

Determination of QGP Parameters from a Global Bayesian Analysis

Steffen A. Bass

http://www.facebook.com/DukeQCD

@Steffen_Bass

(c) CERN.All rights reserved.

Properties of QCD: Transport Coefficients

shear and bulk viscosity are defined as the coefficients in the expansion of the stress tensor in terms of the velocity fields:

$$T_{ik} = \varepsilon u_i u_k + P\left(\delta_{ik} + u_i u_k\right) - \eta \left(\nabla_i u_k + \nabla_k u_i - \frac{2}{3}\delta_{ik}\nabla \cdot u\right) + \varsigma \,\delta_{ik}\nabla \cdot u$$

η /s from Lattice QCD:

The confines of the Euklidian Formulation: •extracting η /s formally requires taking the zero momentum limit in an infinite spatial volume, which is numerically not possible...

The determination of the QCD transport coefficients is one of the key goals of the global relativistic heavy-ion effort!

•preliminary estimates:

Т	1.58 T _C	2.32 T _C
η/s	0.2-0.25	0.25-0.5

A. Nakamura & S. Sakai: Phys. Rev. Lett. 94 (2005) 072305 Harvey B. Meyer: Phys. Rev. D79 (2009) 011502 Harvey B. Meyer: arXiv:0809.5202 [hep-lat]

An Effort by the Heavy-Ion Community

Hot and Dense QCD Matter

Unraveling the Mysteries of the Strongly Interacting Quark-Gluon-Plasma

A Community White Paper on the Future of Relativistic Heavy-Ion Physics in the US

2012 response of the US relativistic heavy-ion community to the request for comments by the NSAC subcommittee, that was tasked to recommend optimizations to the US Nuclear Science Program over the following five years.

2012 RHIC community White Paper identified key developments and laid out milestones for the determination of QGP properties:

Goal: by 2022 determine the temperature dependence of η /s and ζ /s as well as relaxation times and other QGP transport coefficients of interest (e.g. q-hat and e-hat)

We are well on our way deliver on these goals!

Standing on the Shoulders of Giants

PRL 97, 152303 (2006)

PHYSICAL REVIEW LETTERS

week ending 13 OCTOBER 2006

Strongly Interacting Low-Viscosity Matter Created in Relativistic Nuclear Collisions

Laszlo P. Csernai,^{1,2} Joseph I. Kapusta,³ and Larry D. McLerran⁴

¹Section for Theoretical Physics, Department of Physics, University of Bergen, Allegaten 55, 5007 Bergen, Norway

²MTA-KFKI, Research Institute of Particle and Nuclear Physics, 1525 Budapest 114, P.O. Box 49, Hungary

³School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA

⁴Nuclear Theory Group and Riken Brookhaven Center, Brookhaven National Laboratory, Bldg. 510A, Upton, New York 11973, USA

(Received 12 April 2006; published 12 October 2006)

Substantial collective flow is observed in collisions between large nuclei at BNL RHIC (Relativistic Heavy Ion Collider) as evidenced by single-particle transverse momentum distributions and by azimuthal correlations among the produced particles. The data are well reproduced by perfect fluid dynamics. A calculation of the dimensionless ratio of shear viscosity η to entropy density *s* by Kovtun, Son, and Starinets within anti-de Sitter space/conformal field theory yields $\eta/s = \hbar/4\pi k_B$, which has been conjectured to be a lower bound for any physical system. Motivated by these results, we show that the transition from hadrons to quarks and gluons has behavior similar to helium, nitrogen, and water at and near their phase transitions in the ratio η/s . We suggest that experimental measurements can pinpoint the location of this transition or rapid crossover in QCD.

DOI: 10.1103/PhysRevLett.97.152303

PACS numbers: 12.38.Mh, 24.10.Nz, 25.75.Nq, 51.20.+d

Jonah E. Bernhard, J. Scott Moreland & Steffen A. Bass, Nature Physics **15** (2019) 1113-1117

- more than a decade of hard work by multiple research groups
- cooperation between theory & experiment
- significant investment by the funding agencies

2.5

Telescopes for the Early Universe: Heavy-Ion Collider Facilities

Heating & Compressing QCD Matter

LHC 27 km

CERN Prévessin

The only way to heat & compress QCD matter under controlled laboratory conditions is by colliding two heavy atomic nuclei!

SUISSE

Probes of the Early Universe

ALICE experiment at CERN:

1000+ scientists from 105+ institutions
dimensions: 26m long, 16m high, 16m wide
weight: 10.000 tons

two other experiments: CMS, ATLAS

Heavy-Ion Collision Data

typical Pb+Pb Collision at the LHC:

- thousands of particle tracks
- challenge: reconstruction of final state to
- characterize matter created in collision

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:29:52 Fill : 1482 Run : 137124 Event : 0x000000042B1B693

Transport Theory: Connecting Data to Knowledge

Transport Theory

microscopic transport models based on the Boltzmann Equation:

- transport of a system of microscopic particles
- all interactions are based on binary scattering

$$\left[\frac{\partial}{\partial t} + \frac{\vec{p}}{E} \times \frac{\partial}{\partial \vec{r}}\right] f_1(\vec{p}, \vec{r}, t) = \sum_{processes} C(\vec{p}, \vec{r}, t)$$

diffusive transport models based on the Langevin Equation:

- transport of a system of microscopic particles in a thermal medium
- interactions contain a drag term related to the properties of the medium and a noise term representing random collisions

$$\vec{p}(t + \Delta t) = \vec{p}(t) - \frac{\kappa}{2T} \vec{v} \cdot \Delta t + \vec{\xi}(t) \Delta t$$

Each transport model relies on roughly a dozen physics parameters to describe the time-evolution of the collision and its final state. These physics parameters act as a representation of the information we wish to extract from RHIC & LHC.

(viscous) relativistic fluid dynamics:

- transport of macroscopic degrees of freedom
- based on conservation laws:

$$\partial_{\mu}T^{\mu\nu} = 0$$

$$T_{ik} = \varepsilon u_{i}u_{k} + P(\delta_{ik} + u_{i}u_{k})$$

$$- \eta \left(\nabla_{i}u_{k} + \nabla_{k}u_{i} - \frac{2}{3}\delta_{ik}\nabla \cdot u\right)$$

$$+ \varsigma \delta_{ik}\nabla \cdot u$$

(plus an additional 9 eqns. for dissipative flows)

nediun the

hybrid transport models:

combine microscopic & macroscopic degrees of freedom
current state of the art for RHIC modeling

Computational Modeling

Time: 0.10

rapidity 5.9 52.5 0 -2.5 -5 -7

3+1D Hydro + Boltzmann Hybrid

Probing the QGP in Relativistic Heavy-lon Collisions

Principal Challenges of Probing the QGP with Heavy-Ion Collisions:

- time-scale of the collision process: 10⁻²⁴ seconds! [too short to resolve]
- characteristic length scale: 10⁻¹⁵ meters! [too small to resolve]
- confinement: quarks & gluons form bound states, experiments don't observe them directly
- computational models are need to connect the experiments to QGP properties!

Knowledge Extraction from Relativistic Heavy-Ion Collisions

Probing QCD in Heavy-Ion Collisions

Data:

 V_3

Determining the QGP Properties via a Model to Data Comparison

Model Parameter:

eqn. of state shear viscosity initial state pre-equilibrium dynamics thermalization time quark/hadron chemistry

particlization/freeze-out

- large number of interconnected parameters w/ non-factorizable data dependencies
- data have correlated uncertainties
- develop novel optimization techniques: Bayesian Statistics and MCMC methods
- transport models require too much CPU: need new techniques based on emulators
- general problem, not restricted to RHIC Physics

experimental data:

π/K/P spectra yields vs. centrality & beam elliptic flow **HBT** charge correlations & BFs

density correlations

→collaboration with Statistical Sciences

Bayesian Analysis

Each computational model relies on a set of physics parameters to describe the dynamics and properties of the system. These physics parameters act as a representation of the information we wish to extract from RHIC & LHC.

Model Parameters - System Properties

- initial state
- temperature-dependent viscosities
- hydro to micro switching temperature

Experimental Data ALICE flow & spectra

- determine parameter values such that the model best describes experimental observables
- extract the probability distributions of all parameters

• Bayesian analysis allows us to simultaneously calibrate all model parameters via a model-to-data comparison

Example: Gravitational Waves

LIGO gravitational wave signal:

Bayesian analysis of GR model of merging black holes of masses m₁ and m₂ that is capable of reproducing LIGO data:

Setup of a Bayesian Statistical Analysis

Components of the Bayesian Analysis

- temperature-dependent viscosities
- hydro to micro switching temperature

- **likelihood:** probability of observing exp. data, given proposed parameters

Physics Model: Trento + iEbE-VISHNU

QGP and hydrodynamic expansion

Trento:

parameterized initial condition model based on phenomenological concepts for entropy deposition to a QGP

iEbE-VISHnew:

- EbE 2+1D viscous RFD
- describes QGP dynamics & hadronization
- EoS from Lattice QCD
- temperature-dependent shear and bulk viscosity as input

hadronic phase and freeze-out

hadronization

UrQMD:

- non-equilibrium evolution of an interacting hadron gas
- hadron gas shear & bulk viscosities are implicitly contained in calculation

Model Parameters - System Properties

- initial state
- temperature-dependent viscosities
- hydro to micro switching temperature

MCMC

(Markov-Chain Monte-Carlo) random walk through parameter space weighted by posterior probability

Bayes' Theorem

posterior ∝ likelihood × prior

- prior: initial knowledge of parameters
- **likelihood:** probability of observing exp. data, given proposed parameters

• iEbE-VISHNU

Gaussian Process Emulator non-parametric interpolation fast surrogate to full Physics Model

Calibration Parameters

 the calibration parameters are the model parameters that codify the physical properties of the system that we wish to characterize with the analysis

• hydro to micro switching temperature T_{sw}

temperature dependent shear viscosity:

 $\eta/s(T) = (\eta/s)_{min} + (\eta/s)_{slope} \times (T-T_C) \times (T/T_C)^{\beta}$

 $\zeta/s(T) = (\zeta/s)_{max} / [1 + (T - (\zeta/s)_{peak})^2/\Gamma^2]$

Model Parameters - System Properties

- initial state
- temperature-dependent viscosities
- hydro to micro switching temperature

MCMC

(Markov-Chain Monte-Carlo) random walk through parameter space weighted by posterior probability

Bayes' Theorem

posterior ∝ likelihood × prior

- prior: initial knowledge of parameters
- **likelihood:** probability of observing exp. data, given proposed parameters

• iEbE-VISHNU

Gaussian Process Emulator non-parametric interpolation fast surrogate to full Physics Model

Training Data

Data:

- ALICE v₂, v₃ & v₄ flow cumulants
- identified & charged particle yields
- identified particle mean p_T
- 2 beam energies: 2.76 & 5.02 TeV

the entire success of the analysis depends on the quality of the exp. data!

- hydro to micro switching temperature

Exploring the Model Parameter-Space

Gaussian process:

- stochastic function:
- maps inputs to normally distributed outputs
- specified by mean and covariance functions

GP as a model emulator:

- non-parametric interpolation of physics model
- predicts probability distributions for model output at any given input value
 - narrow near training points, wide in gaps
- needs to be conditioned on training data (Latin hypercube points)
- fast *surrogate* to actual model

61

65

Computer Experiment Design

Latin hypercube:

- algorithm for generating semi-randomized, spacefilling points (here: maximin Latin hypercube)
- avoids large gaps and tight clusters
- all parameters varied simultaneously
- needs only *m≥10n* points, with
 n: number of model parameters

this design:

- n=15 model parameters
- 9 centrality bins, 2 energies
- Latin hypercube with m=500 points
- O(10⁴) events per point, for a total of approx.
 35,000,000 events
- use Gaussian Process Emulators to interpolate between points

Example:

• Latin-hypercube projection for η /s parameters

Computer Experiment Execution

Edison @ NERSC:

- Cray XC30: 5586 nodes w/ 24 cores each
- 2 hyperthreads per core
- 2.57 Petaflops/s

Duke QCD workflow:

- 1000 nodes per job: running on 48K cores simultaneously
- entire model design with 30M events can be computed in 1 day

NOW COMPUTING

A small sample of massively parallel scientific computing jobs running right now at NERSC.

PROJECT	MACHINE	NODES	NERSC HOURS Used
NERSC Staff Accounts PI: Sudip S. Dosanjh, Lawrence Berkeley National Lab - NERSC	Cori KNL	1,008	115,874.8
NERSC Staff Accounts PI: Sudip S. Dosanjh, Lawrence Berkeley National Lab - NERSC	Cori KNL	1,008	77,866.5
Extraction of QCD transport coefficients from ultra- relativistic heavy-ion collisions through a Bayesian model to data analysis PI: Steffen A. Bass, Duke University	Edison	1,000	443,890.9
Extraction of QCD transport coefficients from ultra- relativistic heavy-ion collisions through a Bayesian model to data analysis PI: Steffen A. Bass, Duke University	Edison	1,000	399,224.3
Extraction of QCD transport coefficients from ultra- relativistic heavy-ion collisions through a Bayesian model to data analysis PI: Steffen A. Bass, Duke University	Edison	750	229,928.2
NERSC Staff Accounts PI: Sudip S. Dosanjh, Lawrence Berkeley National Lab - NERSC	Cori KNL	512	282,594.2

Vector of input parameters: $\mathbf{x} = [p, k, w, (\eta/s)_{\min}, (\eta/s)_{slope}, (\zeta/s)_{norm}, T_{sw}, ...]$

• assume true parameters \mathbf{x}_{\star} exist \Rightarrow find probability distribution for \mathbf{x}_{\star}

 \Rightarrow probability of \mathbf{x}_{\star} given observations (X,Y, \mathbf{y}_{exp})

Markov-Chain Monte-Carlo:

- random walk through parameter space weighted by posterior
- large number of samples \Rightarrow chain equilibrates to posterior distribution
- flat prior within design range, zero outside
- posterior ~ likelihood within design range, zero outside

Calibration

- X: training data design points
- Y: model output on X

 \Rightarrow probability of observing (X,Y,**y**_{exp}) given proposed **x**_{\star}

Likelihood and Uncertainty Quantification:

- Likelihood $\propto \exp[-1/2 (\mathbf{y}-\mathbf{y}_{exp})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{y}-\mathbf{y}_{exp})]$
- covariance matrix $\Sigma = \Sigma_{experiment} + \Sigma_{model}$
- $\Sigma_{experiment}$ = stat(diagonal) + sys(non-diagonal)
- Σ_{model} conservatively estimated as 5%

Prior vs. Posterior

Analysis Results

Methodology: Jonah E. Bernhard, J. Scott Moreland, Steffen A. Bass, Jia Liu, Ulrich Heinz: PRC94 (2016) 024907, arXiv:1605.03954 Results: Jonah E. Bernhard, PhD thesis arXiv:1804.06469

Model Parameters - System Properties

- initial state
- temperature-dependent viscosities
- hydro to micro switching temperature

MCMC

(Markov-Chain Monte-Carlo) random walk through parameter space weighted by posterior probability

Bayes' Theorem

posterior \propto likelihood \times prior

- prior: initial knowledge of parameters
- likelihood: probability of observing exp. data, given proposed parameters

• iEbE-VISHNU

Gaussian Process Emulator non-parametric interpolation fast surrogate to full Physics Model

Calibrated Posterior Distribution

 $13.9^{+1.2}_{-1.1}$

Temperature Dependence of Shear & Bulk Viscosities

temperature dependent bulk viscosity:	ر 0.08
 setup of analysis allows for vanishing value of bulk viscosity 	0.06 -
 significant non-zero value near T_C favored, confirming the presence / need for bulk viscosity 	\$ <u>></u> 0.04 -
caveat of current analysis:	0.02 -
 bulk-viscous corrections are implemented using relaxation-time approximation & regulated to prevent negative particle densities 	0.00

Constraining the Initial State

off-diagonal regions of dS/dy \propto T_R(p;T_A,T_B):

Or

Precision Science "Smoke & Mirrors"?

- generate a separate Latin hypercube validation design with 50 points
- evaluate the full physics model at each validation point
- compare physics model output to that of the previously conditioned GP emulators:

Validation

note that since GPEs are stochastic functions, only ~68% of predictions need to fall within 1 standard deviation

Verification: Explicit Model Calculation

 explicit physics model calculations (no emulator) with parameter values set to the maximum of the posterior probability distributions yield excellent agreement with data!

Non-Calibrated Observables

The robustness and quality of the Physics Model can be tested by making predictions on observables not used during calibration using highest likelihood parameter values.

SC(m,n) are sensitive to:

- initial conditions
- evolution model
- QGP transport coefficients
- excellent agreement of model prediction to data!

Need to verify that analysis can recover "true" values for the parameters: run physics model with chosen set of parameters, generate "fake data" from model output and then conduct analysis on that fake data to test if the input parameters can be recovered!

- both, smooth functions as well as peaked functions, can be reproduced well within the 90% CR
- note: due to reduction of information when going from model output to observables & model/GP uncertainties one should not expect a one-to-one reconstruction
- not peak position, height & width independently

Closure Test

Summary I: Key Physics Results

hydro to micro switching temperature T_{sw}

- strong likelihood for a value of T_{sw} just around T_{C}
- indicative of the non-equilibrium nature and dynamical breakup of the hadronic system

Outlook & Future Directions

LHC data on soft hadrons. The analysis needs to be extended to:

- include data from lower beam energies • necessary for determination of the temperature and $\mu_{\rm B}$ dependence of transport coefficients
- include asymmetric collision systems (p+A, d+A, 3He+A, A+B) generate improved understanding of the initial state
- include hard probes (jets and heavy quark observables) • consistent determination of jet and heavy flavor transport coefficients
- include other physics models
 - analysis is model agnostic, allows for quantitative comparison among different models and verification/falsification of models/conceptual approaches

current analysis focus was on the properties of bulk QCD matter and utilized only

Past & Present Collaborators & Sponsors

Duke QCD Group:

- Jonah Bernhard (now Lowe's Corporate)
- J. Scott Moreland
- Weiyao Ke
- Yingru Xu
- Jean-Francois Paquet

Duke Dept. of Statistical Sciences:

- Robert E. Wolpert
- Jake Coleman

Ohio State Nuclear Theory:

- Ulrich W. Heinz
- Jia Liu (now SAP)
- Chun Shen (now BNL)

U. of Wyoming Dept. of Statistics:

- Snehalata Huzurbazar
- Peter W. Marcy (now LANL)

Pioneering work by the MADAI Collaboration, led by Scott E. Pratt, MSU (2009-2014)

This work was made possible through support by:
US Dept. of Energy
National Science Foundation
Open Science Grid
Open Science Grid
NERSC Nersc National Energy Research Scientific Computing Center
SAMSI NSF · Duke · NCSU · UNC · NISS

Resources

Trento:

- J. Scott Moreland, Jonah E. Bernhard & Steffen A. Bass: <u>Phys. Rev. C 92, 011901(R)</u>
- <u>https://github.com/Duke-QCD/trento</u>

iEbE-VISHNU:

- Chun Shen, Zhi Qiu, Huichao Song, Jonah Bernhard, Steffen A. Bass & Ulrich Heinz: <u>Computer Physics Communications in print, arXiv:1409.8164</u>
- <u>http://u.osu.edu/vishnu/</u>

UrQMD:

- Marcus Bleicher et al. <u>J.Phys. G25 (1999) 1859-1896</u>, <u>arXiv:hep-ph/9909407</u>
- <u>http://urqmd.org</u>

MADAI Collaboration:

- Visualization and Bayesian Analysis packages
- <u>https://madai-public.cs.unc.edu</u>

Duke Bayesian Analysis Package:

<u>https://github.com/jbernhard/mtd</u>

• Steffen A. Bass et al. Prog. Part. Nucl. Phys. 41 (1998) 225-370 , arXiv:nucl-th/9803035

The End

Time Evolution of a Heavy-Ion Collision

Initial State:

- fluctuates event-by-event
- classical color-field dynamics

• Pre-equilibrium:

- rapid change-over from glue-field domination initial state to thermalized QGP
- time scale: 0.15 to 2 fm/c in duration
- build-up of transverse velocity fields?

hadronic phase and freeze-out

hadronization

- QGP and hydrodynamic expansion:
 - proceeds via 3D viscous RFD
 - EoS from Lattice QCD

ated	 hadronic phase & freeze-out interacting hadron gas separation of chemical and kinetic freeze-out
------	--

Constraining the IS of Heavy-Ion Collisions

- treatment of QGP evolution and • hadronic freeze-out is well established and largely understood
- major success: first extraction of QGP properties such as η/s
- major challenges: \bullet
 - quantify uncertainties in extracted QGP properties
 - temperature dependence of transport coefficients

hadronic phase and freeze-out

• QGP and hydrodynamic expansion:

- proceeds via 3D viscous RFD
- EoS from Lattice QCD

hadronic phase & freeze-out

- interacting hadron gas
- separation of chemical and kinetic freeze-out

Constraining the IS of Heavy-Ion Collisions

QGP and hydrodynamic expansion

Initial State:

- fluctuates event-by-event
- classical color-field dynamics

• Pre-equilibrium:

- rapid change-over from glue-field dominated initial state to thermalized QGP
- time scale: 0.15 to 2 fm/c in duration
- build-up of transverse velocity fields?

hadronic phase and freeze-out

hadronization

- physics of initial state and preequilibrium dynamics are still conceptually challenging with many open questions
 - what processes drive the system towards equilibration?
 - on what timescale?
 - . . .
- a major source of uncertainty for the extraction of QGP properties

Constraining the IS of Heavy-Ion Collisions

QGP and hydrodynamic expansion

parameterized initial QGP state:

- based on simple phenomenological ideas for entropy deposition
- constrained by global model to data fit
- provides guidance to ab-initio IS models on features needed to describe the data

hadronic phase and freeze-out

• QGP and hydrodynamic expansion:

- proceeds via 3D viscous RFD
- EoS from Lattice QCD

hadronic phase & freeze-out

- interacting hadron gas
- separation of chemical and kinetic freeze-out

Initial Condition Model: Trento

- effective, parametric, description of entropy production prior to thermalization
- based on **reduced thickness*** **T**_R as ansatz for *dS/dy*:

 $dS/dy|_{\tau=\tau_0} \propto T_R(p;T_A,T_B) \equiv \left(\frac{T_A^p}{T_A}\right)$

$$\frac{T_A^p + T_B^p}{2}$$

1/p

$$\int dx \, dy \int dz \, \rho_A \int dz \, \rho_B$$

$$x_{n}(x-x_{i},y-y_{i},z-z_{i})$$

$$= \frac{k^k}{\Gamma(k)} \gamma^{k-1} e^{-k\gamma}$$
$$= \frac{1}{2\pi w^2} \exp\left(-\frac{x^2 + y^2}{2w^2}\right)$$

model parameters:

- attenuation parameter: p
- fluctuation parameter: k
- width of nucleon: w
- overall normalization: C_{norm}

model output:

• event by event spatial entropy density distribution at mid-rapidity at thermalization time τ_0

Multivariate Output

Scaling of analysis with # of observables:

- independent emulators for each output?
- neglects correlations among outputs
- what if # of outputs scales to 100?
- training of individual GPE's may become unfeasible and unnecessary in case of strong correlations

this analysis:

- model outputs are yields, $\langle p_T \rangle, \, v_2, \, v_3$ and v_4
- 68 original output dimensions
- 8 principal components used

Next steps: •sub-nucleon degrees of freedom •forward/backward rapidity

W. Ke, J.S. Moreland, J.E. Bernhard & S.A. Bass: Phys. Rev. **C96** (2017) 044912, arXiv:1610.08490 J.S. Moreland, J.E. Bernhard & S.A. Bass, arXiv1808.02106

Original Trento model:

- sample nucleon positions from spherical or deformed Woods-Saxon distributions
- solid angles resampled to preserve minimum distance d_{min}
- Gaussian nucleons of width w
- works very well for large nuclei

²⁰⁸Pb nucleus

Caveat:

 spherical protons do not allow for proper eccentricities in p+A or small/asymmetric collision systems

Nucleon Substructure

Trento with nucleon substructure:

- trade Gaussian nucleons for lumpy nucleons
- additional parameters:
- sampling radius of constituent positions
- constituent Gaussian width
- number of constituents in each nucleon

sampling radius:

constituent width:

of constituents:

Simultaneous Calibration on AA and pA

- ALICE & CMS data for AA & pA at 5.02 TeV
- calibration on 15 parameters, for initial state, shear and bulk viscosities
- restriction on 1 energy to keep computational effort reasonable
- generally larger uncertainties in posterior, due to less data than in the AA calibrations for 2 energies...

no strong preference for a particular constituent # as long as n>3

constituent width & sampling radius are well constrained to • $r = 0.99 \pm 0.16$ • w = 0.47 ± 0.18

Other Examples: Equation of State

Example: determine the EoS of QGP matter from experimental measurements what equation of state would the physics model choose to best describe the experimental data? • create set of QCD Equations of State (aka the *prior*) run physics model with each EoS • use comparison with RHIC/LHC data to determine which Equations of State are consistent with data (i.e. the *posterior*) posterior is very similar to Lattice EoS!! Constraining Eq. of State with RHIC/LHC Data (MADAI Collab.) HADRON GAS UNCONSTRAINED C 200 150 250 300 150 200 250 T (MeV)

Extraction of the Heavy Quark Diffusion Coefficient calibration on heavy quark v₂ and R_{AA} 1.0_{f} 0.25_ľ 0.25_{f} STAR *D*⁰, 0-10% STAR *D*⁰, 10-40% STAR D^0 , 0-80% 0.20 0.20 0.8 0.15 $R_{ m AA}$ 0.15 v_2 v_2 0.10 0.4 0.10 0.05 0.2 0.05 0.00 Au+Au@200 GeV Au+Au@200 GeV Au+Au@200 GeV 0.05 -0.050.005 3 6 3 5 $p_{\rm T}$ [GeV] $p_{\rm T}$ [GeV] $p_{\rm T}$ [GeV] 1.0_{f} 1.0_{f} ALICE D^0, D^*, D^{*+} ALICE D^0, D^*, D^{*+} ALICE D^0, D^*, D^{*+} 0.4 $5 < p_{\mathrm{T}} < 8 \ \mathrm{GeV}$ $8 < p_{\rm T} < 16 {\rm ~GeV}$ 30-50% 0.8 0.8 0.3 $R_{ m AA}$ $R_{ m AA}^{ m IO}$ v_2 0 0.4 0.40.1 0.2 0.2 0.0 Pb+Pb@2.76 TeV Pb+Pb@2.76 TeV Pb+Pb@2.76 TeV -0.1^{L}_{2} 0.0^{L}_{0} $0.0^{\rm L}_{ m 0}$ 8 10 12 14 100 200 300 400 100 200 300 400 4 6 $p_{\rm T}$ [GeV] n_{part} n_{part}

Y. Xu, J.E. Bernhard, S.A. Bass, M. Nahrgang & S. Cao: Phys. Rev C97 (2018) 014907

Other Examples: Heavy Quarks

 combining RHIC and LHC data yields significant improvement for the extraction of $D_s(T)$

first data-driven extraction of temperature & momentum dependence of D_s

- D_s significantly smaller than pQCD baseline at temperatures that can be probed at RHIC & LHC (T<4T_C)
- extracted D_s compatible with Lattice QCD within (large) uncertainties
- Lido prefers slightly larger D_s values than Langevin

caveats:

- need better data to reduce experimental uncertainties (& uncertainty-band)
- need additional observables to better constrain D_s

Other Applications: Heavy-Quark Transport Coefficient

outlook:

- add more observables to analysis
- run analysis on different physics- and medium models to test robustness of D_s extraction

