IFT slides

March 2, 2020

イロト イロト イヨト イヨト

E

1 / 20

March 2, 2020

IFT slides | TFFSA

Elastic Phase from TFFSA

March 2, 2020

Goal: use bootstrap to augment results

Do results constraint the space of allowed S-matrices?

Goal: use bootstrap to augment results

Do results constraint the space of allowed S-matrices?

Goal: use bootstrap to augment results

Do results constraint the space of allowed S-matrices? **Specifically**

Resonance spectrum? (zeros of S(z)) Interaction strength? ($\propto Res_{z->z_i} S(z)$) High E limit ($\lim_{z\to 1} S(z)$) In-elasticity profile (f)

Complex analysis Lemma

Given some Ansatz $\tilde{g}(z) \approx g(z)$

< ロト < 同ト < ヨト < ヨト

Complex analysis Lemma

Given some Ansatz $\tilde{g}(z) \approx g(z)$ **Define** $F(z) \equiv g(z) - \tilde{g}(z)$

IFT slides Method II

Complex analysis Lemma

Given some Ansatz $\tilde{g}(z) \approx g(z)$ Define $F(z) \equiv g(z) - \tilde{g}(z)$ @Boundary |F| < 2Lemma In the interior of the disc

$$|F(z)| \leq 2^{1-\frac{1}{2\pi}|\tau_z^{-1}(\mathcal{I})|} \exp\left[\int_{\tau_z^{-1}(\mathcal{I})} \frac{du}{2\pi i u} \log|F(\tau_z(u))|\right]$$

 $\tau_z(w)$ is a Möbius map taking the disk to itself and 0 to z,

$$\tau_z(w) = \frac{-\bar{z}z + z(w+i) + iw}{-\bar{z} + \bar{z}(z+i)w + i} \tag{1}$$

Given a good Ansatz

Э

イロト イヨト イヨト イヨト

Given a good Ansatz Justified by the rigorous error-bar

Given a good Ansatz

Justified by the rigorous error-bar

E.G. if we missed a resonance there'll be big error bars

Given a good Ansatz

Justified by the rigorous error-bar

- E.G. if we missed a resonance there'll be big error bars
 - $\rightarrow\,$ sad physicist

Given a good Ansatz

Justified by the rigorous error-bar

- E.G. if we missed a resonance there'll be big error bars
 - $\rightarrow\,$ sad physicist
 - $\rightarrow~\text{TV}$ binge watching

Given a good Ansatz

Justified by the rigorous error-bar

- E.G. if we missed a resonance there'll be big error bars
 - $\rightarrow\,$ sad physicist
 - $\rightarrow~\text{TV}$ binge watching
 - $\rightarrow \text{ new Ansatz}$

IFT slides | Conclusion

Family of Ansztzes

$$\widetilde{g}(z) = \left(\prod_{k=1}^{M} \frac{z'_k - z}{1 - z'_k z}\right) S_{\widetilde{f}},$$
$$S_{\widetilde{f}} = \exp\left[\int_{0}^{\phi_0} \frac{d\phi}{2\pi} \left(\frac{e^{i\phi} + z}{e^{i\phi} - z} + \frac{e^{-i\phi} + z}{e^{-i\phi} - z}\right) \log[\widetilde{f}(\phi)]\right]$$

6 / 20

Э

・ロン ・回 と ・ ヨン ・ ヨン

Fits for Method II

Evolution of poles and zeros

March 2, 2020

Evolution of poles and zeros

Evolution of poles and zeros

Evolution of poles and zeros

March 2, 2020

Evolution of poles and zeros

Evolution of poles and zeros

March 2, 2020

Evolution of poles and zeros

Exclusion in the *s*-plane

March 2, 2020

Ξ.

Inelastic Channel Contribution

March 2, 2020

wide resonances

17 / 20

æ

・ロン ・部 と ・ ヨン ・ ヨン

Coupling constants

*m*₄ resonance

m_4 resonance - comparison the perturbation theory

Э