data.

Global Fits

• We now have a new cross section!

• We now have a new cross section! But what use is a single point?

- We now have a new cross section! But what use is a single point?
- We need context to learn anything.

World Data

- We now have a new cross section! But what use is a single point?
- We need context to learn anything.
- For context we can gather the world data for ³He elastic cross sections.
 - We can also gather the ${}^{3}H$ world data so we have mirror nuclei.
 - The world data for ${}^{3}H$ and ${}^{3}He$ stretches back over 50 years!
 - Experiments were done at at least nine different facilities.
 - Many experiments used different methodologies.

World Data

- We now have a new cross section! But what use is a single point?
- We need context to learn anything.
- For context we can gather the world data for ³He elastic cross sections.
 - We can also gather the ${}^{3}H$ world data so we have mirror nuclei.
 - The world data for ${}^{3}H$ and ${}^{3}He$ stretches back over 50 years!
 - Experiments were done at at least nine different facilities.
 - Many experiments used different methodologies.
- This analysis used as many of the data sets as possible.
 - Some papers did not publish their data.
 - Some published only form factors and/or did not publish scattering angles and energies.
- This analysis adds new JLab high Q^2 data for ³He as well as the new cross section from SRC X>2.

• What do we want to get out of the world data?

- What do we want to get out of the world data?
 - Form factors, charge densities, and charge radii.

- What do we want to get out of the world data?
 - Form factors, charge densities, and charge radii.
- How do we find these quantities?

- What do we want to get out of the world data?
 - Form factors, charge densities, and charge radii.
- How do we find these quantities?
 - We need some parametrization to fit the world data.

- What do we want to get out of the world data?
 - Form factors, charge densities, and charge radii.
- How do we find these quantities?
 - We need some parametrization to fit the world data.
- Select a sum of Gaussians (SOG) parametrization [8].

- What do we want to get out of the world data?
 - Form factors, charge densities, and charge radii.
- How do we find these quantities?
 - We need some parametrization to fit the world data.
- Select a sum of Gaussians (SOG) parametrization [8].
 - Parametrizes form factors using multiple Gaussians placed at different radii.
 - Disallows unphysically small structures in the charge density.
 - q_{max} based on limited data: $\lambda = \frac{2\pi}{q_{max}}$.

- What do we want to get out of the world data?
 - Form factors, charge densities, and charge radii.
- How do we find these quantities?
 - We need some parametrization to fit the world data.
- Select a sum of Gaussians (SOG) parametrization [8].
 - Parametrizes form factors using multiple Gaussians placed at different radii.
 - Disallows unphysically small structures in the charge density.
 - q_{max} based on limited data: $\lambda = \frac{2\pi}{q_{max}}$.

$$\rho(r) = \frac{Ze}{2\pi^{3/2}\gamma^3} \sum_{i=1}^{N} \frac{Q_i}{1 + \frac{2R_i^2}{\gamma^2}} \left(e^{-(r-R_i)^2/\gamma^2} + e^{-(r+R_i)^2/\gamma^2} \right)$$
(31)

• With normalization:

$$4\pi \int_0^\infty \rho(r) r^2 dr = Ze \tag{32}$$

$$F_{(ch,m)}(q) = \exp\left(-\frac{1}{4}q^{2}\gamma^{2}\right) \sum_{i=1}^{N} \frac{Q_{i(ch,m)}}{1 + 2R_{i}^{2}/\gamma^{2}} \left(\cos(qR_{i}) + \frac{2R_{i}^{2}}{\gamma^{2}}\frac{\sin(qR_{i})}{qR_{i}}\right)$$
(33)

$$F_{(ch,m)}(q) = \exp\left(-\frac{1}{4}q^{2}\gamma^{2}\right)\sum_{i=1}^{N}\frac{Q_{i(ch,m)}}{1+2R_{i}^{2}/\gamma^{2}}\left(\cos(qR_{i}) + \frac{2R_{i}^{2}}{\gamma^{2}}\frac{\sin(qR_{i})}{qR_{i}}\right)$$
(33)

- The Q_i are the fit parameters.
 - Represent the fraction of charge held by each Gaussian.
 - $Q_i > 0$ and $\sum Q_i = 1$.

$$F_{(ch,m)}(q) = \exp\left(-\frac{1}{4}q^{2}\gamma^{2}\right)\sum_{i=1}^{N}\frac{Q_{i(ch,m)}}{1+2R_{i}^{2}/\gamma^{2}}\left(\cos(qR_{i}) + \frac{2R_{i}^{2}}{\gamma^{2}}\frac{\sin(qR_{i})}{qR_{i}}\right)$$
(33)

- The Q_i are the fit parameters.
 - Represent the fraction of charge held by each Gaussian.
 - $Q_i > 0$ and $\sum Q_i = 1$.
- The R_i represent the radii at which each Gaussian is placed.
 - Selected pseudorandomly then optimized.

$$F_{(ch,m)}(q) = \exp\left(-\frac{1}{4}q^{2}\gamma^{2}\right)\sum_{i=1}^{N}\frac{Q_{i(ch,m)}}{1+2R_{i}^{2}/\gamma^{2}}\left(\cos(qR_{i}) + \frac{2R_{i}^{2}}{\gamma^{2}}\frac{\sin(qR_{i})}{qR_{i}}\right)$$
(33)

- The Q_i are the fit parameters.
 - Represent the fraction of charge held by each Gaussian.
 - $Q_i > 0$ and $\sum Q_i = 1$.
- The R_i represent the radii at which each Gaussian is placed.
 - Selected pseudorandomly then optimized.
- The differential cross section can be written as [5]:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \frac{1}{\eta} \left[\frac{q^2}{\mathbf{q}^2} F_{ch}^2(q) + \frac{\mu^2 q^2}{2M^2} \left(\frac{1}{2}\frac{q^2}{\mathbf{q}^2} + \tan^2\left(\frac{\theta}{2}\right)\right) F_m^2(q)\right]$$
(34)

$$\eta = 1 + q^2 / 4M^2 \tag{35}_{34}$$

• To account for the Born approximation we utilize Q_{eff} in place of a full phase shift code.

$$Q_{eff}^2 = Q^2 \left(1 + \frac{1.5Z\alpha}{E_0 * 1.12 * A^{\frac{1}{3}}} \right)^2$$
(36)

• To account for the Born approximation we utilize Q_{eff} in place of a full phase shift code.

$$Q_{eff}^2 = Q^2 \left(1 + \frac{1.5Z\alpha}{E_0 * 1.12 * A^{\frac{1}{3}}} \right)^2$$
(36)

• Next we need to decide how to generate our starting radii, R_i.

 To account for the Born approximation we utilize Q_{eff} in place of a full phase shift code.

$$Q_{eff}^2 = Q^2 \left(1 + \frac{1.5Z\alpha}{E_0 * 1.12 * A^{\frac{1}{3}}} \right)^2$$
(36)

- Next we need to decide how to generate our starting radii, R_i.
 - There is an R_{max} beyond which there is almost no charge density.
 - $R_{\textit{max}}\approx 5$ fm for our nuclei.
 - Consecutive R_i spacing is closer at smaller radii.
 - $R_i < R_{max}/2 \approx$ half as far apart as spacing of $R_i > R_{max}/2$.

 To account for the Born approximation we utilize Q_{eff} in place of a full phase shift code.

$$Q_{eff}^2 = Q^2 \left(1 + \frac{1.5Z\alpha}{E_0 * 1.12 * A^{\frac{1}{3}}} \right)^2$$
(36)

- Next we need to decide how to generate our starting radii, R_i.
 - There is an R_{max} beyond which there is almost no charge density.
 - $R_{\textit{max}}\approx 5$ fm for our nuclei.
 - Consecutive R_i spacing is closer at smaller radii.
 - $R_i < R_{max}/2 \approx$ half as far apart as spacing of $R_i > R_{max}/2$.
- Essentially, the set of R_i constitute a model of the charge distribution.
- R_i are generated within pseudorandom ranges initially to span the model space.
- R_i are then adjusted up and down by 0.1 fm until χ^2 is minimized.

• How do we select how many Gaussians, N_{Gaus}, to use in our fit?

• How do we select how many Gaussians, N_{Gaus}, to use in our fit? – χ^2 is useful, but it can be misleading. Reduced χ^2 can help.

$$\chi^{2} = \sum_{n=1}^{N} \frac{(\sigma_{exp} - \sigma_{fit})^{2}}{\Delta^{2}} \qquad (37) \qquad r\chi^{2} = \frac{\chi^{2}}{N - N_{var} - 1} \qquad (38)$$

• How do we select how many Gaussians, N_{Gaus}, to use in our fit? – χ^2 is useful, but it can be misleading. Reduced χ^2 can help.

$$\chi^{2} = \sum_{n=1}^{N} \frac{(\sigma_{exp} - \sigma_{fit})^{2}}{\Delta^{2}} \qquad (37) \qquad r\chi^{2} = \frac{\chi^{2}}{N - N_{var} - 1} \qquad (38)$$

• Akaike and Bayesian information criterion are more powerful [9].

$$AIC = N \ln\left(\frac{\chi^2}{N}\right) + 2N_{var} \quad (39) \quad BIC = N \ln\left(\frac{\chi^2}{N}\right) + \ln\left(N\right) N_{var} \quad (40)$$

• How do we select how many Gaussians, N_{Gaus}, to use in our fit? – χ^2 is useful, but it can be misleading. Reduced χ^2 can help.

$$\chi^{2} = \sum_{n=1}^{N} \frac{(\sigma_{exp} - \sigma_{fit})^{2}}{\Delta^{2}} \qquad (37) \qquad r\chi^{2} = \frac{\chi^{2}}{N - N_{var} - 1} \qquad (38)$$

• Akaike and Bayesian information criterion are more powerful [9].

$$AIC = N \ln\left(\frac{\chi^2}{N}\right) + 2N_{var} \quad (39) \quad BIC = N \ln\left(\frac{\chi^2}{N}\right) + \ln(N) N_{var} \quad (40)$$

- The Q_i are not forced to sum to unity.
 - By not forcing $\sum Q_i = 1$ the $\sum Q_i$ becomes a measure of how well our fit and the current data approach physical requirements.

• How do we select how many Gaussians, N_{Gaus}, to use in our fit? – χ^2 is useful, but it can be misleading. Reduced χ^2 can help.

$$\chi^{2} = \sum_{n=1}^{N} \frac{(\sigma_{exp} - \sigma_{fit})^{2}}{\Delta^{2}} \qquad (37) \qquad r\chi^{2} = \frac{\chi^{2}}{N - N_{var} - 1} \qquad (38)$$

• Akaike and Bayesian information criterion are more powerful [9].

$$AIC = N \ln\left(\frac{\chi^2}{N}\right) + 2N_{var} \quad (39) \quad BIC = N \ln\left(\frac{\chi^2}{N}\right) + \ln(N) N_{var} \quad (40)$$

- The Q_i are not forced to sum to unity.
 - By not forcing $\sum Q_i = 1$ the $\sum Q_i$ becomes a measure of how well our fit and the current data approach physical requirements.
- Lastly the fits can be visually inspected for physicality.

• Compare the metrics for different values of N_{Gaus} for ³He and ³H.

• Compare the metrics for different values of N_{Gaus} for ³He and ³H.

N Gaus	Avg. χ^2	$\mathbf{r}\chi^2$	BIC	AIC	$\sum \mathbf{Q}_{i_{ch}}$	$\sum \mathbf{Q}_{i_m}$	$\chi^2_{\rm max}$	'Good' Fits
8	584.902	2.41695	255.440	223.228	1.00769	1.11065	765	11
9	470.435	1.96014	204.590	172.375	1.00851	1.02161	521	58
10	469.177	1.97133	209.454	173.793	1.00812	1.08196	519	66
11	445.136	1.88617	201.387	162.233	1.00843	1.04007	503	67
12	436.264	1.86438	201.727	159.045	1.00839	1.02557	501	75
13	439.084	1.89260	208.924	162.685	1.00947	1.03975	500	56

Table 2: Determination of N_{Gaus} for ³He

• Compare the metrics for different values of N_{Gaus} for ³He and ³H.

N Gaus	Avg. χ^2	$\mathbf{r}\chi^2$	BIC	AIC	$\sum \mathbf{Q}_{i_{ch}}$	$\sum \mathbf{Q}_{i_m}$	$\chi^2_{\rm max}$	'Good' Fits
8	584.902	2.41695	255.440	223.228	1.00769	1.11065	765	11
9	470.435	1.96014	204.590	172.375	1.00851	1.02161	521	58
10	469.177	1.97133	209.454	173.793	1.00812	1.08196	519	66
11	445.136	1.88617	201.387	162.233	1.00843	1.04007	503	67
12	436.264	1.86438	201.727	159.045	1.00839	1.02557	501	75
13	439.084	1.89260	208.924	162.685	1.00947	1.03975	500	56

Table 2: Determination of N_{Gaus} for ³He

N _{Gaus}	Avg. χ^2	$\mathbf{r}\chi^2$	BIC	AIC	$\sum \mathbf{Q}_{i_{ch}}$	$\sum \mathbf{Q}_{i_m}$	$\chi^2_{\rm max}$	'Good' Fits
7	611.690	2.79310	263.039	238.851	1.08373	1.32730	611.7	1
8 close	601.836	2.77344	264.694	237.051	1.09013	1.32859	603	32
8 wide	601.752	2.79892	264.661	237.018	1.08970	1.33270	603	39
9	601.768	2.82579	270.123	239.025	1.08849	1.31982	604	95
10	601.893	2.84416	275.627	241.074	1.09248	1.29611	603	78
11	600.750	2.77305	280.637	242.629	1.08699	1.34100	602	88

Table 3: Determination of N_{Gaus} for ³H

³He Fits

• Let's look at the $N_{\textit{Gaus}}=$ 12 ^{3}He form factor plots.

³He Fits

• Let's look at the $N_{\it Gaus}=$ 12 $^{3}{\rm He}$ form factor plots.

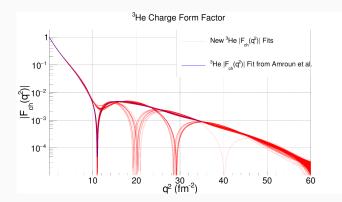


Figure 25: Charge Form Factors from 1352 ³He Fits with no χ^2_{max} cut.

³He Fits

- Let's look at the $N_{\textit{Gaus}}=$ 12 ^{3}He form factor plots.

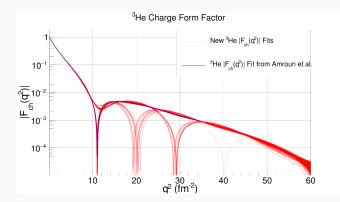
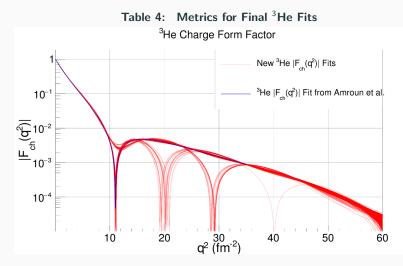


Figure 25: Charge Form Factors from 1352 ³He Fits with no χ^2_{max} cut.

- Many of these fits look nonphysical. How do we remove them?
 - Apply a cut on χ^2 .

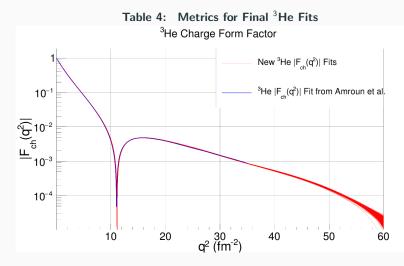
³He Charge Form Factor

N Gaus	Avg. χ^2	$\mathbf{r}\chi^2$	BIC	AIC	$\sum \mathbf{Q}_{i_{ch}}$	$\sum \mathbf{Q}_{i_m}$	χ^2_{max}	Below Cut
12	523.743	2.23822	249.063	184.771	1.01018	1.04558	No Cut	1352
12	436.564	1.86566	201.908	159.223	1.00840	1.02235	500	852



³He Charge Form Factor

N Gaus	Avg. χ^2	$\mathbf{r}\chi^2$	BIC	AIC	$\sum \mathbf{Q}_{i_{ch}}$	$\sum \mathbf{Q}_{i_m}$	χ^2_{max}	Below Cut
12	523.743	2.23822	249.063	184.771	1.01018	1.04558	No Cut	1352
12	436.564	1.86566	201.908	159.223	1.00840	1.02235	500	852



³He Charge Density

• Now we can Fourier transform F_{ch} to find the charge density.

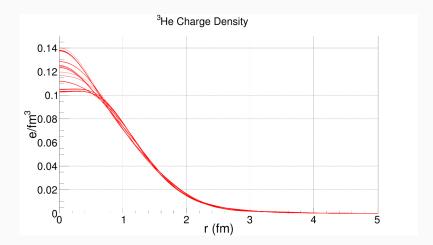
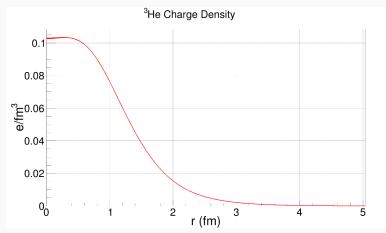


Figure 28: Charge Densities from 1352 3 He Fits with no χ^{2}_{max} cut. 40

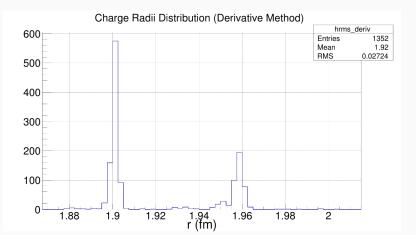
³He Charge Density

- Now we can Fourier transform F_{ch} to find the charge density.
 - As expected the density falls off by $\mathsf{r}=5$ fm.
 - Density turns over slightly and plateaus at small r.



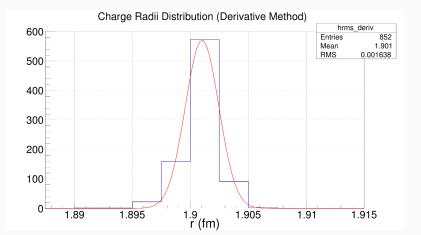
³He Charge Radius

• Using the derivative of F_{ch} we can obtain the charge radius.



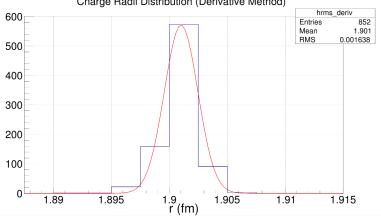
³He Charge Radius

- Using the derivative of F_{ch} we can obtain the charge radius.
 - Higher radii disappear completely with the cut.
 - Avg. ³He charge radius = 1.90 fm, SD = 0.00144 fm.



³He Charge Radius

- Using the derivative of F_{ch} we can obtain the charge radius.
 - Higher radii disappear completely with the cut.
 - Avg. ³He charge radius = 1.90 fm, SD = 0.00144 fm.
 - Saclay 1.96 ± 0.03 . Bates 1.87 ± 0.03 [10].
 - GFMC 1.97 \pm 0.01. χ EFT 1.962 \pm 0.004 [10].



Charge Radii Distribution (Derivative Method)

New ³He F_{ch} Fits in Context

• We can compare the new ${}^{3}\text{He}\ \mathsf{F}_{ch}$ fits to older fits as well as theory [11].

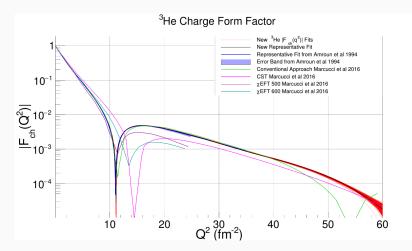
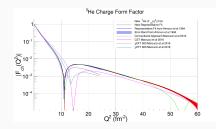
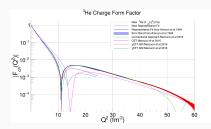


Figure 32: ³He Charge Form Factors.



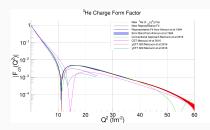
- The F_{ch} fits are very tightly grouped due to an abundance of low Q² data.
 - All R_i models strongly agree up to 55-60 fm⁻².
- The new fits almost perfectly overlap the fits of Amroun *et al.*

New ³He F_{ch} Fits in Context Cont.



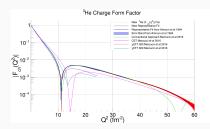
- The F_{ch} fits are very tightly grouped due to an abundance of low Q² data.
 - All R_i models strongly agree up to 55-60 fm⁻².
- The new fits almost perfectly overlap the fits of Amroun *et al.*
- Conventional Approach: Simulates 2 and 3-body nucleon interactions and relativistic corrections [11].
 - Describes the F_{ch} minima and magnitude very well.

New ³He F_{ch} Fits in Context Cont.



- The F_{ch} fits are very tightly grouped due to an abundance of low Q² data.
 - All R_i models strongly agree up to 55-60 fm⁻².
- The new fits almost perfectly overlap the fits of Amroun *et al.*
- Conventional Approach: Simulates 2 and 3-body nucleon interactions and relativistic corrections [11].
 - Describes the F_{ch} minima and magnitude very well.
- χEFT: Uses chiral symmetry of QDC to describe the internal strong and EM interactions (momentum space cutoffs 500/600 MeV) [11].
 - Underestimates magnitude of F_{ch}. χ EFT500 finds first minima.

New ³He F_{ch} Fits in Context Cont.



- The F_{ch} fits are very tightly grouped due to an abundance of low Q² data.
 - All R_i models strongly agree up to 55-60 fm⁻².
- The new fits almost perfectly overlap the fits of Amroun *et al.*
- Conventional Approach: Simulates 2 and 3-body nucleon interactions and relativistic corrections [11].
 - Describes the F_{ch} minima and magnitude very well.
- χEFT: Uses chiral symmetry of QDC to describe the internal strong and EM interactions (momentum space cutoffs 500/600 MeV) [11].
 - Underestimates magnitude of F_{ch}. χ EFT500 finds first minima.
- Covariant spectator theorem (CST): Covariant FT where nucleons and light mesons are effective DOF (fully relativistic) [11].
 - Misses F_{ch} minima and underestimates magnitude.

³He Magnetic Form Factor

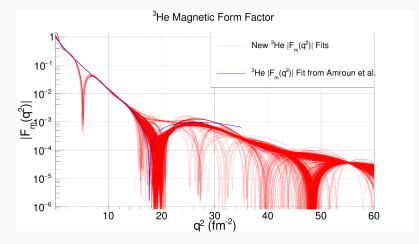


Figure 33: Magnetic Form Factors from 1352 ³He Fits with no χ^2_{max} cut.

³He Magnetic Form Factor

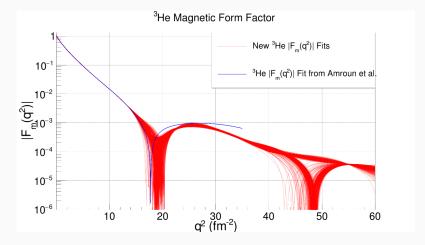


Figure 34: Magnetic Form Factors from 852 3 He Fits surviving a χ^{2}_{max} = 500 cut.

• We can compare the new ${}^{3}\text{He}\ F_{m}$ fits to older fits as well as theory.

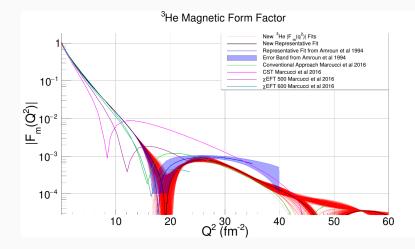
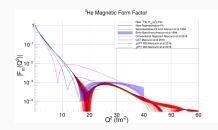
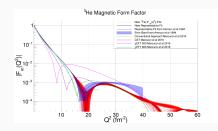


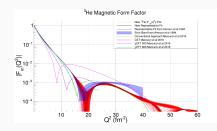
Figure 35: ³He Magnetic Form Factors.



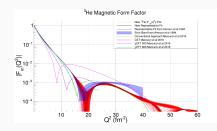
- F_m fits more loosely grouped. Lacking high Q² data.
 - The R_i models take divergent paths above 40 fm⁻².
- The first minima is shifted back from Amroun *et al.*
- Magnitude decreased between minima.



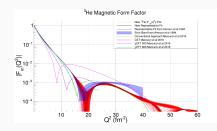
- F_m fits more loosely grouped. Lacking high Q² data.
 - The R_i models take divergent paths above 40 fm⁻².
- The first minima is shifted back from Amroun *et al.*
- Magnitude decreased between minima.
- Conventional Approach [11]:
 - Minima shifted too low. Appropriate F_m magnitude above 25 fm⁻².



- F_m fits more loosely grouped. Lacking high Q² data.
 - The R_i models take divergent paths above 40 fm⁻².
- The first minima is shifted back from Amroun *et al.*
- Magnitude decreased between minima.
- Conventional Approach [11]:
 - Minima shifted too low. Appropriate F_m magnitude above 25 fm⁻².
- χEFT [11]:
 - χ EFT500 misses minima. χ EFT600 closest to minima, but underestimates F_m magnitude.



- F_m fits more loosely grouped. Lacking high Q² data.
 - The R_i models take divergent paths above 40 fm⁻².
- The first minima is shifted back from Amroun *et al.*
- Magnitude decreased between minima.
- Conventional Approach [11]:
 - Minima shifted too low. Appropriate F_m magnitude above 25 fm⁻².
- χEFT [11]:
 - χ EFT500 misses minima. χ EFT600 closest to minima, but underestimates F_m magnitude.
- CST [11]:
 - Very poor description of the data.



- F_m fits more loosely grouped. Lacking high Q² data.
 - The R_i models take divergent paths above 40 fm⁻².
- The first minima is shifted back from Amroun *et al.*
- Magnitude decreased between minima.
- Conventional Approach [11]:
 - Minima shifted too low. Appropriate F_m magnitude above 25 fm⁻².
- χEFT [11]:
 - χ EFT500 misses minima. χ EFT600 closest to minima, but underestimates F_m magnitude.
- CST [11]:
 - Very poor description of the data.
- Data first minima moved further away from all predictions.
 - Theory is having difficulty predicting the 3 He F_m.

• 259 ³He points. $\chi^2 = 436$. $r\chi^2 = 1.86$.

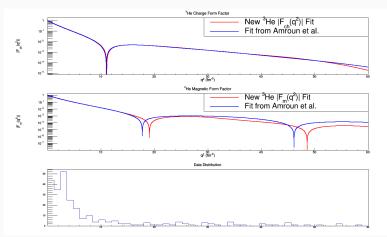


Figure 36: ³He Representative Form Factors and World Data Distribution.

• 259 ³He points. $\chi^2 = 436$. $r\chi^2 = 1.86$.

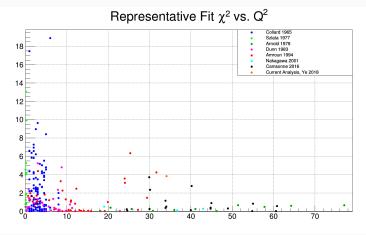


Figure 37: ³He Representative Fit χ^2 vs. Q^2 .

• 259 ³He points. $\chi^2 = 436$. $r\chi^2 = 1.86$.

Residual of Representative Fit vs. Q²

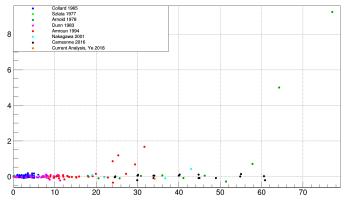


Figure 38: ³He Representative Fit Residual vs. Q².

• 259 ³He points. $\chi^2 = 436$. $r\chi^2 = 1.86$.

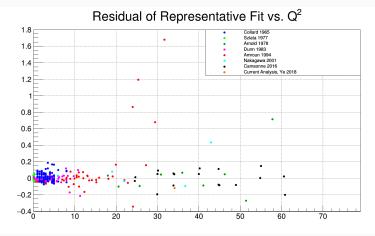
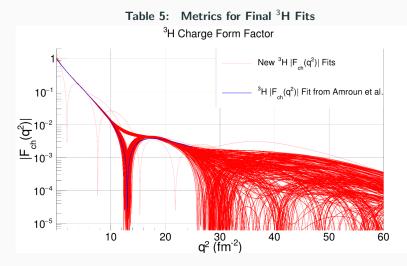


Figure 39: ³He Representative Fit Residual vs. Q^2 Zoomed. Two large residual points from not shown.

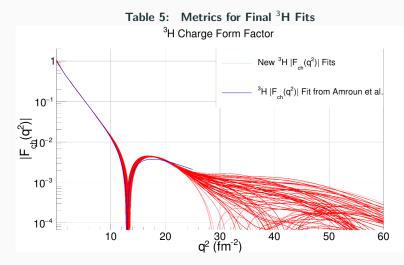
³H Charge Form Factor

N Gaus	Avg. χ^2	$\mathbf{r}\chi^2$	BIC	AIC	$\sum \mathbf{Q}_{i_{ch}}$	$\sum \mathbf{Q}_{i_m}$	χ^2_{max}	Below Cut
8	611.385	2.81744	266.175	238.532	1.08866	1.33481	No Cut	2600
8	601.840	2.77346	264.695	237.053	1.08991	1.32926	603	908



³H Charge Form Factor

N Gaus	Avg. χ^2	$\mathbf{r}\chi^2$	BIC	AIC	$\sum \mathbf{Q}_{i_{ch}}$	$\sum \mathbf{Q}_{i_m}$	χ^2_{max}	Below Cut
8	611.385	2.81744	266.175	238.532	1.08866	1.33481	No Cut	2600
8	601.840	2.77346	264.695	237.053	1.08991	1.32926	603	908



³H Charge Density

• Again we Fourier transform F_{ch} to find the charge density.

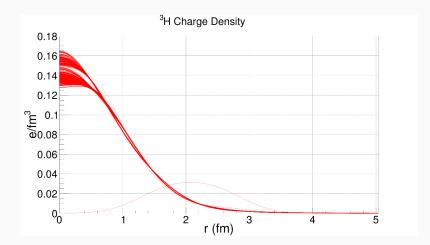


Figure 42: Charge Densities from 2600 ${}^{3}\text{H}$ Fits with no χ^{2}_{max} cut. 49

³H Charge Density

- Again we Fourier transform F_{ch} to find the charge density.
 - Plateaus at small r like 3 He. Unclear if the density turns over.
 - Magnitude at r = 0 has much more uncertainty than ³He.

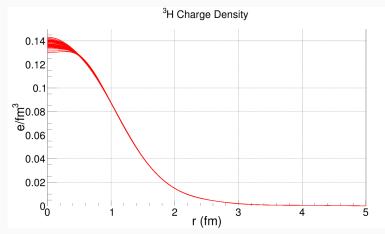
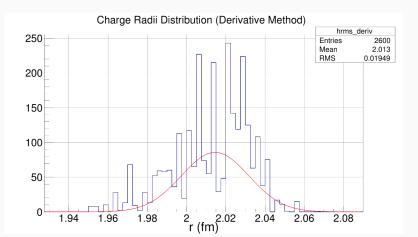


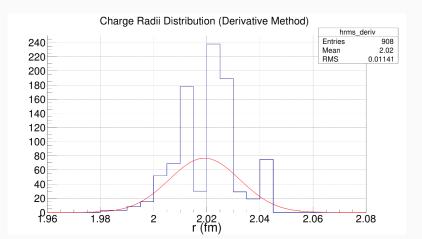
Figure 43: Charge Densities from 908 3 H Fits surviving a χ^2_{max} = 603 cut. ⁴⁹

• Again, using the derivative of F_{ch} we can obtain the charge radius.

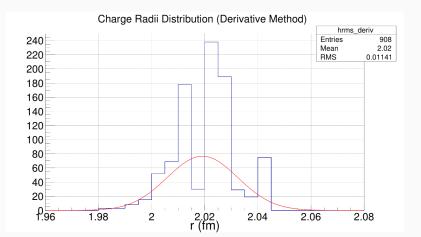


50

- Again, using the derivative of F_{ch} we can obtain the charge radius.
 - Avg. ³H charge radius = 2.02 fm, SD = 0.0133 fm.

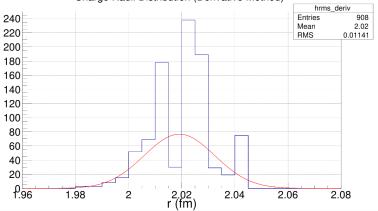


- Again, using the derivative of F_{ch} we can obtain the charge radius.
 - Avg. 3 H charge radius = 2.02 fm, SD = 0.0133 fm.
 - Saclay 1.76 ± 0.09 . Bates 1.68 ± 0.03 [10].
 - GFMC 1.77 \pm 0.01. χ EFT 1.756 \pm 0.006 [10].



50

- Again, using the derivative of F_{ch} we can obtain the charge radius.
 - Avg. 3 H charge radius = 2.02 fm, SD = 0.0133 fm.
 - Saclay 1.76 \pm 0.09. Bates 1.68 \pm 0.03 [10].
 - GFMC 1.77 \pm 0.01. χ EFT 1.756 \pm 0.006 [10].
 - This is the result of not forcing $Q_{i_{ch}} = 1$.



Charge Radii Distribution (Derivative Method)

New ³H F_{ch} Fits in Context

• We can compare the new ³H F_{ch} fits to older fits.

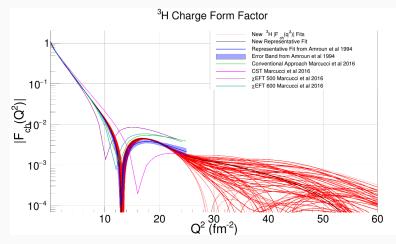
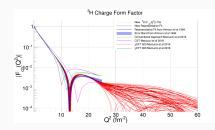
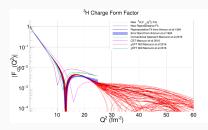


Figure 46: ³H Charge Form Factors.

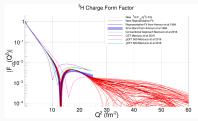


- Results are comparable with Amroun et al.
 - No new ³H data added.
 - Above $Q^2\approx 25~\text{fm}^{-2}$ the fits diverge greatly.
- Demonstrates the consistency of our method.



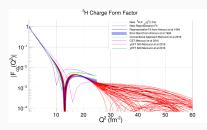
• Conventional Approach [11]:

- Results are comparable with Amroun et al.
 - No new ${}^{3}H$ data added.
 - Above $Q^2\approx 25~\text{fm}^{-2}$ the fits diverge greatly.
- Demonstrates the consistency of our method.
- Describes minimum well. F_{ch} magnitude a bit large.

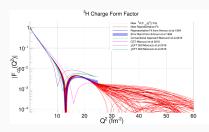


• Conventional Approach [11]:

- Results are comparable with Amroun et al.
 - No new ³H data added.
 - Above $Q^2\approx 25~\text{fm}^{-2}$ the fits diverge greatly.
- Demonstrates the consistency of our method.
- Describes minimum well. F_{ch} magnitude a bit large.
- χEFT [11]:
 - χ EFT500 misses minima and magnitude. χ EFT600 close to minimum, and slightly large F_{ch} magnitude.



- Results are comparable with Amroun et al.
 - No new ${}^{3}H$ data added.
 - Above $Q^2\approx 25~\text{fm}^{-2}$ the fits diverge greatly.
- Demonstrates the consistency of our method.
- Conventional Approach [11]:
 - Describes minimum well. F_{ch} magnitude a bit large.
- χEFT [11]:
 - χ EFT500 misses minima and magnitude. χ EFT600 close to minimum, and slightly large F_{ch} magnitude.
- CST [11]:
 - Poorly describes the data.



- Results are comparable with Amroun et al.
 - No new ${}^{3}H$ data added.
 - Above $Q^2\approx 25~\text{fm}^{-2}$ the fits diverge greatly.
- Demonstrates the consistency of our method.
- Conventional Approach [11]:
 - Describes minimum well. F_{ch} magnitude a bit large.
- χEFT [11]:
 - χ EFT500 misses minima and magnitude. χ EFT600 close to minimum, and slightly large F_{ch} magnitude.
- CST [11]:
 - Poorly describes the data.
- Theory predicts data relatively well.
 - Better understanding of F_{ch} magnitude needed.

³H Magnetic Form Factor

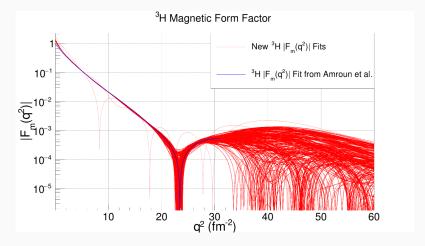


Figure 47: Magnetic Form Factors from 2600 ³H Fits with no χ^2_{max} cut.

³H Magnetic Form Factor

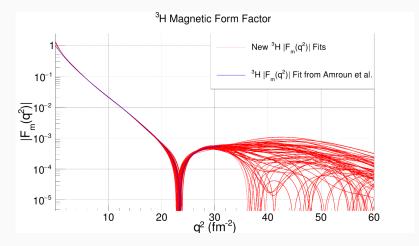


Figure 48: Magnetic Form Factors from 908 ³H Fits surviving a χ^2_{max} = 603 cut.

• We can compare the new ³H F_m fits to older fits.

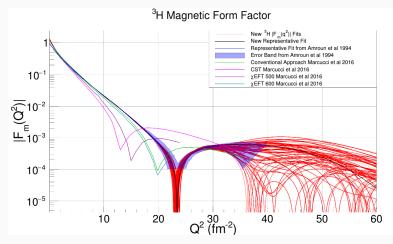
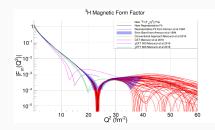
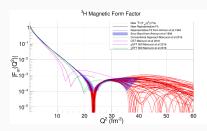


Figure 49: ³H Magnetic Form Factors.



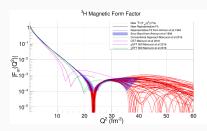
- Results are comparable with Amroun et al.
 - No new ${}^{3}H$ data added.
 - Very little understanding of F_m above $Q^2 = 35 \text{ fm}^{-2}$.
- Need more high Q^2 data.



- Conventional Approach [11]:
 - Early first minimum. If minimum shifts right F_m magnitude looks close.

- Results are comparable with Amroun et al.
 - No new ${}^{3}H$ data added.
 - Very little understanding of F_m above $Q^2 = 35 \text{ fm}^{-2}$.
- Need more high Q^2 data.

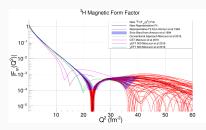
New ³H F_m Fits in Context Cont.



- Results are comparable with Amroun et al.
 - No new ${}^{3}H$ data added.
 - Very little understanding of F_m above $Q^2 = 35 \text{ fm}^{-2}$.
- Need more high Q^2 data.

- Conventional Approach [11]:
 - Early first minimum. If minimum shifts right F_m magnitude looks close.
- χEFT [11]:
 - χ EFT500 misses badly. χ EFT600 is similar to the conventional approach.

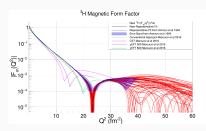
New ³H F_m Fits in Context Cont.



- Results are comparable with Amroun et al.
 - No new $^{3}\mathsf{H}$ data added.
 - Very little understanding of F_m above $Q^2 = 35 \text{ fm}^{-2}$.
- Need more high Q^2 data.

- Conventional Approach [11]:
 - Early first minimum. If minimum shifts right F_m magnitude looks close.
- χEFT [11]:
 - χ EFT500 misses badly. χ EFT600 is similar to the conventional approach.
- CST [11]:
 - Poorly describes the data.

New ³H F_m Fits in Context Cont.



- Results are comparable with Amroun et al.
 - No new ${}^{3}H$ data added.
 - Very little understanding of F_m above $Q^2 = 35 \text{ fm}^{-2}$.
- Need more high Q^2 data.

- Conventional Approach [11]:
 - Early first minimum. If minimum shifts right F_m magnitude looks close.
- χEFT [11]:
 - χ EFT500 misses badly. χ EFT600 is similar to the conventional approach.
- CST [11]:
 - Poorly describes the data.
- Theory struggles to predict data.
 - Magnitude may be close to correct if minimum shifts up in Q^2 .

³H Representative Cross Section Fit Statistics

• 234 ³H points. $\chi^2 = 602$. $r\chi^2 = 2.77$.

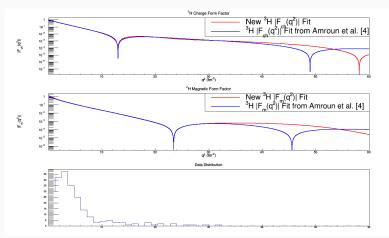


Figure 50: ³H Representative Form Factors and World Data Distribution.

³H Representative Cross Section Fit Statistics

• 234 ³H points. $\chi^2 = 602$. $r\chi^2 = 2.77$.

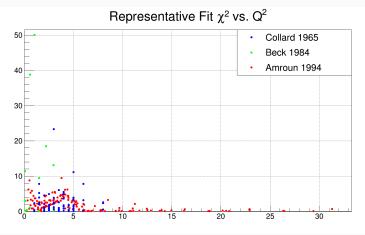


Figure 51: ³H Representative Fit χ^2 vs. Q².

³H Representative Cross Section Fit Statistics

• 234 ³H points. $\chi^2 = 602$. $r\chi^2 = 2.77$.

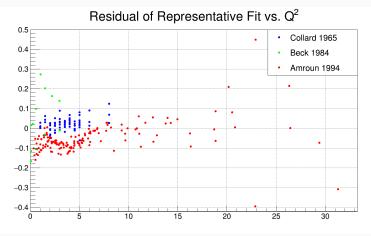


Figure 52: ³H Representative Fit Residual vs. Q².

• New ³He elastic cross section of 1.335 \pm 0.086 * 10⁻⁶ μ b/sr.

- New ³He elastic cross section of 1.335 \pm 0.086 * 10^{-6} $\mu \rm b/sr.$
- Modern SOG fits with new JLab and this analysis' data point were performed.
 - ${}^{3}\text{He}$ F_{ch} and ${}^{3}\text{H}$ F_{ch} and F_m relatively unchanged.
 - ³He F_m first minimum shift up several fm⁻² in Q².
 - ³He charge radii agrees with past data.
 - ³H charge radii disagrees with past data ($\sum Q_i \neq 1$).

- New ³He elastic cross section of 1.335 \pm 0.086 * 10^{-6} $\mu \rm b/sr.$
- Modern SOG fits with new JLab and this analysis' data point were performed.
 - 3 He F_{ch} and 3 H F_{ch} and F_m relatively unchanged.
 - ³He F_m first minimum shift up several fm⁻² in Q².
 - ³He charge radii agrees with past data.
 - ³H charge radii disagrees with past data ($\sum Q_i \neq 1$).
- A conventional theoretical approach using 2 and 3-body nucleon interactions and relativistic corrections reproduces F_{ch} well. χ EFT also performs decently.
 - Theory predictions struggle with predicting F_m.

- New ³He elastic cross section of 1.335 \pm 0.086 * 10^{-6} $\mu \rm b/sr.$
- Modern SOG fits with new JLab and this analysis' data point were performed.
 - 3 He F_{ch} and 3 H F_{ch} and F_m relatively unchanged.
 - ³He F_m first minimum shift up several fm⁻² in Q².
 - ³He charge radii agrees with past data.
 - ³H charge radii disagrees with past data ($\sum Q_i \neq 1$).
- A conventional theoretical approach using 2 and 3-body nucleon interactions and relativistic corrections reproduces F_{ch} well. χ EFT also performs decently.
 - Theory predictions struggle with predicting F_m.
- Need more high Q² data to understand form factors beyond the first minimum.
 - JLab is well positioned to make these measurements!
 - Hall A back angle max of 150° with 12 GeV available. Rates fall extremely fast, but very high Q² could be accessed.
 - Probe transitional region where scattering off hadrons and mesons \rightarrow scattering off quarks and gluons.

- This work was made possible by DOE grant 742481 as well as a JSA Graduate Fellowship.
- Thanks to Douglas Higinbotham for his knowledge of fitting best practices and XS extractions as well as his invaluable mentorship.
- Thanks to Todd Averett for his guidance as my advisor, and the freedom he has allowed me in my research.
- Special thank you to Dien Nguyen for pioneering this data set and saving me countless hours of confusion.
- And thanks to my other JLab mentors like Bob Michaels and Bogdan Wojtsekhowski, and the many others at JLab who have supported me in my graduate work.

Questions?

References i

- Povh *et al.*, "Particles and Nuclei an Introduction to the Physical Concepts" (Springer, Reading, Mass, 2008).
- Z. Ye, "Short Range Correlations in Nuclei at Large x Bj through Inclusive Quasi-Elastic Electron Scattering", (University of Virginia, Dec. 2013).
- 3. Y. Wang, "Measurement of the Proton Elastic Cross Section at $Q^2 = 0.66$, 1.10, 1.51 and 1.65 GeV²", (The College of William & Mary, Aug. 2017).
- D. Nguyen, "Target Density Determination Through Elastic Scattering from ³He in Experiment E08014", unpublished, (Mar. 2016).
- 5. A. Amroun et al., "³H and ³He EM Form Factors", Nuclear Physics A 579, 596 (1994).
- G. Lafferty and T. Wyatt, "Where to stick your data points: The treatment of measurements within wide bins", Nuclear Instruments and Methods in Physics Research Section A 355, 541 (1995).
- A. Camsonne *et al.*, "JLab Measurements of the ³He Form Factors at Large Momentum Transfers", Physical Review Letters **119**, (2017).
- I. Sick, "Model-Independent Nuclear Charge Densities from Elastic Electron Scattering", Nuclear Physics A 218, 509 (1973).
- D. Higinbothan, "Bias-Variance Trade-off and Model Selection for Proton Radius Extractions", https://arxiv.org/abs/1812.05706.
- L. Myers, "E12-14-009: Ratio of the Electric Form Factor in the Mirror Nuclei ³He and ³H", https://arxiv.org/pdf/1408.5283.pdf.
- L. Marcucci et al., "Electromagnetic Structure of Few-Nucleon Ground States", J. Phys. G: Nucl. Part. Phys. 43, (2016).