
Surprises	in	Large	Nc	
Thermodynamics	



Surprises	in	Large	Nc	
Thermodynamics	

TDC,	Sco8	Lawrence	&	
Yukari	Yamauchi	(In	

Prepara@on)	



An	Overview	



An	Overview	

		

0



An	Overview	
•  Introduc@on	

– Some	cau@ons	
– Standard	results	
– Assump@ons	

•  Some	surprises	
– A	metastable	supercooled	phase	with	nega%ve	
absolute	pressure.		

– A	clean	demonstra@on	of	a	strongly	coupled	
regime	of	plasma.		

– Peculiar	behavior	at	the	endpoint	of	the	hadronic	
phase;	breakdown	of	standard	thermodynamic	
limit.		



A	Mo8o	for	1/Nc	prac@@oners		

We may well be 
wrong but at 
least we are 
systematic 

To	the	extent	that	1/Nc	correc%ons	are	modest,	the	large	Nc	world	may	be	a	
useful	cartoon	version	of	the	physical	world.	

However	thermodynamic	proper%es	around	phase	transi%ons	or	rapid	cross-
overs	are	likely	to	be	cases	where	the	cartoon	is	insufficient.				
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A	crossover	for	Nc=3	can	become	
increasing	sharp	as	Nc		increases	and	as	
it	goes	to	∞,	the	qualita%ve	behavior	
can	change	from	being	a	crossover	to	a	
first	order	transi%on—a	qualita%vely	
different	behavior.	
	
This	is	precisely	what	we	believe	
happens	for	QCD.	

Despite	the	qualita%ve	differences	there	
may	be	useful	insights	by	considering	the	
large		Nc	limit.			
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Some	standard	large	Nc	results	(Wi8en,	‘t	HooR	1970s)	
– Mesons	and	glueballs	exist	as	unmixed	narrow	states	with	
masses	of	order	unity	in	a	1/Nc

	expansion:	
		mmeson	~		Nc

0			,	mglueball	~		Nc
0				

	

– Meson-meson,	meson-glueball	and	glueball-glueball	
interac@ons	vanish	as	Nc	è�	.		A	coupling	with	nm	mesons	
and		ng		glueballs	scales	as																									.			

•  Widths	scales:		Γmeson	~		Nc
-1			,				Γglueball	~		Nc

-2				

•  Meson-meson	&	meson-glueball	cross-sec@on	scales	as	~		Nc
-1			

•  glueball-glueball	cross-sec@on	scales	as	~		Nc
-2			

	
–  There	are	an	infinite	number	of	glueballs	and	mesons	
with	any	given	fixed	quantum	numbers	as	Nc	è�	

	
–  Baryons	have	masses	that	scale	as			mbaryon	~		Nc

1		

Nc
(1−ng−12nm+δ0 ,nm )

-

#aaqsm*
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Some	standard	large	Nc	thermodynamic	results:	
	

–  Previous	results	imply	that	in	a	hadronic	phase	the	
system	becomes	a	weaky	coupled	hadronic	gas	composed	
of	mesons	and	glueballs	with	with	the	energy	density	
scaling	as				Nc

0		

–  RG	analysis	indicates	that	the	QCD	becomes	weakly	
coupled	at	a	momentum	transfer	that	scale	as	~	Nc

0	.	

•  The	system	enters	a	quark-gluon	plasma	regime	at	temperature	
that	scales	as	~	Nc

0		.		
•  The	energy	density	in	the	quark-gluon	plasma	regime	scales	as	~	
Nc

2		.	
–  The	discrepancy	between	the	Nc

0	behavior	in	the	hadronic	
regime	and	the	Nc

2	behavior	in	the	plasma	regime	implies	
that	there	must	be	a	phase	transi@on	(first	or	second	
order)—at	least	as	Nc	è���	
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Some	standard	large	Nc	thermodynamic	results:	
	

–  There	is	a	strong	reason	to	believe	that	this	phase	
transi@on	should	be	first	order.	

•  In	the	large	Nc	limit	quark	loops	are	suppressed.		Thus	one	
expects	the	thermodynamics	of	QCD	to	become	equivalent	to	
Yang-Mills	as	Nc		gets	large.	

•  Yang	Mills	is	known	to	have	a	first	order	transi@on	at		Nc=3.	
•  Labce	simula@ons	by	the	Oxford	Group	(Teper	and	
collaborators)	in	the	early	2000s	indicate	that	the	first	order	
transi@on	persists	at	larger	Nc		with		latent	hear	growing		as	Nc

2		
as	one	would	expect	if	the	first-order	transi@on	persisted	up	to	
infinity.	

	

Throughout	this	talk,	it	will	be	assumed	that	a	first	
order	transi%on	exists	between	a	hadron	and	plasma	
phase	



Inhomogeneous	medium	
thermodynamically	preferred	
	

•  This	talk	will	mostly	use	the	microcanonical	
ensemble	as	this	provides	the	most	insight		for	
these	problems.		
–  Key	quan@ty	S(E)	where		S(E)	is	the	log	of	the	number	
of	accessible	states	at	E.	

–  	S’(E)=1/T		
–  In	thermodynamic	limit	of	large	volumes	relevant	
quan@@es	are	entropy	density,	s,	and	energy	density	
ε	:	s(ε)	=	Lim	Vè����(ε V)/V	

–  Thermodynamic	stability	implies		s’’	(ε)≤0.		
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ε
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medium	
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Generic	first	order	transi@on	
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s	

ε

Point	of	inflec@on;	end	of	
metastable	region	

Although	th	thermodynamics	
has	nonanaly@c	behavior,	his	
illustra@ve	homogenous	curve	
that	gives	rise	to	it	is	analy@c	
everywhere.		There	can	be	
nonanaly@ci@es	at	the	points	
inflec@on	depending	on	the	
model.	



s	

ε
f=	-	P		at	the	phase	transi@on	
where	f	is	the	free	energy	
density	and	P	the	pressure		

Slope	is	1/T1	
where	T1	is	the	
phase	transi@on	
temperature	
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Under	this	scaling	both	the	
lower	point		and	the	upper	
point		associated	with	the	first	
order	transi@on	remain	on	the	
same	line.			
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The	1st	order		phase	transi@on	
temperature	is	independent	
of	Nc	

Plasma	phase	

Hadronic	
phase	

The	x-intercept	is	independent	of	Nc.	
This	is	–P	,	the	pressure	at	the	phase	
transi@on.		Thus,	the	phase	
transi@on	pressure	scales	as	Nc

0.	 s(ε)=Nc
2	φ(ε/Nc

2)	

s(ε)=Nc
0	γ(ε/Nc

0)	



Implica@ons	for	the	plasma	phase	

•  The	phase	transi@on	temperature	and	pressure	are	
each	order	Nc

0	(i.e.	independent	of	Nc).	

•  But	P=-f=Ts-ε and	in	plasma	phase	s	and	ε 	are	each	
�(Nc

2)	and	T	is		�(Nc
0).		Thus	generically	P	is	

expected	to	be	�(Nc
2).	

•  However,	near	the	phase	transi@on	but	s@ll	in	the		
plasma	phase,	Ts	and	ε 	cancel	almost	exactly,	up	to	
rela@ve	order	Nc

-2.	
•  This	cancela@on	is	rather	remarkable	and	leads	to	
some	quite	surprising	results.	
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This	cancella@on	gives	insight	into	an	almost	philosophical	issue	
about	about	the	nature	of	ma8er	created	in	heavy	ion	collisions	



•  The	conven@onal	wisdom	is	that	we	have	observed	a	
strongly	interac@ng	quark-gluon	plasma.	

This	cancella@on	gives	insight	into	an	almost	philosophical	issue	
about	about	the	nature	of	ma8er	created	in	heavy	ion	collisions	
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•  The	conven@onal	wisdom	is	that	we	have	observed	a	
strongly	interac@ng	quark-gluon	plasma.	
–  Evidence:	Analysis	based	on	hydrodynamics	suggests	that	
η/s	is	small	(of	order	(4	π)�1).  This	implies	that	whatever	
the	medium	is	its	components	must	be	strongly	coupled.	

•  Based	on	this	people	have	described	the	medium	formed	in		these	
collisions	as	a	(nearly)	perfect	fluid.	

–  Evidence:	Analysis	based	on	hydrodynamics	suggests	that	
η/s	is	small	(of	order	(4	π)�1).  This	implies	that	whatever	
the	medium	is	its	components	must	be	strongly	coupled.	
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about	about	the	nature	of	ma8er	create	in	heavy	ion	collisions	



•  The	conven@onal	wisdom	is	that	we	have	observed	a	
strongly	interac@ng	quark-gluon	plasma.	
–  Evidence:	Analysis	based	on	hydrodynamics	suggests	that	
η/s	is	small	(of	order	(4	π)�1).  This	implies	that	whatever	
the	medium	is	its	components	must	be	strongly	coupled.	

•  Based	on	this	people	have	described	the	medium	formed	in		these	
collisions	as	a	(nearly)	perfect	fluid.	

–  Evidence:	Analysis	based	on	hydrodynamics	suggests	that	
η/s	is	small	(of	order	(4	π)�1).  This	implies	that	whatever	
the	medium	is	its	components	must	be	strongly	coupled.	

–  Based	on	this	people	have	described	the	medium	formed	
in		these	collisions	as	a	(nearly)	perfect	fluid.	

Others	use	different	criteria	for	
what	cons@tutes	a	perfect	fluid!		

This	cancella@on	gives	insight	into	an	almost	philosophical	issue	
about	about	the	nature	of	ma8er	created	in	heavy	ion	collisions	



•  The	conven@onal	wisdom	is	that	we	have	observed	a	
strongly	interac@ng	quark-gluon	plasma.	
–  Evidence:	Analysis	based	on	hydrodynamics	suggests	that	
η/s	is	small	(of	order	(4	π)�1).  This	implies	that	whatever	
the	medium	is	its	components	must	be	strongly	coupled.	

•  Based	on	this	people	have	described	the	medium	formed	in		these	
collisions	as	a	(nearly)	perfect	fluid.	

– While	there	is	strong	evidence	that	this	medium	is	strongly	
coupled,	the	evidence	that	it	is	a	“plasma”	is	more	
problema@c.		

•  There	is	no	phase	transi@on	in	QCD	between	the	plasma	and	
hadronic	phases.		The	medium	is	called	a	plasma	largely	because	it	
is	far	too	dense	to	be	a	weakly	couple	hadronic	gas.	

•  But	it	is	equally	not	a	weakly	couple	quark-gluon	plasma.		So	why		
“strongly	coupled	plasma”	&	not	“strongly	coupled	hadronic		gas”		

This	cancella@on	gives	insight	into	an	almost	philosophical	issue	
about	about	the	nature	of	ma8er	created	in	heavy	ion	collisions	



–  A	possible	cynical	answer:	RHIC	was	sold	as	a	machine	to	
discover	the	QGP	and	whatever	it	discovered	would	be	
labeled	as	a	QGP!	

A	ques@on	approaching	philosophy:	Is	it	even	possible	
to	find	a	medium	in	any	system	which	is	both	clearly	in	
the	plasma	regime	and	also	clearly	strongly	interac@ng?		
	

–  Yes!	The	high	temperature	phase	of	Large	Nc	QCD	just	
above	the	phase	transi@on	

•  Unlike	QCD	at	Nc=3	,	there	is	a	phase	transi@on	which	cleanly	
delineates	the	hadronic	from	plasma	phases.		The	high	
temperature	phase	is	clearly	a	plasma.	

•  While	there	is	no	prac@cal	way	to	test	η/s	for	this	system	to	
demonstrates	that	the	cons@tuents	were	strongly	interac@ng,	if	
the	plasma	is	composed	of	massless	cons@tuents	(eg.	gluons)	
there	is	another	useful	measure	

		

Ω =
ε −3P

1
2 ε +3P( )



–  A	possible	cynical	answer:	RHIC	was	sold	as	a	machine	to	
discover	the	QGP	and	whatever	it	discovered	would	be	
labeled	as	a	QGP!	

A	ques@on	approaching	philosophy:	Is	it	even	possible	
to	find	a	medium	in	any	system	which	is	both	clearly	in	
the	plasma	regime	and	also	clearly	strongly	coupled?		
	

–  Yes!	The	high	temperature	phase	of	Large	Nc	QCD	just	
above	the	phase	transi@on	

•  Unlike	QCD	at	Nc=3	,	there	is	a	phase	transi@on	which	cleanly	
delineates	the	hadronic	from	plasma	phases.		The	high	
temperature	phase	is	clearly	a	plasma.	

•  While	there	is	no	prac@cal	way	to	test	η/s	for	this	system	to	
demonstrates	that	the	cons@tuents	were	strongly	coupled,	if	the	
plasma	is	composed	of	massless	cons@tuents	(eg.	gluons)	there	is	
another	useful	measure	

		
Ω =

ε
3P0



	

–  Note	that	for	an	noninterac@ng	system	of	massless	
cons@tuents	P=ε/3 so	Ω=ε/(3 P) =1.			

•  Very	weakly	ac@ng	systems	of	massless	cons@tuents	will	thus	have	
close	to	Ω	unity.	

	
•  If	however,																																	the	system	is	clearly	strongly	coupled.	

•  Just	above	the	first	order	phase	transi@on	in	the	plasma	phase.	

		

Ω =
ε
3P

>>1

Ω =
ε
3P
~ Nc

2

At	large	Nc	QCD	unambiguously	is	both	strongly	coupled	
and	in	a	plasma	phase!	
	

This	is	modulo	the	very	reasonable	assump@on	that	a	first	order	
transi@on	persists.	

To



•  It	may	be	somewhat	surprising	that	large	Nc	
analysis	gives	a	clean	answer	to	this	ques@on.	

•  However,	it	makes	a	much	more	striking	
predic@on	about	the	supercooled	phase:	
Nega@ve	absolute	pressure.	
– Nega@ve	pressure	absolute	pressure	violates	our	
naïve	kine@c	theory	intui@on	based	on	par@cles	
bouncing	around	in	a	gas.	

– No	go	theorem:	systems	with	no	chemical	poten@als	
of	fixed	densi@es	of	conserved	quan@@es	in	a	stable	
phase	cannot	have	nega@ve	absolute	pressure.	

•  This	follows	from	the	condi@on	s’’	(ε)	≤	0,		and	the	facts	that	
s’(ε)	=T-1,	and	P=-f=Ts-	ε.	

•  But	this	does	not	apply	to	the	supercooled	metastable	
phase.	

	

Absolute	pressure	is	the	pressure	rela%ve	to	the	vacuum	
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•  Gauge	pressure	is	not	the	pressure	of	a	gauge	theory		the	pressure	
but	rather	the	pressure	read	by	a	pressure	gauge—which	measure	
pressure	rela%ve	to	the	ambient	atmospheric	pressure			
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•  It	may	be	somewhat	surprising	that	large	Nc	
analysis	gives	a	clean	answer	to	this	ques@on.	

•  However,	it	makes	a	much	more	striking	
predic@on	about	the	supercooled	phase:	
Nega@ve	absolute	pressure.	
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– Concavity	means	that		
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The correct scaling with N is expected to agree with
Eq. (6) up to 1/N corrections, which in turn means it
should agree with agree with Eq. (10) up to these correc-
tions. Thus, the correct scaling will lie on the line tc(‘)
up to corrections which vanish in the large N limit.

In summary, the previous line of argument implies that
provided the assumption that a generic first order phase
transition exists up to infinite N , that the scaling (up to
1/N corrections) is as in Eq. Eq. (6) and Tc and Pc are
both independent of N for large N .

The scaling of Tc and Pc as N
0
C

implies a remarkable
cancellation in the plasma phase, which leads us to some
of the key results in this paper that will discussed in
the following section. Generically the plasma phase has
a pressure is of order N

2
c
. This happens because P =

Ts ≠ ‘ with T ≥ N
0, s ≥ N

2, ‘ ≥ N
2. For example,

at asymptically large energy densities (but still of order
N

2), the pressure is given by P = ‘/3 ≥ N
2. However, at

the phase transition point—the endpoint of the globally
stable plasma phase—which is denoted ‘h in Fig. 1 a very
large cancellation must take place:

Pc = Tc sN (‘h) ≠‘h

≥N
0

≥N
2

≥N
2 (12)

For Pc to be of order N
0, the two terms on the RHS of

Eq. (12) must cancel almost exactly; the cancellation is
up to order N

≠2.
The e�ects of this cancellation is discussed in Sec. III,

where we show the existence of a strongly-coupled plasma,
and demonstrate that at large N the supercooled plasma
phase has negative absolute pressure.

III. PLASMA PHASE

In this section the behavior of the low-temperature
end of the plasma phase of large N QCD, including the
supercooled plasma phase, is discussed.

A. Negative absolute pressure in the supercooled
plasma phase

In this subsection, we show that if the assumption
that a generic first-order transition persists in the large
N limit with the latent heat growing with N

2 as the
limit is approached, a supercooled plasma with negative
absolute pressure—a pressure less than the vacuum of the
theory—must exist.

Such a situation is quite unusual. Consider the fol-
lowing gedanken experiment: suppose one had a rigid
cylinder with a movable piston that was capable of con-
taining large N QCD matter in the plasma phase. The
piston starts locked so the system has fixed volume and
the system starts in the stable plasma phase. The cylinder
is then brought into thermal contact with a heat bath
whose is slowly lowered so that the plasma in the cylinder

equilibrates in the metastable phase. At this point the
cylinder, is thermally insulated so that it can no longer
exchange energy with the outside and the system is iso-
lated from other matter and is sitting in the vacuum.
At this point, the piston is allowed to move freely. Re-
markably, instead of pushing outward into the vacuum, it
sucks inward. This behavior is counterintuitive from the
viewpoint of the kinetic theory of a gas, where particles in
a box are hitting the wall of a chamber and transferring
momentum to it when they bounce back; this necessarily
results in a positive pressure. The breakdown of such in-
tuition indicates that the pressure is not describable, even
qualitatively, as a plasma or gas of weakly interacting
particles or quasiparticles.

Moreover, a negative absolute pressure runs counter to
intuition gleaned from stable phases. One does not come
across stable phases with negative absolute pressure for
stable phases for systems with zero chemical potentials.
Indeed, it is easy to see that a negative absolute pressure
is impossible for such systems provided that they also
satisfy the condition that only positive temperatures are
possible. This follows from the fact that entropy density
at zero energy density is zero due to the third law of ther-
modynamics,and the fact that s(‘) is concave downward
everywhere to guarantee stability. The concavity of s(‘)
implies that s

Õ(‘1) > s
Õ(‘2) if ‘1 < ‘2, so that the temper-

ature is everywhere an increasing function of ‘ (provided
T is nonnegative). This, in turn implies that for ‘a > 0,

s(‘a) =
⁄

‘a

0
d‘ s

Õ(‘) > s
Õ(‘a)‘a

Pa = s(‘a)
sÕ(‘a) ≠ ‘a >

s
Õ(‘a)‘a

sÕ(‘a) ≠ ‘a > 0 ,

(13)

where Pa is the pressure when the energy density is ‘a.
Thus, the pressure is necessarily positive. This argument
holds for systems that undergo first-order transitions pro-
vided that s(‘) includes inhomogeneous mixed phases and
‘ is taken to be the average energy density over the mixed
phase, since then the full curve s(‘) is concave downward
everywhere.

However, this argument does not apply to a metastable
supercooled phase. The supercooled phase does not lie on
the purely concave downward curve for the stable phase.
Rather, as seen in Fig. it lies along the curve for ho-
mogenous phases which includes regions that are concave
upward as well as regions that concave downward. Thus,
the general intuition obtained from stable phases that sys-
tems with no chemical potentials and in equilibrium must
have positive pressure relative to the vacuum need not
hold for supercooled phases. Moreover, the scaling rela-
tions of Eq. (6) along with the cancelation seen in Eq. (12)
show that not only is negative pressure possible for the
supercooled phase of QCD, it is necessary—provided that
the assumption of a generic first-phase order phase tran-
sition persists as N is increased and survives in the large
N limit.

A generic first-order transition implies the existence of
a supercooled plasma phase. At any finite N , this phase
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where Pa is the pressure when the energy density is ‘a.
Thus, the pressure is necessarily positive. This argument
holds for systems that undergo first-order transitions pro-
vided that s(‘) includes inhomogeneous mixed phases and
‘ is taken to be the average energy density over the mixed
phase, since then the full curve s(‘) is concave downward
everywhere.

However, this argument does not apply to a metastable
supercooled phase. The supercooled phase does not lie on
the purely concave downward curve for the stable phase.
Rather, as seen in Fig. it lies along the curve for ho-
mogenous phases which includes regions that are concave
upward as well as regions that concave downward. Thus,
the general intuition obtained from stable phases that sys-
tems with no chemical potentials and in equilibrium must
have positive pressure relative to the vacuum need not
hold for supercooled phases. Moreover, the scaling rela-
tions of Eq. (6) along with the cancelation seen in Eq. (12)
show that not only is negative pressure possible for the
supercooled phase of QCD, it is necessary—provided that
the assumption of a generic first-phase order phase tran-
sition persists as N is increased and survives in the large
N limit.

A generic first-order transition implies the existence of
a supercooled plasma phase. At any finite N , this phase

Thus		F
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Thus		

However	this	argument	does	not	apply	to	
metastable	phases.		Thus,	it	is	possible	that	they	
have	nega%ve	absolute	pressure	and	at	large	Nc,	
they	do	provided	a	generic	1st	order	transi%ons	
suvrives	at	large	Nc	
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metastable	
regime	

vacuum	

Thermally	insula%ng	walls	and	piston	

Force	

The	medium	is	not	just	weird—it	sucks!	
The	break	down	of	intui@on	based	on	kine@c	theory,	indicates	that	
whatever	this	medium	is,	the	pressure	is	not	describable	in	terms	of	
par@cles	or	quasipar@cles	that	strike	the	wall	transferring	momentum	
and	impar@ng	an	outward	pressure.		This	requires	a	strongly	coupled	
theory	where	the	quasipar%cle	mo%on	is	not	dominant.	
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An	algebriac	way	to	see	this:		
	
Assume	that	there	is	a	supercooled	phase	that	exists	over	
a	range	of	temperature	of	order	Nc

0	and	let	Tsc	be	in	the	
supercool	phase	with	Tc-	Tsc~Nc

0	

P(Tsc ) = P(Tc )− dT dP
dT

Tsc

Tc

∫

         = P(Tc )− dT s(T )
Tsc

Tc

∫       since dPdT = −
df
dT = s

         < P(Tc )
~Nc

0
! − (Tc −Tsc )

~Nc
0

!"# $# s(Tsc )
~Nc

2
! since s(T ) increases monotonically

Tc-	Tsc>	0	and		s(Tsc)	>0,	thus		P(Tsc)	<0	at	large	Nc			

to



•  There	is	a	caveat.			
– There	must	be	a	supercooled	regime	with	neg@ve	
absolute	pressure	at	large	Nc,	provided	that	a	
metastastable	supercooled	regime	exists.	

– Logically	a	first	order	transi@on	could	exist	in	
which	the	phase	transi@on	point	happens	to	
coincide	with	a	point	of	inflec@on	at	large	Nc;	if	
this	happens	there	is	no	metastable	regime.	

– There	is	no	reason	to	expect	this	to	happen	based	
on	large	Nc	analysis;	and	it	would	be	even	more	
interes@ng	then	nega@ve	absolute	pressure.		

•  So	we	can	conclude	something	cool	happens!	
Either	the	metastable	supercooled	phase	does	
not	exist	or	it	has	nega%ve	absolute	pressure.	0



•  The	focus	so	far	has	been	on	the	plasma	phase.		
Are	there	any	surprises	in	the	hadronic	regime?	
	Yes!	

•  The	key	to	understanding	them	is	the	fact	that	
large	Nc	QCD	should	have	a	Hagedorn	spectrum.		
–  This	is	a	very	old	expecta@on	(Thorn	1981)	.		It	is	based,	
in	part	on	the	belief	that	large	Nc		QCD	becomes	a	
string	theory,	and	string	theories	have	Hagedorn	
spectra			

–  There	is	a	generic	argument	without	recourse	to	
stringy	models	(a	sort	of	“physicist’s	proof”)	that	large	
Nc		QCD		at		based	on	the	growth	of	the	number	of	
independent	operators	and	natural	assump@ons	
about	the		onset	of	a	viable	perturba@on	for	
correlators	(TDC	2009)		

	

i.



•  a	Hagedorn	spectrum	for	the	density	of	
hadrons		as	a	func@on	of	mass	asympto@cally		
N(m)~m-d	exp(m/TH)	,	where	N(m)	is	the	
number	of	mesons	and	glueballs	with	mass	
less	than		m,		TH	,	the	Hagedorn	temperature	
and	is	a	mass	parameter	and	-d	fixes	power	
law	prefactor.		

	
•  In	the		large	Nc	limit,	TH	,	corresponds	to	an	
upper	bound	on	the	temperature	of	hadronic	
ma8er	



The Hagedorn Spectrum 



The Hagedorn Spectrum 
Strictly,	it	
only	makes	
sense	for	
large	Nc,	
since	only	at	
large	Nc	do	
hadrons	
become	
narrow	and	
their	masses	
well	defined	



•  The	value	of	the	prefactor	power	-d	plays	a	nontrivial	
role	in	the	large	Nc	thermodynamics	(TDC	2006,	Thorn	1981)	
–  If	d>7/2,	the	system	can	reach	TH		with	a	finite	
energy	density	and	entropy	density;	for	d	≤7/2	they	
diverge.	

– There	is	a	good	reason	to	believe	that	d	=	4	.	
•  	d	=	4	is	the	result	for	a	bosonic	string.	
•  Highly	excited	mesons	and	glueballs	are	expected	to	look	
like	excita@ons	of	flux	tubes	which	become	increasingly	
stringy	as	the	flux	tubes	get	long—as	they	do	for	highly	
excited	states.		

•  		d>7/2	is	assumed	in	what	follows.	
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Historical	Note	
Modern string theory grew out of the failed attempt in pre-
QCD days to treat strong interactions as a string theory. 
 

It was ultimately abandoned  
–  Phenomenological issues (a pesky massless spin-2 meson 

etc.) 
–  Theoretical consistency (negative norm states, tachyons) 
–  Emergence of QCD as a viable field theory for strong 

interactions 
String theory reemerged, phoenix-like from the ashes of  
this failure, as a putative theory of everything 
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Historical	Note	
The d=4 suggested by stringy dynamics differs from Hagedorn’s 
original proposal from 1965 which had d=5/2 .  This had the TH 
unreachable since it required an infinite energy. TH was viewed 
as a maximum possible temperature roughly analogous to 
absolute zero. 
 
 d=5/2 was predicted based on Hagedorn’s “statistical bootstrap 
model”.  To modern eyes (or at lest mine)  it does not seem at all  
compelling but it led to a very important insight 
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The	hadronic	regime—a	gas	of	noninterac%ng	
hadrons	with	a	Hagedorn	spectrum;	ignore	existence	
of	plasma	phase	

One	might	think	that	the	Hagedorn	point	is	the	
endpoint	of	the	Hadronic	phase.	
	
But	this	is	problema%c;	I	can	create	hadronic	states	
with	higher	energy	densi%es.		What	happens	if	I	do?	

εH Energy	density	
when	system	hits	TH	
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ds
dε

=
1
TH

 is constant



Beyond	the	Hagedorn	point	

•  For	ε>εH	,	0(	Nc
0),	s(ε )	con@nues	as	a	straight	

line;	thus	T=1/s’(ε)	remains	constant	atTH	as	
energy	is	added.		

Why?	
	

s(ε) = lim
mmax→∞

s(ε,mk )
k=1

kmax

∑       

with mkmax
=mmax

Look	at	thermodynamics	subject	to	an	
constraint	ar%ficial	constraint	that	only	
masses	greater	than	some	large	value	
mmax	are	included.		The	physical	result	is	
when	the	constrain	is	removed	and	mmax		
goes	to	∞.	

This	is	just	an	ideal	gas	with	a	finite	number	of	components	un%l	
limit	is	taken.	Thus,	the	canonical	and	microcanonical	descrip%ons	
are	equivalent.		Canonically,	these	systems	have	a	well-defined	T.			
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aagaard ①



Beyond	the	Hagedorn	point	
As	mmaxè��
	

•  		T	is	bounded	from	above	by	TH		since	otherwise	ε	
diverges.			

	

•  For	ε>εH	,	is	also	bounded	from	below	by	TH	.		This	follows	
from	the	fact	that	at	any	finite	mmax,	the	system	is	a	
rela%vis%c	ideal	gas	with	a	finite	(but	very	large)	number	
of	species.		Such	systems	have	dT/dε =	-T2	s’’(ε)	≥	0	
everywhere.	

	

Ergo	for	ε>εH			T=TH	and	ds/dε=1/TH		is	constant.		As	seen	in	
the	figure.			

We	have	verified	this	behavior	via	a	sophis%cated	analy%c	calcula%on	
and	via	numerical	experiments	by	fixing	energy	and	directly	summing	
over	hadrons	up	to	a	cutoff	which	we	increase	un%l	it	is	very	large.	

f
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Energy	density	
when	system	hits	TH	

This	is		very	peculiar.	
•  There	is	a	discon@nuity	in	the	s’’’(ε)	as	one	sees	in	

2nd	order	transi@on	
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hadrons	with	a	Hagedorn	spectrum;	ignore	existence	
of	plasma	phase	

Energy	density	
when	system	hits	TH	

This	is		very	peculiar.	
•  There	is	a	discon@nuity	in	the	s’’’(ε)	as	one	sees	in	

2nd	order	transi@on	
•  	s’’(ε)=0	over	an	extended	region	one	sees	in	a	1st	

order	transi@on	



•  What	is	going	on?	
– There	appears	to	be	a	breakdown	of	the	
thermodynamic	limit	in	which	the	microcanonical	
and	canonical	descrip@ons	become	iden@cal	at	
large	volumes.	

– While	work	is	s@ll	in	progress,	currently	all	
indica@ons		suggest	that	in	a	large	but	finite	
volume,	all	of	the	excess	energy	beyond	VεH	is	
typically	contained	in	a	single	extremely	massive	
par@cle.	
• When	the	volume	doubles	with	the	same	energy	
density,	instead	of	doubling	the	number	of	heavy	
par@cles	one	s@ll	has	one	but	it	is	twice	as	massive.	



•  Dynamically	if	the	system	were	infinite	in	size	
and	at	an	energy	density	of	εH		and	energy	in	
the	form	of	low	mass	hadrons	is	added	to	the	
system.	
– The	lower	mass	states	would	thermalize	at	TH	and	
the	excess	energy	would	be	pushed	upward	to	
higher	masses.		

–  	This	would	happen	con@nually	and	the	energy	
would	be	pushed	to	ever	higher	mass	hadrons.	

– The	process	would	not	stop	if	the	system	is	of	
infinite	size.		



Situa%on	is	a	bit	reminiscent	of		Hilbert’s	Grand	Hotel	

v	
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Situa%on	is	a	bit	reminiscent	of		Hilbert’s	
Grand	Hotel	

v	

v	

Although	the	
hadronic	regime	is	
thermodynamically		
full	at	TH	,	there	is	
always	room	for	
more	hadronic	ε.	

The	upshot	of	this	situa%on	is	that	no	maeer	how	big	
the	system,	the	thermodynamic	limit	in	never	reached.	



Conclusions/Surprises	
There	is	a	clean	way	to	show	that	a	
regime	exists	which	is	both	clearly	
strongly	coupled	and	clearly	a	QGP	
plasma	
	

The	metastable	supercooled	plasma	
phase	of	large	Nc	QCD	has	nega%ve	
absolute	temperature.	
	

Beyond	the	endpoint	of	the	metastable	
hadronic	phase		of	large	Nc	QCD	is	a	
regime	that	is	locally	unstable,	but	none-
the-less	long-lived	
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There	is	a	clean	way	to	show	that	a	
regime	exists	which	is	both	clearly	
strongly	coupled	and	clearly	a	QGP	
plasma	
	

The	metastable	supercooled	plasma	
phase	of	large	Nc	QCD	has	nega%ve	
absolute	pressure.	
	

The	endpoint	of	the	metastable	hadronic	
phase	of	large	Nc	QCD	is	odd	and	
indicates	a	breakdown	of	the	usual	
thermodynamic	limit	


