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Fig. 12. Left: Distribution of |F�⇡0 (me+e� )|2 measured by KLOE-2. The data are confronted with the dispersive analysis of Ref. [67] (orange lower
band and cyan middle band) and Ref. [68] (blue dashed line), the chiral theory approach of Ref. [69] (upper green band), and the one-pole VMD
model (solid red line) of Ref. [70]. The figure is taken from Ref. [71] (Fig. 4). Right: Distribution of |F�⌘(me+e� )|2 measured by KLOE-2. A fit to
the data is shown with the solid blue line. The blue dashed lines indicate the change of the result by varying ⇤�⌘ within ±1� . The expectations
according to VMD is shown in the pink dash-dotted line, and for Ref. [72] with open red circles. The figure is taken from Ref. [73] (Fig. 6).

3.6. Theoretical situation on pseudoscalar meson TFFs

3.6.1. Chiral anomaly
It is well known, that closed-loop triangle graphs result in the divergence of the axial-vector current, even for massless

quarks. This effect is known as Adler–Bell–Jackiw anomaly [74–76] and allows to couple ⇡0 to two vector currents. On
the level of hadrons, the chiral anomaly can be expressed in the form of the parity-odd Wess–Zumino–Witten (WZW)
effective Lagrangian [77,78]. At tree level it fixes the normalization of the ⇡0 TFF as:

F 0
⇡ (0, 0) = Nc

12⇡2f⇡
, (57)

where f⇡ = 0.0924 GeV is the pion decay constant and Nc is a number of colors. For Nc = 3, the obtained value of
FM (0, 0) ' 0.274 GeV�1 can be used to calculate the neutral pion two photon decay width. Its value agrees very well
with the recent Primakov measurement [79].

3.6.2. Model approaches
To calculate the pseudoscalar pole contribution to aµ requires to account for the internal structure of the mesons

through their TFFs. The simplest model is to assume vector-meson dominance (VMD) in a factorized form

FVMD
M (�Q 2

1 , �Q 2
2 ) = FM (0, 0)

M4
V

(Q 2
1 + M2

V )(Q
2
2 + M2

V )
, (58)

with FM (0, 0) taken according to Eq. (57). We quote the values of the parameters fM and MV used in Refs. [80,81], which
are used below as one model estimate of the pseudoscalar pole contribution to aµ:

⇡0 : f⇡0 = 0.0924 GeV, MV = 0.7755 GeV,

⌘ : f⌘ = 0.093 GeV, MV = 0.774 GeV,

⌘0 : f⌘0 = 0.074 GeV, MV = 0.859 GeV, (59)

The VMD TFF has the drawback that it falls too fast for Q 2
1 = Q 2

2 = Q 2 � 0, namely as ⇠ 1/Q 4 whereas ⇠ 1/Q 2 is
expected from the operator product expansion (OPE) [82,83].

Another model for the TFF, which was intensively used in the literature [80,81,84] is the so called LMD+V (lowest
meson dominance + vector) parameterization [85]. It incorporates certain short-distance constraints from the operator
product expansion and has the following form

F LMD+V
⇡0 (�Q 2

1 , �Q 2
2 ) = f⇡

3
Q 2
1 Q

2
2 (Q

2
1 + Q 2

2 ) � h2Q 2
1 Q

2
2 + h5(Q 2

1 + Q 2
2 ) � h7

(Q 2
1 + M2

V1 )(Q
2
1 + M2

V2 )(Q
2
2 + M2

V1 )(Q
2
2 + M2

V2 )
. (60)

The values of the parameters used for the ⇡0 in Refs. [80,81] are given by:

MV1 = M⇢ = 0.7755 GeV,

MV2 = M⇢0 = 1.465 GeV,

h2 = �10.63 GeV2,

h5 = (6.93 ± 0.26) GeV4,
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h7 = �
3M4

V1M
4
V2

4⇡2f 2⇡
= �14.83 GeV6, (61)

Although this form improves on the VMD parameterization to implement the perturbative QCD limit for the double virtual
symmetric case Q 2

1 = Q 2
2 � 0, for the double virtual asymmetric case (Q 2

1 6= Q 2
2 ) it does introduce wiggles in the

parameterization at large Q 2 due to the numerator, as will be shown further on.
A generalization of the LMD+V form for the TFF was proposed in [86–88]. It is based on Canterbury approximants,

which was first applied for the singly virtual process [86,87] (in the form of Padé approximants) and later on in [88]
generalized for the doubly virtual process. For the singly virtual process the Padé approximant is defined as

F Padé
M (�Q 2) = QN (Q 2)

RN 0 (Q 2)
= FM (0, 0)

⇣
1 � bM Q 2 + · · · + O(Q 2)N+N 0+1

⌘
, (62)

where QN (Q 2), RN 0 (Q 2) are polynomials of degree N and N 0, respectively. From one side, the low energy parameters of the
Taylor expansion were determined by fitting to the experimental data. From the other side, the final TFF is reconstructed
via the use of Padé approximant, which is constructed in such a way that it has the same Taylor expansion up to order
O(Q 2)N+N 0+1 and incorporates the correct high-energy behavior. The convergence is guaranteed by an assumption the TFF
is a meromorphic function of Stieltjes type. A comparison between two consecutive elements in the sequence serves as
an estimate of the systematic error. The results for TFFs have been obtained in [86,87]. The generalization to the doubly
virtual process is expressed as

F Padé
M (�Q 2

1 , �Q 2
2 ) = QN (Q 2

1 ,Q 2
2 )

RN 0 (Q 2
1 ,Q 2

2 )
= FM (0, 0)

�
1 � bM (Q 2

1 + Q 2
2 ) + aM;1,1 Q 2

1 Q 2
2 + · · ·

�
, (63)

where QN (Q 2
1 ,Q 2

2 ) and RN 0 (Q 2
1 ,Q 2

2 ) are bi-variate symmetric polynomials. The lowest two approximant reads as

C0
1 (Q

2
1 ,Q 2
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1 + bM (Q 2

1 + Q 2
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, (64)
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Since there is no data yet for the double-virtual TFF, not all the parameters could be fixed and one has to assume the
generous band for aM;1,1 2 [amin

M;1,1, amax
M;1,1] which add additional uncertainty in the aµ calculation. The range of aM;1,1

is taken to be the most physically accessible which does not spoil the TFFs analytic properties. New BaBar data for the
double virtual ⌘0 TFF, as discussed in Section 3.6.6, may provide a test for such parameterization.

In addition, TFFs of the pseudoscalar mesons had been also analyzed using the framework of Dyson–Schwinger [89–91]
and various effective Lagrangian based models [92–96].

3.6.3. Dispersion theory
Recently in [97,98] an updated dispersive framework has been presented that now incorporates the asymptotic

behavior expected from perturbative QCD, as discussed in Section 3.6.5. The framework based on the existing data for
e+e� ! 3⇡ [99–101], e+e� ! e+e�⇡0 [41–43], the ⇡0 ! � � decay width [79] and fundamental principles of the
quantum field theory, namely unitarity, analyticity and crossing symmetry. At low energies, isospin quantum numbers are
key to see which hadronic intermediate states contribute. Isovector and isoscalar photons couples predominantly to two
and three pions, respectively. The latter can be approximated by the narrow vector resonances !/�, whose contributions
can be related to their transition form factors. The unsubtracted double-spectral representation reads

Fdisp
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⇡2
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4M2
⇡

dx
Z 1

sthr
dy
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2
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⇢disp(x, y) = q3⇡ (x)
12⇡

p
x
Im

h�
FV
⇡ (x)

�⇤f1(x, y)
i
, q⇡ (s) =

r
s
4

� m2
⇡ , (65)

where FV
⇡ (x) is the electromagnetic form factor of the pion and f1(x, q2) is the partial-wave amplitude for the � ⇤(q)⇡ ! ⇡⇡

process. The FV
⇡ (x) can be well described by an Omnès representation [67,102] with the input from the ⇡⇡ P-wave phase

shift [103–105] and the fit to the data [106] of the unknown inelastic contributions from ⇢ 0 and ⇢ 00. On the other side, the
amplitude f1(x, q2) is more complicated and requires the inclusion of the left-hand cuts by solving a set of Khuri–Treiman
equations [107,108]. For q2 = M2

!, M2
� it probes the corresponding Dalitz plot distributions [67,68,109]. In the initial

version of (65) given in [108] at least one subtraction was employed in order to reproduce low energy theorem which
relates the normalization to the ⇡0 ! 2� decay. In this way, the asymptotic behavior was spoiled and formally speaking
the TFF was unfavored for an estimate of aµ. Progress was made by switching to the unsubtracted representation with a
cutoff in the integral and restoring the sum rule by adding an effective pole. The part above the cutoff was approximated

h7 = −
3M4

1 M4
2

Fπ

4Γπ0→γγ

πα2m3
π

shown for the HVP contribution and its error as a function
of the center-of-mass energy

ffiffiffi
s

p
in σðeþe− → hadronsÞ

[2]. However, since HLbL involves different amplitudes
[20,31,41] which depend on several invariant momenta, the
situation is of course more complicated than for the HVP
contribution.
This paper is organized as follows: Section II recalls the

three-dimensional integral representation for the pseudo-
scalar-pole contribution aHLbL;Pμ derived in Ref. [2],
which separates model-independent weight functions
w1;2ðQ1; Q2; cos θÞ from the dependence on the form factor
F Pγ$γ$ ð−Q2

1;−Q2
2Þ for spacelike (Euclidean) momenta with

magnitude Q1;2 and angle θ between the momentum
vectors. In Sec. III, the weight functions for π0, η, and
η0 are analyzed in detail. Several three-dimensional plots (as
functions of the two momenta Q1;2) and one-dimensional
plots (as functions of the angle θ) are shown, and the
maxima and minima of the weight functions are deter-
mined. The relevant momentum regions for aHLbL;Pμ in
different bins in the ðQ1; Q2Þ plane are identified in Sec. IV
within two simple models for the TFF, since the loop
integral in Eq. (7) diverges without a form factor which
dampens the large-momentum region. Section V summa-
rizes the experimental status on the precision of measure-
ments of the TFF for π0; η, and η0. This is based on data for
the two-photon decay width ΓðP → γγÞ, the slope of the
form factor at zero momentum, and data for the single-
virtual form factor F Pγ$γ$ ð−Q2; 0Þ in the spacelike and
timelike momentum region. For the double-virtual form
factor F Pγ$γ$ ð−Q2

1;−Q2
2Þ, there are currently no experi-

mental data available. We use the results of a Monte Carlo
(MC) simulation [42] for planned measurements of this

form factor at the BESIII detector to estimate the potential
precision which could be reached in the next few years.
Section VI then discusses the impact of the experimental
uncertainties for the TFF on aHLbL;Pμ and points out in which
specific momentum regions (momentum bins) a high
experimental precision of TFF is needed for a precise
data-driven estimate of the pseudoscalar-pole contribution
to HLbL. Finally, Sec. VII presents a summary of our
findings and the conclusions. In Appendix A, we reproduce
the formulas for the kinematic functions ~T1;2 in the loop
integrals in Eqs. (7) and (8) from Ref. [21] and the weight
functions w1;2 from Ref. [2]. We give the Taylor expansions
for the weight functions in various limits (small and large
momenta, collinear momenta). A brief summary of the two
form-factor models that we use in our numerical analysis
can be found in Appendix B.

II. THREE-DIMENSIONAL INTEGRAL
REPRESENTATION FOR THE

PSEUDOSCALAR-POLE CONTRIBUTION aHLbL;P
μ

We concentrate again mainly on the pion-pole contri-
bution in this section. After a Wick rotation to Euclidean
momenta Qi; i ¼ 1; 2, and averaging over the direction of
the muon momentum p using the method of Gegenbauer
polynomials (hyperspherical approach) [43], one can per-
form for arbitrary form factors in the two-loop integrals (7)
and (8) all angular integrations, except one over the angle θ
between the four-momenta Q1 and Q2 which also appears
throughQ1 ·Q2 in the form factors. In this way, one obtains
the following three-dimensional integral representation for
the pion-pole contribution with on-shell pion transition
form factors [2]:

aHLbL;π
0ð1Þ

μ ¼
Z

∞

0
dQ1

Z
∞

0
dQ2

Z
1

−1
dτw1ðQ1; Q2; τÞF π0γ$γ$ ð−Q2

1;−ðQ1 þQ2Þ2ÞF π0γ$γ$ ð−Q2
2; 0Þ; ð11Þ

aHLbL;π
0ð2Þ

μ ¼
Z

∞

0
dQ1

Z
∞

0
dQ2

Z
1

−1
dτw2ðQ1; Q2; τÞF π0γ$γ$ ð−Q2

1;−Q2
2ÞF π0γ$γ$ ð−ðQ1 þQ2Þ2; 0Þ: ð12Þ

The integrations in Eqs. (11) and (12) run over the lengths of the two Euclidean four-momenta Q1 and Q2 and the angle θ
between them,Q1 ·Q2 ¼ Q1Q2 cos θ. We have written Qi ≡ jðQiÞμj, i ¼ 1; 2, for the length of the four-vectors. Following
Ref. [31], we changed the notation used in Ref. [2] and write τ ¼ cos θ in order to avoid confusion with the Mandelstam
variable t in the context of the dispersive approach.
The weight functions which appear in the integrals (11) and (12) are given by

w1ðQ1; Q2; τÞ ¼
"
−
2π
3

# ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p Q3
1Q

3
2

Q2
2 þm2

π
I1ðQ1; Q2; τÞ; ð13Þ

w2ðQ1; Q2; τÞ ¼
"
−
2π
3

# ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p Q3
1Q

3
2

ðQ1 þQ2Þ2 þm2
π
I2ðQ1; Q2; τÞ; ð14Þ
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Q̂ ¼ diagð2;−1;−1Þ=3 is the charge matrix]. The form
factor describes the interaction of an on-shell neutral pion
with two off-shell photons with four-momenta q1 and q2.
It is Bose symmetric, F π0γ$γ$ ðq21; q22Þ ¼ F π0γ$γ$ ðq22; q21Þ,
because the two photons are indistinguishable. The form
factor for real photons is related to the decay width

into two photons: F 2
π0γ$γ$ ð0; 0Þ ¼ 4Γðπ0 → γγÞ=ðπα2m3

πÞ.
Often the normalization with the chiral anomaly is used:
F π0γ$γ$ð0; 0Þ ¼ −Nc=ð12π2FπÞ.
If one evaluates only the pion-pole contribution of the

Feynman diagrams and projects on the muon g − 2, one
obtains the result [21]

aHLbL;π
0

μ ¼
!
α
π

"
3h
aHLbL;π

0ð1Þ
μ þ aHLbL;π

0ð2Þ
μ

i
; ð6Þ

aHLbL;π
0ð1Þ

μ ¼
Z

d4q1
ð2πÞ4

d4q2
ð2πÞ4

1

q21q
2
2ðq1 þ q2Þ2½ðpþ q1Þ2 −m2

μ'½ðp − q2Þ2 −m2
μ'

×
F π0γ$γ$ ðq21; ðq1 þ q2Þ2ÞF π0γ$γ$ðq22; 0Þ

q22 −m2
π

~T1ðq1; q2;pÞ; ð7Þ

aHLbL;π
0ð2Þ

μ ¼
Z

d4q1
ð2πÞ4

d4q2
ð2πÞ4

1

q21q
2
2ðq1 þ q2Þ2½ðpþ q1Þ2 −m2

μ'½ðp − q2Þ2 −m2
μ'

×
F π0γ$γ$ ðq21; q22ÞF π0γ$γ$ ððq1 þ q2Þ2; 0Þ

ðq1 þ q2Þ2 −m2
π

~T2ðq1; q2;pÞ; ð8Þ

where p2 ¼ m2
μ (on-shell muon) and the external photon

now has a four-momentum of zero (soft photon). The
kinematic functions ~T1;2ðq1; q2;pÞ are reproduced in
Appendix A. The first and the second graphs in Fig. 1
give rise to identical contributions, leading to the term with
~T1. The third graph yields the contribution involving ~T2.
There have been objections [37] raised recently about the

implementation of the dispersive approach for the pion-
pole contribution in Refs. [31,32]. According to the argu-
ments in Refs. [22,37], there should be no form factor at the
external vertex with the soft photon. This amounts to
setting the single-virtual form factors F π0γ$γ$ ðq2; 0Þ in
Eqs. (7) and (8) to a constant. Maybe the disagreement
arises over whether one interprets the diagrams in Fig. 1 as
genuine Feynman diagrams contributing to the muon g − 2
or as unitarity diagrams often used in the context of
dispersive approaches. In Ref. [32] it was shown, however,
that when one writes down a dispersion relation for the
Pauli form factor F2ðk2Þ and evaluates the imaginary part
of F2ðk2Þ from the various two-particle and three-particle
cuts in the Feynman diagrams, and then calculates
aμ ¼ F2ð0Þ, one obtains for a simple vector-meson domi-
nance (VMD) model for the form factor exactly the
expressions in Eqs. (7) and (8) with a form factor at the
external vertex. We will therefore use the prescription from
Refs. [21,31,32] to study the pseudoscalar-pole contribu-
tion aHLbL;Pμ to HLbL.
Most model evaluations of aHLbL;π

0

μ (pion pole defined in
different ways, or pion exchange with off-shell pion form

factors) and aHLbL;Pμ , with P ¼ π0; η; η0, agree at the level of
15%, but the full range of estimates (central values) is much
larger [38]:

aHLbL;π
0

μ;models ¼ ð50 − 80Þ × 10−11

¼ ð65( 15Þ × 10−11 ð(23%Þ; ð9Þ

aHLbL;Pμ;models ¼ ð59 − 114Þ × 10−11

¼ ð87( 27Þ × 10−11 ð(31%Þ: ð10Þ

This situation has to be improved without relying too
much on various models, in particular before the new muon
g − 2 experiment at Fermilab yields results with a fourfold
improvement over the Brookhaven experiment in a few
years [16]. In this paper we therefore study, as model
independently as possible, which are the most important
momentum regions for the pseudoscalar-pole contribution
aHLbL;Pμ . We also analyze what is the impact of the precision
of current and future measurements of the single-virtual
F Pγ$γ$ ðq2; 0Þ and the double-virtual pseudoscalar transition
form factor F Pγ$γ$ ðq21; q22Þ in different momentum regions
on the uncertainty of a data-driven estimate of this con-
tribution to HLbL. We hope that this information will be a
valuable guide to help the experimental community to plan,
design, and analyze the measurements of decay rates, form
factors, and cross sections of the light pseudoscalars
π0; η; η0 and their interactions with off-shell photons. In a
way, our approach is a generalization of the pie charts often

PRECISION OF A DATA-DRIVEN ESTIMATE OF … PHYSICAL REVIEW D 94, 053006 (2016)

053006-3

for Ref. [17] and to aHLbLμ ¼ ð102# 40Þ × 10−11 for
Refs. [2,11], since recent reevaluations [14,23,24]
of the axial-vector contribution yield a smaller value
aHLbL;axialμ ¼ ð8# 3Þ × 10−11 compared to the result
aHLbL;axialμ ¼ ð22# 5Þ × 10−11 obtained in Ref. [22] and
used in Refs. [2,11]. Reference [17] had already used a
somewhat smaller value, aHLbL;axialμ ¼ ð15# 10Þ × 10−11.
Furthermore, after the publication of Refs. [2,11,17], there
were claims in Refs. [25,26] using different models that
the dressed quark-loop contribution might be around
110 × 10−11—i.e., much bigger than, for instance, the value
ð21# 3Þ × 10−11 estimated in Ref. [20]. Moreover, in
Ref. [27] it was argued that the pion-loop contribution could
also be potentially bigger in absolute size,−ð11−71Þ×10−11

compared to −ð19# 13Þ × 10−11 in Ref. [20]. See Ref. [28]
for an analysis of these claims and a brief review on other
recent developments in HLbL.
There are attempts ongoing to calculate the HLbL

contribution to the muon g − 2 from first principles in
lattice QCD. A first, still incomplete, result was obtained
recently in Ref. [29], which contains references to earlier
work in the last years. Another approach was proposed in
Ref. [30]. It remains to be seen how fast reliable estimates
for HLbL can be obtained within lattice QCD, where all
systematic uncertainties of the extrapolations to physical
quark masses (physical pion masses), to the continuum, and
to infinite volume are fully under control, and also all
quark-disconnected contributions are included.
In this situation, a dispersive approach to HLbL was

proposed recently in Refs. [31,32], which tries, in the spirit
of the HVP calculation, to relate the presumably numeri-
cally dominant contributions from the pseudoscalar poles
and the pion loop with on-shell intermediate pseudoscalar
states to—in principle—measurable form factors and cross
sections with off-shell photons:

γ%γ% → π0; η; η0; ð3Þ

γ%γ% → πþπ−; π0π0: ð4Þ

The two dispersive approaches differ somewhat.
Reference [31] considers first the four-point function
hVVVVi with three off-shell and one on-shell photon,
then identifies the intermediate on-shell hadronic states and
then projects on the muon g − 2. On the other hand,
Ref. [32] writes down directly a dispersion relation for
the Pauli form factor F2ðk2Þ and evaluates the imaginary
part of F2ðk2Þ from the various multiparticle cuts with
hadrons and photons in the Feynman diagrams, and then
calculates aμ ¼ F2ð0Þ.
The hope is that this data-driven estimate for HLbL will

allow a 10% precision for these contributions, with a
reliable and controllable error related to the experimental
measurement precision, and that the remaining, hopefully

smaller contributions—e.g., from axial vectors (3π-
intermediate state), other heavier states, and a dressed
quark loop, properly matched to perturbative QCD and
avoiding double-counting—can be obtained within models
with about 30% uncertainty to reach an overall reliable
precision goal of about 20% ðδaHLbLμ ≈ 20 × 10−11Þ. It
remains to be seen how successful this dispersive approach
will be in the end—i.e., whether the needed experimental
input information will be collected with the required
precision (to be studied in this paper for the pseudosca-
lar-pole contributions) and how, for instance, off-shell
effects of the intermediate states can be controlled without
double-counting and without introducing again large
model-dependent uncertainties.
In this paper we will concentrate on the dispersive

approach to the pseudoscalar-pole contribution to HLbL,
which is numerically dominant according to most model
calculations. It arises from the one-particle intermediate
states of the light pseudoscalars π0; η; η0 shown in the
Feynman diagrams in Fig. 1.
The blobs in the Feynman diagrams represent the

double-virtual transition form factor F Pγ%γ%ðq21; q22Þ, where
P ¼ π0; η; η0. See Ref. [33] for a recent brief overview on
transition form factors (TFF); many more details can be
found in the older review [34].2

In order to simplify the notation, we will now discuss
mainly the neutral pion–pole contribution. The generali-
zation to the pole contributions of η and η0 is straight-
forward. The pion-photon transition form factor
F π0γ%γ%ðq21; q22Þ is defined by the following vertex function
in QCD:

i
Z

d4x eiq1·xh0jTfjμðxÞjνð0Þgjπ0ðq1 þ q2Þi

¼ εμναβqα1q
β
2F π0γ%γ% ðq21; q22Þ: ð5Þ

Here jμðxÞ ¼ ðψ̄ Q̂ γμψÞðxÞ is the light-quark part
of the electromagnetic current [ψ̄ ≡ ðū; d̄; s̄), and

FIG. 1. The pseudoscalar-pole contribution to hadronic light-
by-light scattering. The shaded blobs represent the transition form
factor F Pγ%γ% ðq21; q22Þ, where P ¼ π0; η; η0.

2More generally, one can define a pseudoscalar exchange
contribution to HLbL which involves a form factor with off-shell
pseudoscalars F P%γ%γ% ððq1 þ q2Þ2; q21; q22Þ [2,11,18,20,35,36], but
this contribution to HLbL is then model dependent. In particular, it
will depend on the interpolating field used for the pseudoscalars.
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Momentum Cutoff = 0.32

Compare HLbL integrals for ,  for 
(i) the full LMD+V form factor and (ii) the  low Q2 expansion 
(labeled TFF here) 

Q2
1 < 0.1 GeV2 Q2

2 < 0.1 GeV2

O(Q6)



Simulation: 
i. Use values for a, b, c, d and e to produce pseudo-data 
ii. Fit pseudo-data to obtain errors in a, b and c 
iii. Propogate errors in a, b and c back into the HLbL 

calculation: find projected error in  aHLbL;π0

μ

Use simulated data to determine sensitivity to the low Q2 parameters 

• Fix “d” and “e” from  expansion of LMD+V TFF 

• Fit “a”, “b” and “c” to our data 
O(Q6)


