The algorithm for the PWO calorimeter

I.Larin

5x5 VS island

• 5x5 algorithm:

- 1) Find maximum energy deposition cell
- 2) declare all 5x5 area around belonging one hit

• Island algorithm:

- 1) Find maximum energy deposition cell
- 2) declare all simply connected area around as initial "raw" cluster
- 3) try to split "raw" cluster into many hits

GAMS island algorithm

(what is inside, block-scheme with original function names preserved)

GAMS island algorithm (continued)

GAMS island algorithm (continued)

gamma_pht

(calculates local peak parameters, split it into two adjacent ones if needed)

call **mom1_pht**

(calculates energy E; coord. <X>,<Y>
weighted with E; correct E by artificial
adding a part of shower belonging to
 cells which are not in cluser list)

call chisq_pht

calculates χ^2 using: $\langle e \rangle (cell) = E(hit) \cdot \langle fraction \rangle (cell)_{expected}$ $\sigma^2 (cell) = 150 \cdot \langle e \rangle (cell) \cdot$ $\cdot \{1 - \langle e \rangle (cell) / E(hit)\} + 30^2 [MeV^2]$ σ supposed to be = $\langle e \rangle (cell) \cdot (a+2b/\sqrt{\langle e \rangle} (cell))$ a, b are from $\sigma(E)/E = a+b/\sqrt{E}$ formula Moves hit center X and Y to get χ^2 minimum (gradient method)

If resulting χ² more than 50 (5
 for "secondary step " hit ,
 try to split the hit into two:
 call tgamma_pht

In case of χ^2 improvement by more than **6** split the hit. If energy product of two split hits times the distance between them less than cut value, merge it back

5

Cluster overlapping cases

Shower density

second maximum: Corner to corner: dist. = √2 cells Cluster pattern

second maximum: Side to side: dist. = 2 cells

No second maximum

Things to be improved:

- cluster elements (which cells belong to which hit) are not stored
- Missed channels (cells with zero signal) are not participating in χ^2 calculation
- Only rough estimation of σ for χ^2 calculation
- χ^2 calculation assumes Gaussian distribution of energy deposition in cells. Real distributions are not Gaussian, log-likelihood needs to be implemented

Electron scan data for total energy fraction deposited in cell as a function of *d* - distance between hit point and cell center:

• There are a lot of hardcoded constants - the code is difficult for transferring

What is inside

- "Phot_cell" function: expected mean energy fraction of total energy deposited in the cell as a function of the distance between hit point and cell center
- Its sigma

Transverse shower profile:

• Integrated energy function:

$$F(x, y) \equiv \frac{E_{\text{int}}(x, y)}{E_{\text{tot}}} = \int_{-\infty}^{x} dx' \int_{-\infty}^{y} dy' \ \rho(x', y')$$

• Parameterized shape (Lednev's parameterization):

$$F(x, y) = \frac{1}{2\pi} \sum_{i} a_{i} \cdot f_{cumulative}\left(\frac{x}{b_{i}}, \frac{y}{b_{i}}\right); normalization : \sum_{i} a_{i} = 1$$

$$f_{cumulative}(u,v) = \operatorname{Arctg} \frac{u+v}{1-uv} + \operatorname{Arctg} \frac{uv}{\sqrt{1+u^2+v^2}}$$

PWO cumulative function (electron scan data fit)

Examples of set of constants obtained from the PWO electron scan data fit:

a1	0.815636	0.91497
b1	0.0887125	0.105129
a2	-0.78113	-0.068324
b2	1.06357	894.971
a3	0.965494	0.153355
b3	0.729796	0.541627

Usually a2<0

Calculating cell energy from cumulative function difference:

Cell energy fraction VS distance between hit point and cell center: electron scan data (E_e≈4GeV) and it's fit

I.Larin, Jefferson Lab

Monte-Carlo implementation:

 Function of cell energy fraction and its sigma can be used for "fast" Monte-Carlo simulations w/o real shower propagation. This allows to save 3-4 order of magnitude of simulation time

Other Monte-Carlo options:

- Real shower propagation:
 - 4-5 order of magnitude more CPU time
 - but cluster shape closer to real, in particular for irregular areas like holes, shielded cells, corners
- Photon (and hadronic) shower libraries:
 - Shape of cluster closer to reality
 - needs some work to create
 - operates with relatively large files and takes relatively large program memory
 - In case if hit momentum is not perpendicular to calorimeter surface needs excessive library volume and still very approximate
 - Probably good solution for hadronic part where resolution is not critical

Non y-e particles:

• MIPs (2 parameters: mean & sigma)

• Neutral hadrons (*neutrons* and K_L)

- Charged hadrons (= MIP + Neutral hadron),
- π^+ , π^- , p give probably different showers at low energies
- Important notice: *E-M* calorimeter could be used for identification of hadrons to reject background in decays reconstruction like $\eta \rightarrow \pi^+ \pi^- \gamma$ (was successfully implemented in SELEX experiment at Fermilab)

Applying GAMS island algorithm to PWO calorimeter (PrimEx2)

Applying GAMS island algorithm to PWO calorimeter: probability to separate two clusters as a function of distance between hit points

Energy resolution:

- Separation threshold should be selected to not disturb clusters much
- GAMS used separation threshold to distinguish piOs
- Algorithm tune up is in progress