Compton polarimetry at JLAB hall A

D. Lhuillier / CEA Saclay

Introduction

- ~5 years technical developments. Quite complex apparatus . (Sorry Pr. Sick, we couldn't make it simple).
- Chicane and γ detector commissioned during HAPPEx in 1998, led to 3-4% uncertainty (M.Baylac thesis).
- In 2000, e- detector operational. New analysis method provided high precision measurements at 4.5 GeV (S.Escoffier thesis)
- "Online" analysis using the electron detector available since last year.

Compton kinematics

Differential measurements provide higher <A> High threshold can improves stat. convergence

Compton Polarimeter setup

D. Lhuillier / CEA Saclay

Optical setup

D. Lhuillier / CEA Saclay

The Fabry-Perot cavity

Polarimetry Workshop, Jlab, 06/2003

D. Lhuillier / CEA Saclay

Compton Polarimeter setup

-> e^{-} and γ detection

D. Lhuillier / CEA Saclay

Electron detector

D. Lhuillier / CEA Saclay

Photon calorimeter

- Fast response
- Compact ($\chi_0 = 0.85cm$, $R_M = 2.2cm$)
- Rad hard

So far, used only the central crystal of the 5 x 5 matrix

D. Lhuillier / CEA Saclay

Data taking

D. Lhuillier / CEA Saclay

Data Acquisition

D. Lhuillier / CEA Saclay

Electron only analysis

Differential measurement

$$A_{\exp}^{i} = P_{\gamma} \times P_{e}^{i} < A_{L}^{i} >$$

-Energy calibration from Compton edge -Good resolution and efficiency

dE_i Scattered electrons Scattered electrons Y_{det}

1 cm

Electron only analysis

D. Lhuillier / CEA Saclay

Electron only analysis

■Y_{det} ⇔ energy cut (E>2.5 GeV)

Simple and fast analysis implemented "online"

•Main syst. error from calibration: $\Delta P_e/P_e \sim 2 \Delta Y/Y$ with $\Delta Y=+/-100 \mu m$ limited by strip size, detector orientation and beam size.

E _{Beam} (GeV)	k' _{Max} (MeV)	A _{Max} (%)	Y _{Max} (mm)	ΔΡ _e /Ρ _e (%) (for ΔY=+/-150 μm)	
0.85	12.7	1.5	3.5	8.6	
1.00	17.6	1.8	4.2	7.1	
2.00	69.1	3.5	8.4	3.6	
3.20	173	5.6	13.4	2.2	
6.00	582	10.2	25.1	1.2	

D. Lhuillier / CEA Saclay

A1n & g2 experiments

Compton is ~4% lower than hall A Moller

(S. Escoffier)

semi-integrated measurement using photon events above an optimized threshold.

Response function of the calorimeter:

Fit data for each electron strip:

•Asymmetric profile due to energy leakage on the sides of the central crystal

Ad hoc parameterization

$$g_{R}(x) = A e^{\frac{(x-x_{0})^{2}}{2\sigma_{R}^{2}}}$$
$$g_{L}(x) = A \left[(1-\delta) e^{\frac{(x-x_{0})^{2}}{2\sigma_{L}^{2}}} + \eta + (\delta - \eta) \frac{x^{4}}{x_{0}^{4}} \right]$$

Normalized response function : g(ADC,k)

Energy calibration:

→Reference runs + λ parameter fit to correct for gain drifts:

 $g(ADC,k) \Rightarrow g(ADC/\lambda,k)$

D. Lhuillier / CEA Saclay

Determination of the analyzing power <**A**_{th}>:

with $P(k) = \frac{\int_{ADC_s/\lambda}^{\infty} g(ADC, k) dADC}{\int_{0}^{\infty} g(ADC, k) dADC}$

Probability of being detected above threshold ADC_s for incident energy k.

ADC range divided in bins of 50 channels -> "software" threshold to reduce stat. and syst. errors

threshold ADC_s for incide

D. Lhuillier / CEA Saclay

Error budget for N-Delta and GeP

	Error source	Typical run	Correlated	Uncorr.
	Positions and angles	0.45%		0.45%
	Events selections	0.10%		0.10%
A _{exp}	Dead time	0.10%	0.10%	
	Intensity asymmetry	0.05%		0.05%
	Background asymmetry	0.05%	0.05%	
Laser beam	Polarization Py	0.45%	0.45%	
	Parameterization	0.45%	0.45%	
	Calibration	0.60%	0.60%	
Analyzing Power	Pile up	0.45%		0.45%
	Radiative corrections	0.26%	0.26%	
Systematics		1.10%	0.84%	0.64%
Statistics (40 mn)		0.80%		0.80%
TOTAL		1.4%		

D. Lhuillier / CEA Saclay

Measurements during N-Delta

330 measurements within 60 days

1% relative uncertainty for monitoring

D. Lhuillier / CEA Saclay

Measurements during GeP

120 measurements within 45 days

Comparison with Moller

D. Lhuillier / CEA Saclay

Electron & photon measurements

D. Lhuillier / CEA Saclay

Photon only

Integration method with low threshold

- Not sensitive to calorimeter resolution if thres<<k'_{Max}
- No dead time
- P(k) reduces to detection efficiency

$$< A_{th} >= \frac{\int P(k) \frac{d\sigma_0(k)}{dk} A(k) dk}{\int P(k) \frac{d\sigma_0(k)}{dk} dk}$$

- Difficult for low energy beam: threshold~100 keV and <A> small
- Probably 2-3% measurement at Happex kinematics
- Tests with LSO and BaF2 crystal being analyzed.

Background in detectors

S/B used to be 20 for 2 years but the setup very sensitive to beam halo

Material close to the beam axis.
 Compton rates are 10⁻¹⁰ of beam intensity.

•First results from commissioning of the e- detector 3.5 mm away from beam show a 10⁻⁹ halo (factor 10 too big).

Leakage from hall C observed.

Possible fix:

- Upstream quad and/or collimator
- Find key parameter in beam tune?

Status

- Fabry-Perot cavity is operational and stable since 1999
- Powerful monitoring of the beam polarization in the hall A running conditions.
- Typical total uncertainty whithin 40 mn at 4.5 GeV and 40 μ A is:

 $\sigma_{Pe} = 1.1 (syst) + 0.8 (stat) = 1.4\%$

- Two complementary methods (Electrons and Photons) statistically compatible.
- Background level an order of magnitude too high over last year.

High Energy

- The "response function" analysis should provide sub-% measurement at 6GeV and above thanks to the large analyzing power
- Calibration of the electron detector can be improved by a factor 2 using narrower strips.
- Magnets limited to 8 GeV. Simpler 12 GeV upgrade is to reduce the vertical dispersion from 30 to 20 cm

Low Energy

- e⁻ detector 3.5mm away from the beam is in principle operational down to 0.85 GeV but then very sensitive to beam halo.
- G detector alone is not accurate enough because of the uncertainty on the resolution.
- Integration method need threshold ~100 keV difficult to achieve and control.
- Need several hardware improvements:
- Go to green laser (factor 2 in the total error) Big work!
- Use strip of 300 or 200 μm Easy
- Use bigger (~5cm) crystal to minimize leakage Easy

Beam position differences

D. Lhuillier / CEA Saclay