The κ and $K^*(892)$ resonances from lattice QCD

Gumaro Rendon

June 29, 2020

Gumaro Rendon

arXiv:2006.14035

June 29, 2020 1 / 32

Motivation : S-wave scattering and the κ

a. Rodas:2017snm.

Motivation : $b \rightarrow s \ell^+ \ell^-$ weak decays

physicsworld

PARTICLES AND INTERACTIONS RESEARCH UPDATE

Has LHCb spotted physics beyond the Standard Model?

02 Aug 2013 Hamish Johnston

Is physics beyond the Standard Model lurking in LHCb?

An analysis of data from the LHCb experiment at the CERN particle-physics lab suggests that the B-meson could decay in a way not predicted by the Standard Model of particle physics, according to theoretical physicists in Spain and France. The researchers believe that the deviation from the Standard Model has been measured with a confidence of 4.55 which is approaching the gold standard of Sor required for a discovery in particle physics.

Motivation : $b \rightarrow s \ell^+ \ell^-$ weak decays

Gumaro Rendon

arXiv:2006.14035

Motivation : $b \rightarrow s\ell^+\ell^-$ weak decays

1. Jason AEBISCHER et al. "B-decay discrepancies after Moriond 2019". In : Eur. Phys. J. C 80.3 (2020), p. 252. DOI:10.1140/epjc/s10052-020-7817-x. arXiv:1903.10434 [hep-ph].

Gumaro Rendon

arXiv:2006.14035

$$B
ightarrow K^{\star} \ell^+ \ell^-$$

$$B
ightarrow K^{\star} (
ightarrow K \pi) \ell^+ \ell^-$$

$$\frac{ |\langle B, \vec{p}_B | J_{\mu}(0) | s, \vec{P}, \Lambda, r \rangle_{IV} |^2}{|\langle B, \vec{p}_B | J_{\mu}(0, \vec{q}) | n, \vec{P}, \Lambda, r \rangle_{FV} |^2}$$

$$= \frac{1}{2E_n^{\vec{P},\Lambda}} \frac{16\pi \sqrt{s_n^{\vec{P},\Lambda}}}{k_n^{\vec{P},\Lambda}} \left(\frac{\partial \delta}{\partial E} + \frac{\partial \phi^{\vec{P},\Lambda}}{\partial E} \right) \Big|_{E=E_n^{\vec{P},\Lambda}}.$$

а

a. Raúl A. BRICEÑO, Maxwell T. HANSEN et André WALKER-LOUD. "Multichannel 1 \rightarrow 2 transition amplitudes in a finite volume". In : Phys. Rev. D 91.3 (2015), p. 034501. DOI : 10.1103/PhysRevD.91.034501. arXiv : 1406.5965 [hep-lat].

Elastic Scattering on the Lattice

Energy shift + boundary conditions \rightarrow Infinite volume phase shift

Quantization Condition Lüscher NPB1991 :

Determine $\delta(s)$ at discrete values of s_n .

Gumaro	Rendon
Gainaro	110110011

$\frac{L}{2\pi}\vec{P}$	Little Group (<i>LG^P</i>)	irrep (Λ ^{P,} ,r)	spin content	dimension
(0,0,0)	O_h	A_{1q}	J=0,4,	1
(0,0,0)	O_h	T_{1u}	J=1,3,	3
(0,0,1)	C_{4v}	$A_1(A_2)$	J=0,1,	1
(0,0,1)	C_{4v}	E	J=1,2,	2
(0,1,1)	C_{2v}	$A_1(B_3)$	J=0,1,	1
(0,1,1)	C_{2v}	B ₁	J=1,2,	1
(0,1,1)	C_{2v}	B ₂	J=1,2,	1
(1,1,1)	C_{3v}	$A_1(A_2)$	J=0,1,	1
(1,1,1)	C_{3v}	E	J=1,2,	2

Quantization Conditions

No Mixing

$$\vec{p}_{K\pi} = \frac{2\pi}{L}(0,0,0), \quad LG = O_h, \quad \Lambda = A_{1g}:$$

$$\cot \delta_0 = w_{00},$$

$$\vec{p}_{K\pi} = \frac{2\pi}{L}(0,0,0), \quad LG = O_h, \quad \Lambda = T_{1u}:$$

$$\cot \delta_1 = w_{00},$$

Mixing

$$\begin{split} \vec{p}_{K\pi} &= \frac{2\pi}{L}(0,0,1), \quad LG = C_{4\nu}, \quad \Lambda = A_1: \\ & \left(\frac{\cot \delta_0}{-} - w_{00} \right) \left(\frac{\cot \delta_1}{-} - w_{00} - 2w_{20} \right) - 3w_{10}^2 = 0, \end{split}$$

$$\begin{split} \chi^2 &= \sum_{\vec{P},\Lambda,n} \sum_{\vec{P}',\Lambda',n'} [\mathcal{C}^{-1}]_{\vec{P},\Lambda,n;\vec{P}',\Lambda',n'} \\ &\times \left(\sqrt{s_n^{\Lambda,\vec{P}}}^{[\text{data}]} - \sqrt{s_n^{\Lambda,\vec{P}}}^{[\text{model}]} \right) \\ &\times \left(\sqrt{s_n^{\Lambda',\vec{P}'}}^{[\text{data}]} - \sqrt{s_n^{\Lambda',\vec{P}'}}^{[\text{model}]} \right) \end{split}$$

	C13	D6
$N_s^3 \times N_t$	$32^{3} \times 96$	$48^{3} \times 96$
β	6.1	6.3
am _{u,d}	-0.285	-0.2416
ams	-0.245	-0.205
$c_{ m SW}$	1.2493	1.2054
<i>a</i> [fm]	0.11403(77)	0.08766(79)
<i>L</i> [fm]	3.649(25)	4.208(38)
am_{π}	0.18332(29)	0.07816(35)
am _K	0.30475(17)	0.22803(15)
m_{π} [MeV]	317.2(2.2)	175.9(1.8)
<i>m_K</i> [MeV]	527.4(3.6)	513.3(4.6)
N _{config}	896	328

$$\begin{split} O_{K\pi}^{\Lambda,\vec{P}} &= \frac{\dim(\Lambda)}{\operatorname{order}(LG(\vec{P}))} \sum_{\vec{p}} \sum_{R \in LG(\vec{P})} \chi^{\Lambda}(R) \\ &\times O_{K\pi}(R\vec{p},\vec{P}-R\vec{p}), \\ O_{K^{*,i}}^{\Lambda,\vec{P}} &= \frac{\dim(\Lambda)}{\operatorname{order}(LG(\vec{P}))} \sum_{R \in LG(\vec{P})} \chi^{\Lambda}(R) \\ &\times \sum_{j} R_{ij} \, K_{j}^{*+}(\vec{P}). \end{split}$$

Wick contractions

$K\pi \rightarrow K\pi$: Spectrum

$$S^{(\ell)}(s) = 1 + 2 T^{(\ell)}(s),$$

$$\{T^{(\ell)^{-1}}\}_{ij} = \{K^{(\ell)^{-1}}\}_{ij} - i\theta(s - s^{(i)}_{thr})\delta_{ij},$$

$$K^{(\ell)} = \rho^{1/2} \hat{K}^{(\ell)} \rho^{1/2}.$$

$$\hat{\mathcal{K}}^{(\ell)} = \sum_lpha rac{g^0_{\ell,lpha} g^0_{\ell,lpha} B^\ell_lpha(k,k_lpha) B^\ell_lpha(k,k_lpha)}{(m^2_{\ell,lpha}-s)}$$

$$F_0(k) = 1,$$

$$F_1(k) = \sqrt{\frac{2(k R_{1,\alpha})^2}{1 + (k R_{1,\alpha})^2}},$$

$$\hat{K}^{(\ell=0)^{-1}} = \frac{\rho}{k} \left(\frac{1}{a} + \frac{1}{2} r_0 k^2 \right)$$

$$\mathcal{L}_{2} = \frac{1}{2} \langle \partial_{\mu} \Phi \, \partial^{\mu} \Phi \rangle + \frac{1}{12F^{2}} \langle (\Phi \stackrel{\leftrightarrow}{\partial}_{\mu} \Phi) (\Phi \stackrel{\leftrightarrow}{\partial}^{\mu} \Phi) \rangle + \mathcal{O}(\Phi^{6}/F^{4}),$$

$$\Phi(x) \equiv \frac{\vec{\lambda}}{\sqrt{2}} \vec{\phi} = \begin{pmatrix} \frac{1}{\sqrt{2}} \pi^{0} + \frac{1}{\sqrt{6}} \eta_{8} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0} + \frac{1}{\sqrt{6}} \eta_{8} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta_{8} \end{pmatrix}.$$

Adler zero and χPT

$$egin{aligned} \hat{\mathcal{K}}^{(\ell=0)} &= rac{[G_0(s)]^2}{m_0^2 - s}, \ G_0(s) &= G_0^0 \sqrt{(s - s_{\mathcal{A}})} \end{aligned}$$

Parametrizations : Conformal map with Adler zero

$$\begin{aligned} \mathcal{K}^{(\ell=0)^{-1}} &= \frac{\sqrt{s}}{2k} F(s) \sum_{n} B_{n} \, \omega^{n}(s) \\ F(s) &= \frac{1}{s - s_{\mathcal{A}}}, \\ \omega(y) &= \frac{\sqrt{y} - \alpha \sqrt{y_{0} - y}}{\sqrt{y} + \alpha \sqrt{y_{0} - y}} \\ y(s) &= \left(\frac{s - \Delta_{K\pi}}{s + \Delta_{K\pi}}\right)^{2} \end{aligned}$$

comment a locked nation of the structure of the structure

2

2. J.R. PELAEZ et A. RODAS. "Pion-kaon scattering amplitude constrained with forward dispersion relations up to 1.6 GeV". In : Phys. Rev. D 93.7 (2016), p. 074025. DOI : 10.1103/PhysRevD.93.074025. arXiv : 1602.08404 [hep-ph].

Phase shift results

T-matrix poles

Gumaro Rendon

arXiv:2006.14035

$$\Gamma_{K^* \to K\pi} = \frac{\mathcal{G}_{K^*K\pi}^2}{6\pi} \frac{k_*^3}{\operatorname{Re}(\sqrt{s}_R)^2},$$

$$g^{ ext{C13}}_{K^*K\pi} = 5.02(26), \ g^{ ext{D6}}_{K^*K\pi} = 5.03(22).$$

Coupling comparison with other Lattice results

Comparison with LASS experiment

Adler zero helps describe κ pole

• χ PT informs well phenomenology of κ

• Next : $B \to K \pi \ell^+ \ell^-$

Thank you!