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Jet Substructure: Searches

Z
�

• Jet Substructure provides qualitatively new ways to search for new
physics at the LHC: References 7
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Figure 2: The observed and fitted background mSD distributions in each pT category in the
passing regions. The fit is performed under the signal-plus-background hypothesis with one
inclusive H(bb) signal strength parameter floating in all the pT categories. The shaded blue
band shows the systematic uncertainty in the total background prediction. The bottom panel
shows the difference between the data and the total background prediction, divided by the
statistical uncertainty in the data.
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Jet Substructure: Understanding QCD

• Recent years have seen a rise of interest in using jet substructure to
study the dynamics of QCD on the lightcone.
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Introduction

Jets of Hadrons.

QCD doesn’t let us observe quarks and gluons directly, only jets of hadrons
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These are 2 jets This are not 2 but 3 jets

Jets can still tell us the QCD final state of the hard interaction process
� 36 years ago: Discovery of the gluon

Frank Tackmann (DESY) Understanding Jets with Effective Field Theories. DESY Physics Seminar 2015-02-24 3 / 32

• Extends the classic study of “event shapes” in e
+
e
� colliders.
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Motivation

• There has been significant progress understanding correlation
functions and scattering amplitudes, driven by enhanced symmetries,
behavior in kinematic limits and functional/analytic properties.

• Cross section level observables that measure the flow of energy in jets
are another class of field theoretic observables, but have received
much less attention.

Bootstrapping the simplest correlator in planar N = 4 SYM at all loops

Frank Coronado1,2,3

1Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada
2Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada

3ICTP South American Institute for Fundamental Research, São Paulo, SP Brazil 01440-070

We present the full form of a four-point correlation function of large BPS operators in planar
N = 4 Super Yang-Mills to any loop order. We do this by following a bootstrap philosophy based
on three simple axioms pertaining to (i) the space of functions arising at each loop order, (ii) the
behaviour in the OPE in a double-trace dominated channel and (iii) the behaviour under a double
null limit. We discuss how these bootstrap axioms are in turn strongly motivated by empirical
observations up to nine loops unveiled through integrability methods in our previous work [9] on
this simplest correlation function.

I. INTRODUCTION

Integrability methods have shaped a new path for the
explicit evaluation of correlators of local operators in pla-
nar N = 4 SYM [1–5] and also non-planar [6–8], specially
for four-point functions of large protected single-trace op-
erators. In [9] we used integrability-based methods to
find the loop corrections to the polarized four-point func-
tion we named as the simplest. This correlator consists
of four external protected operators with R-charge po-
larizations chosen as shown in figure 1. In the limit of
long operators1 (K � 1), we argued this four-point func-
tion admits a factorization into the tree level part which
carries all the dependence on the external scaling dimen-
sion K and the loop corrections which are given by the
squared of the function O (the octagon)

hO1O2O3O4i =


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In this paper we present some of the analytic properties
of the octagon O which follow from the explicit nine-loop
results in [9]. These properties include a restriction on
the space of functions that appear at any loop order and
the remarkable simplicity of the octagon in two di�erent
kinematical limits: the OPE limit (z ! 1, z̄ ! 1) and
the double light-cone limit (z ! 0, z̄ ! �).

We also state that these three analytic properties can
be used to uniquely define the octagon and with that

1 The rank of the gauge group Nc � � is the largest parameter
followed by K. Then the planar correlator is expanded in powers
of the ’t Hooft coupling g2.
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FIG. 1. The simplest four-point function with external opera-

tors O1(0, 0) = Tr(Z
K
2 X̄

K
2 )+cyclic permutations, O2(z, z̄) =

Tr(XK ), O3(1, 1) = Tr(Z̄K) and O4(�, �) = Tr(Z
K
2 X̄

K
2 )+

cyclic permutations. The Wick contractions form a perime-
ter with four bridges of width K

2 . According to Hexagonal-
izaiton [3] in the limit K � 1 the loop corrections are ob-
tained by summing over 2D intermediate multiparticle states
�in and �out on mirror cuts 1-4 and 2-3 respectively, with
both sums evaluating to O. Alternatively the octagon O rep-
resents the resummation of planar Feynman diagrams draw
inside(outside) the perimeter.

also the simplest correlator (1). We show how to solve
this bootstrap problem by first introducing a Steinmann
basis of Ladders which resolve two of the aforementioned
analytic properties. Then using the third property to
completely fix the coe�cients in an Ansatz constructed
with the Steinmann basis.

This bootstrap approach reproduces the explicit re-
sults obtained from perturbation theory and integrabil-
ity and allows us to easily extend them to arbitrary loop
order. We accompany this letter with an ancillary file
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Goal of this work is to formulate jet substructure in a manner such that
formal developments can have a direct impact on precision QCD.
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One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]

d�

dz
=

X

i,j

Z
d�

EiEj

Q2
�

✓
z � 1 � cos �ij

2

◆
. (1.1)

Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(~n) =

�Z

0

dt lim
r��

r
2
n

i
T0i(t, r~n) , (1.2)

where it is given by

d�

dz
=

hOE(~n1)E(~n2)O†i
hOO†i , (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di�erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e
+
e
� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

�(z) =
1

2
C(↵s) z

�N=4
J (↵s) , (1.4)
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• Energy Flow and Correlation Functions

• Experimental Results on Energy Correlators

• The Three Point Correlator
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+x
H 3

Fig. 8: Small angle expansion of the energy correlation function. The expansion

is dominated by the propagation of a spin three non-local string state, denoted

here by a thick red line.

to the contribution of a physical (but non-local) string state that is localized in the y
+

direction but propagating in the transverse directions. We generalize this result to AdS

by replacing the transverse space by H
3. Now the non-local string states propagate on

the H3 subspace of AdS5. These states propagate from the center of H3, where the string

state created by the localized operator insertion is concentrated, to a region near the H3

boundary, near the insertion of the two energy flux operators, see fig. 8. At large distances

from the H3 center we expect that the wavefunction of the non-local string state goes as

1/| ~W |�, | ~W | � 1, with

� ⇠ mRAdS ⇠
�

2�
1/4 + · · · (4.26)

where m is given, to a good approximation, by the mass of the flat space state computed

in (4.24). Incidentally, we can calculate the conformal weight � of other (generally non

local) operators with arbitrary spin in the same manner. They correspond to the string

states

(@�y
+
@�y

+)
j
2 �(y+)eik.y (4.27)

The mass of these states is given in flat space by m
2 = �k

2 = 2
�� (j � 2). Therefore

�(j) ⇠
�

2
�

j � 2�
1/4 + · · · (4.28)

This formula is expected to be a good approximation only for j � �
1/2, since it was derived

assuming the flat space approximation. For very large values of j we get a logarithmic

behavior in j, see [75]. Of course this is simply the analytic continuation of the leading

Regge trajectory.
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Energy Flow and Correlation Functions

I +

One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]
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Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(~n) =

�Z

0

dt lim
r��

r
2
n

i
T0i(t, r~n) , (1.2)

where it is given by

d�

dz
=

hOE(~n1)E(~n2)O†i
hOO†i , (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di�erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e
+
e
� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law
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The Choice of Observable
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• Many observables have been proposed over the years to measure flow
of energy in colliders:

• Thrust
• C-parameter
• ....

• These all involve some “human” definition. Is there an observable
that is intrinsically an object in the field theory?

• Such an observable was introduced in the early days, the
Energy-Energy Correlator, although it was not appreciated why it
holds a special place compared to other observables.
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[Basham, Brown, Ellis, Love]
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Energy Flow Operators

I +
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derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This
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• Energy Correlators admit a representation as an N-point correlation
function of Energy Flow operators (not true for other observables
such as thrust):

E(~n) =

1Z

0

dt lim
r!1

r2niT0i(t, r~n)

• Simplest extension of N-point correlation functions of local operators.

• Recent interest in the context of the conformal bootstrap.

1
�tot

d�
dz

=

R
d4x eiq·x

hO(x)E(~n1)E(~n2)O
†(0)iR

d4x eiq·xhO(x)O†(0)i
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Jet Substructure as Energy Correlators

I +

One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]
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Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(~n) =
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where it is given by
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=
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hOO†i , (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di�erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e
+
e
� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

�(z) =
1

2
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�N=4
J (↵s) , (1.4)
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J (↵s) , (1.4)

– 2 –

• Theoretically, jet substructure is the study of the small angle (OPE)
limit of Energy Flow (light ray) operators:

• Forms a bridge between QCD phenomenology and the OPE limit of
lightray operators.
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Jet Substructure as Energy Correlators
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SL(2,C) SL(2,C)

• Matrix elements of lightray ops are amenable to powerful techniques:
1 Symmetry: Lightray operators are labelled by points on the celestial

sphere, on which Lorentz symmetry acts as (global) conformal
symmetry.

2 Operator product expansions: The lightray OPE is a power expansion
about the small angle limit, whose leading term gives the small angle
asymptotic behavior.
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One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]

d�

dz
=

X
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Z
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EiEj

Q2
�

✓
z � 1 � cos �ij

2

◆
. (1.1)

Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(~n) =
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dt lim
r��

r
2
n

i
T0i(t, r~n) , (1.2)

where it is given by
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hOO†i , (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di�erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e
+
e
� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

�(z) =
1

2
C(↵s) z
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Jet Substructure as Energy Correlators
• Combined, these make Energy Correlators behave similarly to
correlation functions:

• Two-point correlator: d�
d✓ ⇠ ✓

�(3)�1

• Three-point correlator: d�
d✓dzdz̄ ⇠ ✓

�(4)�1
G(z, z̄)

• N-point correlator: d�
d✓

Q
dzidz̄i

⇠ ✓
�(N+1)�1

G(zi, z̄i)

• This is nice, but can we really observe this at colliders?
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Experimental Results on Energy Correlators

10�4 10�3 10�2 10�1 100

�Rmax

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
E

E
E

C
/E

E
C

R
at

io

AK5 Jets, |�jet| < 1.9

pjet
T � [375, 425] GeV

CHS, pPFC
T > 1 GeV

PRELIMINARY

�R = 0.5

Stat. errors only

CMS 2011 Open Data

CMS 2011 Simulation

Pythia 6 Generation

10�4 10�3 10�2 10�1 100

�Rmax

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
E

E
C

/E
E

C
R

at
io

AK5 Jets, |�jet| < 1.9

pjet
T � [375, 425] GeV

CHS, pPFC
T > 1 GeV

PRELIMINARY

�R = 0.5

Stat. errors only

CMS 2011 Open Data

CMS 2011 Simulation

Pythia 6 Generation

Komiske, Moult, Thaler, Zhu
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CMS Open Data

• Provided by Jesse Thaler and Patrick Komiske.

• Ideal for rapid testing of new theory ideas. Measurements can then be
done more carefully in proper experimental analyses.
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Introduction

Jets of Hadrons.

QCD doesn’t let us observe quarks and gluons directly, only jets of hadrons
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p�

These are 2 jets This are not 2 but 3 jets

Jets can still tell us the QCD final state of the hard interaction process
� 36 years ago: Discovery of the gluon

Frank Tackmann (DESY) Understanding Jets with Effective Field Theories. DESY Physics Seminar 2015-02-24 3 / 32

• CMS has released a sample of high quality data for public use.
=) Perfect for jet studies.

• Packaged in “MIT Open Data”:
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Compared to LEP
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Evolution with energy clearly visible

L. Dixon      EEC at small angles Amplitudes 2019   July 2 4

data reviewed recently in Kardos et al, 1804.09146

1984 1985 1990-93

• Lightcone dynamics corresponds experimentally to small angles.

• Better resolution calorimeters completely transforms the ability to
study these regions.

• Allows us to measure the scaling and shape dependence of multipoint
correlators of lightray operators.
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Goals

• We would like to illustrate that we can measure:

1 Perturbative scaling behavior.

2 The e↵ect of the transition to confined hadrons.

3 The shape dependence of higher point correlators.
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Experimental Results on Energy Correlators:

Scaling Behavior
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Two-point Correlator with Open Data
• Scaling of two-point correlator:

0.0 0.1 0.2 0.3 0.4 0.5 0.6
�R

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(N
or

m
al

iz
ed

)
E

E
C

C
ro

ss
S
ec

ti
on

[n
b
]

AK5 Jets, |�jet| < 1.9

pjet
T � [375, 425] GeV

CHS, pPFC
T > 1 GeV

PRELIMINARY

�R = 0.5

Stat. errors only
CMS 2011 Open Data

CMS 2011 Simulation

Pythia 6 Generation

10�5 10�4 10�3 10�2 10�1 100

�R

10�8

10�6

10�4

10�2

100

(N
or

m
al

iz
ed

)
E

E
C

C
ro

ss
S
ec

ti
on

[n
b
]

AK5 Jets, |�jet| < 1.9

pjet
T � [375, 425] GeV

CHS, pPFC
T > 1 GeV

PRELIMINARY

�R = 0.5

CMS 2011 Open Data

CMS 2011 Simulation

Pythia 6 Generation

• Can measure over a remarkable dynamic range including both
perturbative and non-perturbative regimes.
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Scaling of Higher Point Correlators
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• We can probe these scalings in open data:

• First probes of multipoint correlators in data.

• In a linear plot, these are dominated by the classical 1/�R scaling.

Je↵erson Lab Theory Seminar Feb 22, 2021 21 / 47

e



Scaling in Data
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• Anomalous scaling can be clearly seen by considering ratios:

Scaling Behavior X

• Slope is directly proportional to ↵s.
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Experimental Results on Energy Correlators:

Hadronization
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Hadronization in QCD
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• Perturbative scaling only valid above confinement scaling.

• Observe a rapid transition to uniformly distributed hadrons!!
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Excellent Non-Perturbative Behavior

• Simple behavior of hadronization implies that it is largely removed by
taking ratios: Ratios of projected correlators have  percent level NP
corrections.
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• Promising for precision extraction of ↵s from jet substructure data.

Je↵erson Lab Theory Seminar Feb 22, 2021 25 / 47



Experimental Results on Energy Correlators:

Shape Dependence
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Shape Dependence

• Can directly measure shape of higher point correlators in LHC data.
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• Remarkable probe of QCD, well beyond standard event shapes!

Shape X
hq(E)E(~n1)E(~n2)E(~n3)i

hg(E)E(~n1)E(~n2)E(~n3)i
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A Wealth of New Data

• Remarkable dataset from the LHC enables precision measurements of
shapes and scaling behavior of multipoint correlators of energy flow
operators.

• Opportunity for studying rich dynamics of QCD on the lightcone.

• Level of detail goes well beyond previous measurements of event
shapes =) new theory tools/calculations needed!

• Theoretically clean nature of these observables enables exciting
interplay with techniques recently developed in the context of
Conformal Field Theory for the study of lightray operators.
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The Three Point Correlator
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Three Point Correlator in Collinear Limit
• First non-trivial behavior arises at three-points.

• Shape dependence of multi-point correlators described by universal jet
functions.

• No previous analytic calculations. Do they have a nice structure?
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Parametrization
• In collinear limit, three point function depends on a single complex
variable z, and a scaling variable x.

• Use standard parameterization for a CFT 4 point function.
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Result in N = 4 Super Yang-Mills
• To get an intuition for the result, we can first compute it in N = 4.

• We find that it can be written in a simple form, similar to standard
correlation functions of local operators.

GN=4(z) =
1 + u + v

2uv
(1 + ⇣2) �

1 + v

2uv
log(u) �

1 + u

2uv
log(v)

� (1 + u + v)(@u + @v)�(z) +
(1 + u2 + v2)

2uv
�(z) +

(z � z̄)2(u + v + u2 + v2 + u2v + uv2)

4u2v2
�(z)

+
(u � 1)(u + 1)

2uv2
D+

2 (z) +
(v � 1)(v + 1)

2u2v
D+

2 (1 � z) +
(u � v)(u + v)

2uv
D+

2

✓
z

z � 1

◆

• It is expressed in terms of rational prefactors and two weight-2
polylogarithmic functions

�(z) =
1

z � z̄
(2Li2(z) � 2Li2 (z̄) + (log(1 � z) � log (1 � z̄)) log (zz̄)) ,

D+
2 (z) = Li2

�
1 � |z|

2� +
1
2

log
�
|1 � z|

2� log
�
|z|

2�
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Shape Dependence in QCD

Here we present the results for each term separately. For Gq̄�q�q(z), we have
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Here the superscript (ab) denotes the abelian contribution, while (nab) denotes the non-

abelian contribution. We again present results for each of the terms separately. For the

abelian qq̄g term, G
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gqq̄ (z), we have
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For the non-abelian qq̄g term, G
(nab)
gqq̄ (z), we have

G
(nab)
gqq̄ (z) = CATF nF �

�
1

11520r5t8(r � s + 1)


� 12960r

10 � 48r
9
�
369s

2 � 2311s + 1840
�

� 4r
8
�
108s

4 � 14757s
3 + 83880s

2 � 113064s + 92336
�

+ r
7
�
990s

5 � 74964s
4 + 462552s

3

�640000s
2 + 1094480s + 247488

�
+ r

6
�
�453s

6 + 37440s
5 � 358404s

4 + 135508s
3

�1542992s
2 � 683520s � 211680

�
+ r

5
�
�9s

6 + 24s
5 + 11465s

4 + 237198s
3 + 531872s

2

+1540512s + 731712) s
2 � r

4
�
917s

4 + 34820s
3 + 211638s

2 + 793968s + 874368
�
s
4 + 5r

3

�
427s

3 + 6808s
2 + 43470s + 86796

�
s
6 � 20r

2
�
103s

2 + 1488s + 5496
�
s
8 + 540r(3s + 26)s10

� 720s
12

�
+

1

1920r5t10


r
10(27136 � 16272s) + r

9
�
�6984s

3 + 93496s
2 � 199424s + 92160

�

+ r
8
�
�72s

5 + 19774s
4 � 202600s

3 + 524000s
2 � 422368s + 211456

�
+ r

7
�
129s

6 � 19858s
5

– 30 –

+198616s
4 � 625560s

3 + 555992s
2 � 514208s � 160768

�
+ r

6
�
�47s

6 + 6892s
5 � 70742s

4

+377014s
3 � 187208s

2 + 737232s + 202192
�
s � r

5
�
4s

5 + 541s
4 + 26879s

3 + 136212s
2

+345532s + 490576) s
3 + 2r

4
�
17s

4 + 1869s
3 + 16644s

2 + 74249s + 168636
�
s
5 � 10r

3
�
20s

3

+426s
2 + 3315s + 12343

�
s
7 + 20r

2
�
11s

2 + 191s + 1256
�
s
9 � 180r(s + 15)s11 + 120s

13

�
g
(1)
1

+
1

1920r5t10(r � s + 1)


r
11(16272s � 22816) + 8r

10
�
873s

3 � 12101s
2 + 23154s � 9752

�
+ r

9

�
72s

5 � 24598s
4 + 241580s

3 � 566960s
2 + 422112s � 233472

�
+ r

8
�
�201s

6 + 33164s
5

�302340s
4 + 848800s

3 � 703720s
2 + 742160s + 178560

�
+ r

7
�
176s

7 � 19889s
6 + 179816s

5

�705970s
4 + 357900s

3 � 1210160s
2 � 426960s � 70560

�
+ r

6
�
�43s

6 + 4700s
5 � 7504s

4

+388380s
3 + 401700s

2 + 1224480s + 362640
�
s
2 � 2r

5
�
19s

5 + 2109s
4 + 32185s

3 + 141590s
2

+380610s + 298860) s
4 + 2r

4
�
117s

4 + 4080s
3 + 33730s

2 + 143400s + 193080
�
s
6 � 60r

3

�
7s

3 + 136s
2 + 999s + 2242

�
s
8 + 200r

2
�
2s

2 + 33s + 132
�
s
10 � 60r(5s + 46)s12 + 120s

14

�

g
(2)
1 � 1

32r6t11(r � s + 1)


144r

13 + 8r
12

�
54s

2 � 249s + 178
�

+ r
11

�
72s

4 � 2266s
3 + 9424s

2

�11032s + 2784) + r
10

�
�254s

5 + 4968s
4 � 21402s

3 + 33808s
2 � 15512s + 10368

�
+ r

9

�
336s

6 � 5532s
5 + 25304s

4 � 53122s
3 + 23672s

2 � 36424s � 9264
�

+ r
8
�
�194s

7 + 3060s
6

�13156s
5 + 49356s

4 � 22s
3 + 67568s

2 + 21248s + 2352
�

+ 2r
7
�
18s

6 � 513s
5 � 1528s

4

�17641s
3 � 23216s

2 � 35818s � 8092
�
s
2 + 4r

6
�
12s

5 + 339s
4 + 2530s

3 + 8399s
2 + 15501s

+8309) s
4 � 2r

5
�
s
5 + 77s

4 + 1034s
3 + 5544s

2 + 15642s + 13860
�
s
6 + r

4
�
7s

4 + 224s
3

+2090s
2 + 9196s + 12804

�
s
8 � 2r

3
�
5s

3 + 106s
2 + 794s + 1760

�
s
10 + 3r

2
�
3s

2 + 50s + 192
�

s
12 � 2r(3s + 26)s14 + 2s

16

�
g
(1)
2 +

1

32r6(r � s + 1)


� 2r

5 + r
4(7s + 4) � 2r

3
�
5s

2 + 7s + 2
�

+ r
2
s
�
9s

2 + 18s + 4
�

� 2rs
3(3s + 4) + 2s

5

�
g
(4)
2

�
.

For the pure gluon term, Gggg(z), we have
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5.2.2 Gluon Jets

For gluon jet we similarly write
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. (5.16)

The color decomposition is

Gg(z) = G
(ab)
gqq̄ (z) + G

(nab)
gqq̄ (z) + Gggg(z) .
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• Shape dependence in QCD involves same transcendental functions

• ...but many more rational prefactors...

• Now lets try and extract some physics from it!
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Spin Structure of the Squeezed Limit
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The OPE Limit

• A particularly interesting limit of the multipoint correlator is the OPE
limit, where two detectors are brought together:

• Turns out to be non-trivial in QCD due to the presence of spin
correlations.

• We will show how this limit can be e�ciently analyzed using the
lightray OPE.
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Seeing Quantum Interference with Spinning Gluons
• In the squeezed limit, the intermediate gluon is nearly on-shell: It has
two polarizations, ±, which can interfere with each other.

• We can now rotate the squeezed pair to reveal a cos(2�) interference
pattern in the detector! =) interesting probe of quantum
interference using jet substructure.
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The OPE Limit
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• Using our analytic result for the three point correlator, we can extract
the squeezed limit at fixed order:
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• At higher powers (twists) in the OPE expansion, get cos(2n�).
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Lightray OPE

• We would now like to understand how to perform the leading
logarithmic, leading twist resummation in the squeezed limit using an
iterative lightray OPE.

I +

One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]
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2

◆
. (1.1)

Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]
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for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di�erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e
+
e
� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law
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• Need to understand what operators appear in the OPE in QCD.
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Twist-2 Lightray Operators

Leading Power in QCD
twist-2 operators 
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1

2J
�̄�
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�
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spin-0 

transverse 
spin-2 

• In the iterative OPE of lightray operators, we will find twist-2 lightray
operators at positive J = 3, 4, 5, · · · .

• These operators have a long history in QCD. Much interest in the
J ! 1 (Regge limit). Analyticity in J then provides an interesting
connection to the Regge limit.

• Jet substructure provides another interesting problem of physical
interest governed by these operators.
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Matching Calculation

• Using the mode expansion, we performed a lowest order matching
calculation to determine the required OPE coe�cients.

• These take the form of a matrix that is an analytic function of J
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Resummation

• In QCD, one needs to incorporate the running coupling by solving a
renormalization group equation.

RG evolution

O[J]
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Lightray OPE
• Combining all pieces, we obtain the final resummed result. It exhibits
an angular “ripple” on top of a power law.
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• Hope to observe in LHC data!
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Higher Twist Contributions

• In a standard OPE, higher twist contributions arising from
descendants of a primary operator can be summed into ”blocks”
associated with a particular symmetry. In this case, the SL(2, C) on
the celestial sphere.

• We can also do this for lightray operators!

• This can be e�ciently achieved by solving a quadratic Casimir
di↵erential equation (following Dolan and Osborn) for the symmetries
acting on the celestial sphere.

~n
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Collinear Lightray Blocks

• Skipping some steps, one eventually finds the result for the required
blocks
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• Note that the result exhibits “holomorphic factorization”, as expected
since the celestial sphere is 2 dimensional.

�(� � 2) + l
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2
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Collinear Lightray Blocks

• As a test, one can show that the terms with highest azimuthal
dependence at each twist are uncontaminated by higher twist
primaries, and arise only from the descendants of the leading twist
operators. They are resummed by the block
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21
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33
cos 8� + · · · .

• Agrees exactly with the expansion of the full result for the three-point
correlator!

• Here we have barely scratched the surface. Opens the door to the use
of many powerful techniques for studying jet substructure.

• Sophisticated technical machinery developed for studying conformal
blocks in CFTs can be exploited.
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One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]

d�

dz
=

X

i,j

Z
d�

EiEj

Q2
�

✓
z � 1 � cos �ij

2

◆
. (1.1)

Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(~n) =

�Z

0

dt lim
r��

r
2
n

i
T0i(t, r~n) , (1.2)

where it is given by

d�

dz
=

hOE(~n1)E(~n2)O†i
hOO†i , (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di�erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e
+
e
� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

�(z) =
1

2
C(↵s) z
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• Energy Correlators are a theoretically nice
observable formulated as matrix elements of
lightray operators.

• Shapes and scalings of Energy Correlators can
be measured precisely at the LHC.

• Multipoint correlators can be analytically
computed.

• Squeezed limits exhibit interesting spin
interference e↵ects which can be analyzed
using the lightray OPE and collinear blocks.
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Thanks!
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