A Precision Measurement of Neutral Pion Lifetime

π^0 analysis

Physical quantities measured:

- Incident photon energy and time
- Decay photon energies, coordinates and time

π^0 event selection:

- Requires two HyCal clusters:
 - 1) Every combination are considered as π^0 candidate
 - 2) $E_1, E_2 > 0.5 \text{ GeV}$
 - 3) $E_1 + E_2 > 3.5 \text{ GeV}$
- Conservation of energy:
 E_{beam} = E₁+E₂
- Invariant mass: $m_{\gamma\gamma} = m_{\pi^0}$
- Coincidence between incident photon and decay photons:
 - 1) "Best tdiff" π^0 candidate selection
 - 2) Cut on the time different between HyCal and Tagger (tdiff)

 π^0 invariant mass and elasticity

π^0 invariant mass and elasticity

π^0 hybrid mass

• π^0 hybrid mass:

$$hybridmass = \frac{m_{\gamma\gamma}}{m_{\pi^0}}\cos(\alpha) - Elasticity\sin(\alpha)$$

• $\alpha = 45^{\circ}$

 By projecting π⁰ events onto hybrid mass, both non π⁰ and inelastic backgrounds are pushed away from the signal

Timing Coincidence

- HyCal total sum trigger:
 - Total $E_{deposit} > 2 \text{ GeV}$
- Tagger Master OR:
 - Master OR of all T-channels
- Coincidence between these two triggers is required (tdiff cut)
- Tagged photon multiplicity
- "Best tdiff" or "all tdiff":
 - "Best tdiff" method only accounts tagged photon with the smallest |tdiff|
 - Effect on signal is minimal but "best tdiff" removes more background

Best Tdiff and 2nd Best Tdiff

- Tagged photons selected by mistake using "best tdiff":
 - actual incident photon has bigger tdiff
- 2nd "best tdiff":
 - 1.16% of total π^0 for silicon
 - 1.45% of total π^0 for carbon
 - 3rd "best tdiff" only accounts for ~100 π⁰ over the full acceptance and is ignored

Accidental Subtraction

- Tdiff cut [-7, 7] ns to remove accidental backgrounds
- Assuming background structure stays the signal under the signal and in the sidebands
- Use [-12, 7] and [7, 21] ns sidebands to further remove accidentals

ω background

- $\omega \to \pi^0 \gamma \colon$
 - π⁰ may carry most of the energy
 - Gives rise to significant background off hybrid mass peak
 - Simulated by Monte Carlo w/ very large statistics
 - Analyzed same as experimental data and obtain hybrid mass

Hybrid mass fitting

- Hybrid mass is binned by 0.02° (0 ~ 2.5°)
- Hybrid mass is fitted to extract π^0 yield
- Signal shape from Monte Carlo
- Background component:
 - Accidental sidebands
 - ω backgrounds (M.C.)
 - Polynomial

Fits to π^0 Yields

$$\frac{dN_{\pi^0}}{d\theta_{rec}}(\theta_{rec},\mathfrak{P}) = N_{\gamma} \times t \times \epsilon \times \sum_{E-channeli,\theta} \frac{d\bar{\sigma}}{d\theta}(\theta,\mathfrak{P},i) \times \omega_{flux}(i) \times M(i,\theta,\theta_{rec})$$

- θ_{rec} : reconstructed π^0 production angle
- θ : actual π^0 production angle
- N_{γ} : total number of tagged photons
- *t*: target thickness
- $\epsilon = \epsilon_1 \epsilon_2 \cdots$: other constant factors
- $\frac{d\sigma}{d\theta}(\theta, \mathfrak{P}, i)$: average π^0 production differential cross section for i^{th} E channel; \mathfrak{P} are the fitting parameters ($\Gamma(\pi \rightarrow \gamma \gamma)$, C_1 , C_2 and ϕ)
- $\omega_{flux}(i)$: fraction of tagged photon flux for i^{th} E channel
- $M(i, \theta, \theta_{rec})$: acceptance and angular resolution matrix

Constant Factors

Parameter or correction	Target [Sample]	Value	Error	
E 10 ¹²¹	Si (all runs)	5.5420	0.007	
Flux, $[\times 10^{12}]$	Si (reduced set)	5.2821	$\sim 0.8\%$	
	C^{12}	2.41782		
Number of Atoms	Si	0.049735	0.35%	
per square unit, $[barn^{-1}]$	C^{12}	0.177009	0.02%	
$BR(\pi^0 \rightarrow \gamma \gamma)$	All	0.98823	0.00034	
γ -beam absorption	Si	0.9605	0.0008	
in target	C^{12}	0.97008	0.0006	
$\pi^0 \rightarrow \gamma \gamma$ decay products	C^{12} vs Si ratio	1.018	N/A	
absorption in target				
Signal fraction out of $ Tdif < 7.0 \text{ ns cut}$	Si (all runs)	0.0014	0.0003	
	Si (reduced set)	0.0020	0.0003	
	C^{12}	0.0068	0.0017	
Best-in-time correction	Si (reduced set)	0.0116	0.0014	
within $ Tdif < 3.5 \text{ ns window}$	C^{12}	0.0145	0.0017	
Events with HyCal ADC error	applied to flux	0.0020.014	< 0.001	
HyCal energy response function	All	0.9956	0.0044	

Nuclear density models

- Different nuclear density models:
 - 3-parameter Fermi
 - Fourier-Bessel
- Form factors calculated with both models
- Silicon radius increased in fit:
 - 6% in 3-par Fermi
 - 2% in Fourier-Bessel
- Best fits achieved using Fourier-Bessel density model for both silicon and carbon targets

Fits to π^0 Yields

Silicon Target

Carbon Target

Systematic Uncertainties Due to Yield Extraction

7.95

7.9

 $\Gamma(\pi^0 \rightarrow \gamma \gamma), eV$

7.75

7.

0.06

0.07

0.09

0.08

- Signal background separated by fitting hybrid mass
- Three different background function:
 - 3rd order polynomial
 - 2nd order polynomial
 - Piecewise polynomial (2nd order + 3rd order)
- Two methods to count N_{π^0} :
 - Count N_{π^0} under fitted signal directly
 - Total N_{π^0} fitted bkg.
- 0.77% uncertainty for silicon
- 1.0% uncertainty for carbon

0.15 0.16

0.13

1 0.11 0 fitting Range 0.14

- Realistic π^0 decay in M.C.
- Add bkg from data
- Extract M.C. yields and fitted
- 500 dataset, each w/ same statistics as experiment data
- Conclusion:

Preset $\Gamma(\pi^0 \rightarrow \gamma \gamma)$: 7.70 eV

Average fitted $\Gamma(\pi^0 \rightarrow \gamma \gamma)$: 7.75 eV 0.65% uncertainty

- Single γ energy cut:
 - 0.5 GeV cut
 - Decay width plateaus until
 0.56 GeV cut
 - 0.05% uncertainty
- π^0 energy cut (two γ):
 - 3.5 GeV cut
 - Decay width plateaus until 4.1 GeV cut
 - 0.05% uncertainty

- Tdiff cut: [-7, 7] ns
- Calculated Tdiff cut efficiency
- Decay width plateaus if |Tdiff| > 5ns
- 0.025% uncertainty

- HyCal position from survey is a reference to determine the coordinates of HyCal clusters
 - π⁰ production angle
 - HyCal acceptance
- HyCal coordinates misalignment
 - x-y coordinates shifted by up to 1cm to check effect on the decay width
 - HyCal z is shifted from 697 to 706 cm (702 cm from survey)
- 0.31% uncertainty due to HyCal x-y
- 0.047% uncertainty due to HyCal z

- Beam energy:
 - Worst uncertainty 0.13%
 - Translate to 0.32% change in decay width
- Beam width:
 - Affect angular resolution
 - 0.2% uncertainty
- Beam direction:
 - Projection of beam angle to θ_x , θ_y
 - Apply $\Delta \theta_x$, $\Delta \theta_y$ (±1 mrad)
 - 0.05% uncertainty due to θ_x
 - 0.09% uncertainty due to θ_y

- Vary radius in Fermi-Bessel model
- Syst. Uncertainties based on radius change:

 $\Delta \chi^2 = 1 => \Delta R \ 1.0\% \sim 2.2\%$

=> 0.25% uncertainty

Experimental Uncertainties

	Item	Silicon $(\%)$	Carbon $(\%)$	Common	Ref.
Stat. Uncertainties		0.77	1.54		
В	Franching Ratio			0.03	[7]
Ph	oton Beam Flux			0.83	[25, 26]
Tar	get Measurement	0.35	0.02		[24]
Ta	rget Absorption	0.2	0.2		
Trigger Efficiency				0.1	
HYCAL Acceptance				0.31	
HYCAL Energy Response Function				0.45	[41]
Be	eam Parameters			0.35	
Yield Extraction	Single γ Energy Cut			0.04	
	π^0 Energy Cut			0.06	
	Tdiff Cut			0.03	
	Best Tdiff Selection	0.1	0.2		
	Signal Background Separation	0.76	1.0		
	π^{0} yield binning	0.05	0.1		
	realistic M.C.	0.65	0.65		
	Total (Yield Extraction)	1.01	1.23		
ω background		0.14	0.16		
Model Errors (theory)				0.39	
Total (syst.)		1.58	1.69		

Total Uncertainties: Si 1.76%, ¹²C 2.29%

Result

• π^0 decay width from two targets:

Target	$\Gamma_{\gamma\gamma} \ (eV)$
Silicon	$7.83 \pm 0.06(stat.) \pm 0.12(syst.)$
$^{12}\mathrm{C}$	$7.78 \pm 0.12(stat.) \pm 0.13(syst.)$

• Average π^0 decay width: $\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.82 \pm 0.05 \pm 0.12 \text{ eV} \quad (\pm 1.8\% \text{ total})$

π^0 Yields w/ Extended Angles

