
Prepotential Framework: an overview
Variant Formulation: Simple constraint structure

Practical Implementation

Towards Quantum Simulation of Non-Abelian
Lattice Gauge Theories

JLab Theory Seminar

Indrakshi Raychowdhury

University of Maryland, College Park

27 January, 2020

Indrakshi Raychowdhury Towards Quantum Simulation of Non-Abelian Lattice Gauge Theories



Prepotential Framework: an overview
Variant Formulation: Simple constraint structure

Practical Implementation

Motivation for Quantum Computing/Simulation

Quantum computation is expected to efficiently handle
the exponential growth of information in entangled
quantum systems that overwhelms classical
computers.

Despite of tremendous success of lattice QCD
calculations, there are some forbidden regions to
explore even with the largest supercomputers.
For lattice gauge theories, quantum computers offer
hope for ab initio studies of non-zero density,
topological properties, and real-time phenomena,
which are exponentially hard to solve classically due
to sign problems.
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State of the art

Quantum computers are still at infancy just like classical
computers 40 years ago.

Present day’s effort:
Contructing proposals for digital and analog quantum
simulation.
NISQ era computation: quantum noise.
Experimental implementation in both digital and analog for
simple and/or toy models.
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Quantum computation for gauge theories

Suitable Framework: Hamiltonian Lattice Gauge Theory

Schwinger model: QED in 1 + 1 dimensions

Super simple to analyze yet contains rich physics
Real time simulation of Schwinger model shows dynamics
of pair production, string breaking etc.
Many analog proposals has been made in past five years.
European review: arXiv:1911.00003, Davoudi et al.
arXiv:1908.03210 and more.
Digital computation with Schwinger model: N. Klco et al:
arXiv:1803.03326 and more.
First experimental realization: Martinez et al, Nature’16
Many ongoing projects across the globe.
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Long Term Goal: Quantum Simulating QCD

QCD: Non-abelian (SU(3)) gauge theory in 3 + 1
dimensions.

Till date:
ONLY A FEW ANALOG PROPOSALS

FAR FROM EXPERIMENTAL IMPLEMENTATION.
ONLY ONE DIGITAL COMPUTATION
(TROTTERIZATION), THAT IS TOO RESTRICTIVE [Klco
et al. arXiv: 1908.06935].
WHY?
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Drawbacks of Conventional formalism

Non-Abelian LGT : local Hamiltonian+ gauge theory Hilbert
space+ Gauss law for gauge invariance.
States in the Hilbert space are predominantly unphysical,
and a noisy quantum computer would get lost among them.
Gauss’s law is nontrivial on a quantum computer: color
components are not simultaneously diagonalizable.
Different representations to be mapped onto a register of
qubits are on different footings under (and mixed by) the
action of the Hamiltonian.
Crafting the action of the Hamiltonian in terms of quantum
computer operations→ straightforward in principle but
rather unnatural to do.
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Alternate formulation

Prepotential formulation of LGT is developed over last
decade starting with Mathur’05, ’07.
prepotential formulation of LGT uses gauge invariant
towers of states, characterized by integer quantum
numbers.
The Hamiltonian acts as a sum of ladder operators on
those towers of states, which seems far more natural for
quantum computation.
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1 Prepotential Framework: an overview
Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

2 Variant Formulation: Simple constraint structure
Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

3 Practical Implementation
SU(2) Physicality Oracle
Trotterization
Towards analog quantum simulation of Non-Abelian LGT
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Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

Hamiltonian LGT: Variables

Discrete Space
and Continuous
time On a link of the spatial lattice

Ea
R(n + i , i) = Eb

L (n, i)Rab (U(n, i))
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Loop operators and loop states

Ĥ = g2
∑

(x ,i)

Ê2(x , i)

︸ ︷︷ ︸
HE

+ 1
g2

∑

�

Tr(2− Û� − Û†�)

︸ ︷︷ ︸
HB

(1)

+
∑

(x ,i)

ψ̂†(x)Û(x , i)ψ̂(x + ei) + m
∑

x

(−)x ψ̂†(x)ψ̂(x)

︸ ︷︷ ︸
HM

.

Canonical conjugate variables satisfy:

[Êa
L , Û] = −1

2σ
aÛ , [Êa

R , Û] = 1
2 Ûσa . (2)

The Gauss law: Ĝa|phys〉x = 0 where,

Ĝa(x) =
d∑

i=1

(Êa
L,i(x) + Êa

R,i(x))− 1
2 ψ̂
†
α(x)σa

αβψ̂β(x), (3)
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Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

Wilson loops and Mandelstam Constraints: SU(2)

Involving two loops, each carrying one unit of flux

ONLY NON-INTERSECTING LOOPS ARE PHYSICAL
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Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

Wilson loops and Mandelstam Constraints: SU(2)

Increasing number of Loops⇒ Increasing number of
Mandelstam Identities!

In prepotential formulation these fundamental Mandelstam
identities becomes local and can be analyzed as well as
solved to get Orthonormal Loop states.
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Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

Prepotentials

Harmonic oscillators belonging to the fundamental
representation of the gauge group defined at each
lattice site.
Prepotentials transform as matter fields→ construct
local gauge invariant variables and states from them!

Local Mandelstam constraints⇒ Exact solution is
non-trivial but possible.
Prepotential formulation of SU(2), SU(3) and arbitrary
SU(N) exists (ref:IR, PhD Thesis) , but we will confine
ourselves to SU(2) only in this talk.
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Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

SU(2) Prepotentials

Left electric fields: E a
L(n, i) ≡ a†(n, i ; L)

σa

2
a(n, i ; L),

Right electric fields: E a
R(n + i , i) ≡ a†(n + i , i ; R)

σa

2
a(n + i , i ; R).

Under SU(2) gauge transformation

a†
α(L)→ a†

β(L)
(
Λ†

L

)β
α, a†

α(R)→ a†
β(R)

(
Λ†

R

)β
α

aα(L)→
(
ΛL
)α

β aβ(L), aα(R)→
(
ΛR
)α

β aβ(R).
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Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

Link Operator

From SU(2)⊗ U(1) gauge transformations of the
prepotentials,

Uα
β = ã†α(L) η a†

β(R) + aα(L) θ ãβ(R)

Calculating the coefficients from U†U = UU† = 1,

U =
1√

n̂L + 1

(
a†

2(L) a1(L)

−a†
1(L) a2(L)

)

︸ ︷︷ ︸
UL

(
a†

1(R) a†
2(R)

a2(R) −a1(R)

)
1√

n̂R + 1︸ ︷︷ ︸
UR
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Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

Abelian Weaving, Non-abelian Intertwining and Loop
States

Link operator: Uα
β =

1√
n̂ + 1

(
ã†α(L) a†

β
(R) + aα(L) ãβ (R)

) 1√
n̂ + 1

Four basic gauge invariant operators constructed by Uα
β (n, i)Uβ

γ (n + i, j) at site (n + i) :

a†
β

(i)
1√

n̂i + 1

1√
n̂j + 1

ã†β (j) =
1√
n̂i

1√
n̂j + 1

a†(i) · ã†β (j) ≡
1√

n̂i (n̂j + 1)
k ij

+ ≡ Ô
i+ j+

a†
β

(i)
1√

n̂i + 1

1√
n̂j + 1

aβ (j) =
1√
n̂i

1√
n̂j + 1

a†(i) · a(j) ≡
1√

n̂i (n̂j + 1)
κ

ij ≡ Ôi+ j−

ãβ (i)
1√

n̂i + 1

1√
n̂j + 1

ã†β (j) =
1√

n̂i + 2

1√
n̂j + 1

a(i) · a†(j) ≡
1√

(n̂i + 2)(n̂j + 1)
κ

ji ≡ Ôj+ i−

ãβ (i)
1√

n̂i + 1

1√
n̂j + 1

aβ (j) =
1√

n̂i + 2

1√
n̂j + 1

ã(i) · a(j) ≡
1√

(n̂i + 2)(n̂j + 1)
k ji
− ≡ Ô

i− j−

for i, j different directions at each site.
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Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

Loop States and Linking Numbers

|{lij}〉 =
∏

i 6=j

(k+)lij

lij !
|0〉

Linking numbers in 2d
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Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

Mandelstam Constraints

(
a†(1) · ã†(2)

) (
a†(1̄) · ã†(2̄)

)
≡
(

a†(1) · ã†(1̄)
) (

a†(2) · ã†(2̄)
)
−
(

a†(1) · ã†(2̄)
) (

a†(2) · ã†(1̄)
)

Equivalent to the fundamental Mandelstam identity
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Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

Linking Numbers and Constraints

Loop State characterized by 6 linking numbers

|l12, l11̄, l12̄, l21̄, l22̄, l1̄2̄〉 ≡ |{l}〉 =

(
k12

+

)l12

l12!

(
k11̄

+

)l11̄

l11̄!

(
k12̄

+

)l12̄

l12̄!

(
k21̄

+

)l21̄

l21̄!

(
k22̄

+

)l22̄

l22̄!

(
k 1̄2̄

+

)l1̄2̄

l1̄2̄!
|0〉 (4)

with n1 = l12 + l11̄ + l12̄ , n2 = l21̄ + l22̄ + l12 , n1̄ = l1̄2̄ + l11̄ + l21̄ , n2̄ = l12̄ + l22̄ + l1̄2̄

One Mandelstam constraint

k12
+ k 1̄2̄

+ − k12̄
+ k21̄

+ + k11̄
+ k22̄

+ = 0

Two U(1) Gauss Law constraints

n1(x) = n1̄(x + e1) & n2(x) = n2̄(x + e2)
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Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Motivation

In two spatial dimension, at each site there is exactly three
physical degrees of freedom.
In terms of linking variables or fusion variables, identifying
these three quantum numbers to characterize a loop state
is not straightforward.
Non-linear Constraints: difficult to analyze
An observation: dynamics on a square plaquette is
identical to the dynamics on hexagonal plaquette with only
linear constraints (IR ’18)
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Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Example: point splitting in 2D

Site ‘x ’ on a square lattice is virtually split into two sites
‘xe & xo ’ connected by a third virtual direction 3− 3̄

x
11̄

2

2̄

xo

xe
1

1̄

2

2̄

3

3̄
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Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

The virtual Hexagonal Lattice

Abelian Gauss law

ni(x) = nī (x + ei)
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Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Prepotential Formulation

Local Loop Operators

L̂++
ij ≡ â†α(i)ˆ̃a†α(j) , L̂+−

ij ≡ â†α(i)âα(j) (5)

Above, ˆ̃a†α ≡ εαβâ†β, ˆ̃aα ≡ εαβâβ, and i , j are direction indices
with i 6= j .
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Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Local loop state:

|l12, l23, l31〉 ≡
(L̂++

12 )l12(L̂++
23 )l23(L̂++

31 )l31

(l12 + l23 + l31)! l12! l23! l31!
|0〉x , (6)
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Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Action of local loop operators

L̂++
ij |lij〉 =

√
(lij + 1)(l12 + l23 + l31 + 2)|lij + 1〉, (7)

L̂−−ij |lij〉 =
√

lij(l12 + l23 + l31 + 1)|lij − 1〉, (8)

L̂+−
ij |lij〉 = −

√
(lik + 1)ljk |ljk − 1, lik + 1〉. (9)
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Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Pictorial representation of loops

Local loops on hexagonal lattice

Action on loop states
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Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Occupation number basis

At each site x :

n1 = l12 + l31 , n2 = l12 + l23 , n3 = l23 + l31 (10)

or equivalently, l12 =
1
2

(n1 + n2 − n3) ,

l23 =
1
2

(n2 + n3 − n1) , (11)

l31 =
1
2

(n1 + n3 − n2)

Abelian Gauss law

ni(x) = nī (x + ei)
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Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Counting degrees of freedom

For x on square lattice:
6 linking numbers − 2 Abelian Gauss law along two
directions − 1 Mandelstam constraint⇒ three physical
degrees of freedom.
For hexagonal lattice, two sites x1 & x2 corresponds to
actual site x on the square lattice and together should have
only three degrees of freedom.
2× 3 linking numbers − 3 Abelian Gauss law⇒ 3
physical degrees of freedom
No Mandelstam Constraint!
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Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

In any dimensions

For arbitrary dimension d , split each lattice site into S three
point vertices.
Total 3S number of loop states per original lattice site.
d Abelian Gauss law per lattice site.
S virtual sites has introduced S − 1 number of virtual links
in the lattice, each containing one Abelian Gauss law
constraint.
The number of independent loop degrees of freedom per
original lattice site counts to

3S − d − S + 1 ≡ 3(d − 1)

⇒ S = 2(d − 1)

where, 3(d − 1) is the physical degrees of freedom per
lattice site.
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Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

In 2D, point splitting results in a hexagonal lattice.
Prepotential formulation.
On this hexagonal lattice, physical lattice directions are
along 1 and 2, and only the electric fields along these two
directions contribute to ĤE .
However, in ĤB, the elementary loops are indeed
hexagonal plaquettes.
The matter field, originally at sites x of the square lattice,
now lives on sites xm, which is at the middle of virtual link
along 3.
We treat the sites x ′, x ′′ on the same footing as in pure
gauge theory and xm to be a site of 1D lattice with matter.
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Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Inclusion of Matter in 2d
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Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

3d lattice with matter

Matter as in 1D + pure gluonic vertices
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Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Matter couples to gauge fields in the same way in all
spatial dimention as in 1D

3

(3) follow. As required, Û is an SU(2) operator-matrix
on the AGL Hilbert space:

⇧̂AÛ †Û⇧̂A = ⇧̂AÛ Û†⇧̂A (11)

=

✓
⇧̂A 0

0 ⇧̂A

◆
, (12)

⇧̂A det(Û)⇧̂A = ⇧̂A

⇣
Û00Û11 � Û01Û10

⌘
⇧̂A (13)

= ⇧̂A (14)

Moreover, using (8) one can show that

[Û↵� , Û��] = [Û↵� , Û
†
��] = 0 . (15)

In terms of prepotentials, the link operator has been
broken into a left part ÛL and a right part ÛR, denoting
the SU(2) group to be localized at each end. In (2), the
staggered fermions, which are SU(2) doublets, also live
on lattice sites. Thus, the prepotential operators and the
matter fields can all be uniquely associated with sites and
they transform in the same way; the essential di↵erence
between matter and prepotentials is their statistics. This
feature enables one to easily construct all local SU(2)
invariants by combining both prepotentials and matter.
The invariants constructed only of the bosonic doublets
are named as local loop operators and the same con-
structed combining matter with prepotentials are named
as local string operators. These local loop string oper-
ators acting on the strong-coupling vacuum characterize
a basis of all possible SU(2)-invariant excitations at a
site. In the later parts of this work we elaborate the con-
struction of this basis and its completeness. Note that
these local loop-string states across neighbouring sites are
joined together with flux flowing along the links following
the Abelian Gauss law (6), which is necessary to yield
the original and non-local gauge invariant variables of
Kogut-Susskind formulation—namely, the Wilson loops
and strings.

In the next section we present the local loop and string
states in the simplest case of 1d with fundamental matter.
All the essential features of coupling to matter appear in
1d.

IV. LOOP-STRING FORMULATION: ONE
DIMENSION

The Kogut-Susskind Hamiltonian (2) on a 1d spatial
lattice reduces to

Ĥ = ĤE + ĤM (16)

Each site x of this lattice is connected to one incom-
ing link along direction 1̄ and one outgoing link along
direction, say, 1 as in Fig. 2. Within the prepoten-

tial framework, we attach prepotentials â†
↵ (b̂†

↵) to the
link along the direction 1 (1̄). A staggered fermion field

 ̂† = ( ̂†
1,  ̂

†
2) is defined on site x. The local bilinears de-

· · · · · · 
i o

 
i o

 
i o

FIG. 2. 1d lattice with matter, denoted by circles at the sites.


b†
1

b†
2

�

i x o


 †

1

 †
2

� 
a†
1

a†
2

�

FIG. 3. A site x on a 1d lattice is associated with a fermionic
doublet { †

1, 
†
2}. Bosonic doublets {a†

1, a
†
2} &{b†

1, b
†
2} are as-

sociated with links along 1 & 1̄-direction respectively origi-
nating and ending at site x.

fined in Fig. 3 can couple in various ways to form SU(2)
singlets. Hence, SU(2) invariance can be built into the
theory by passing from the Schwinger boson doublets to
only their SU(2)-invariant combinations. The theory will
be expressed in terms of the dynamics generated by all
such operators.

A. SU(2)-invariant Operators: Loops, Strings and
Baryons

The complete set of SU(2) invariants at site x are listed
below.

• Hermitian number operators:

Na = a†
↵a↵ (17a)

Nb = b†
↵b↵ (17b)

N =  †
↵ ↵ (17c)

• Pure gauge operators: Loops

L++ = ✏↵�b
†
↵a†

� (18a)

L�� = ✏↵�b↵a� = (L++)† (18b)

L+� = b†
↵a↵ (18c)

L�+ = b↵a†
↵ = (L+�)† (18d)

• Gauge-Matter operators: Incoming Strings

S++
in = ✏↵�b

†
↵ 

†
� (19a)

S��
in = ✏↵�b↵ � = (S++

in )† (19b)

S+�
in = b†

↵ ↵ (19c)

S�+
in = b↵ 

†
↵ = (S+�

in )† (19d)

• Gauge-Matter operators: Outgoing Strings

S++
out = ✏↵� 

†
↵a†

� (20a)

S��
out = ✏↵� ↵a� = (S++

out )† (20b)

S+�
out =  ↵a†

↵ (20c)

S�+
out =  †

↵a↵ = (S�+
out )† (20d)

Hamiltonian

H = HE + HM

Gauss Law

Ĝa(x) = Êa
i (x) + Êa

o(x)− 1
2 ψ̂
†
α(x)σa

αβψ̂β(x), (12)
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Prepotentials in 1D:

3

(3) follow. As required, Û is an SU(2) operator-matrix
on the AGL Hilbert space:

⇧̂AÛ †Û⇧̂A = ⇧̂AÛ Û†⇧̂A (11)

=

✓
⇧̂A 0

0 ⇧̂A

◆
, (12)

⇧̂A det(Û)⇧̂A = ⇧̂A

⇣
Û00Û11 � Û01Û10

⌘
⇧̂A (13)

= ⇧̂A (14)

Moreover, using (8) one can show that

[Û↵� , Û��] = [Û↵� , Û
†
��] = 0 . (15)

In terms of prepotentials, the link operator has been
broken into a left part ÛL and a right part ÛR, denoting
the SU(2) group to be localized at each end. In (2), the
staggered fermions, which are SU(2) doublets, also live
on lattice sites. Thus, the prepotential operators and the
matter fields can all be uniquely associated with sites and
they transform in the same way; the essential di↵erence
between matter and prepotentials is their statistics. This
feature enables one to easily construct all local SU(2)
invariants by combining both prepotentials and matter.
The invariants constructed only of the bosonic doublets
are named as local loop operators and the same con-
structed combining matter with prepotentials are named
as local string operators. These local loop string oper-
ators acting on the strong-coupling vacuum characterize
a basis of all possible SU(2)-invariant excitations at a
site. In the later parts of this work we elaborate the con-
struction of this basis and its completeness. Note that
these local loop-string states across neighbouring sites are
joined together with flux flowing along the links following
the Abelian Gauss law (6), which is necessary to yield
the original and non-local gauge invariant variables of
Kogut-Susskind formulation—namely, the Wilson loops
and strings.

In the next section we present the local loop and string
states in the simplest case of 1d with fundamental matter.
All the essential features of coupling to matter appear in
1d.

IV. LOOP-STRING FORMULATION: ONE
DIMENSION

The Kogut-Susskind Hamiltonian (2) on a 1d spatial
lattice reduces to

Ĥ = ĤE + ĤM (16)

Each site x of this lattice is connected to one incom-
ing link along direction 1̄ and one outgoing link along
direction, say, 1 as in Fig. 2. Within the prepoten-

tial framework, we attach prepotentials â†
↵ (b̂†

↵) to the
link along the direction 1 (1̄). A staggered fermion field

 ̂† = ( ̂†
1,  ̂

†
2) is defined on site x. The local bilinears de-

· · · · · · 
i o

 
i o

 
i o

FIG. 2. 1d lattice with matter, denoted by circles at the sites.


b†
1

b†
2

�

i x o


 †

1

 †
2

� 
a†
1

a†
2

�

FIG. 3. A site x on a 1d lattice is associated with a fermionic
doublet { †

1, 
†
2}. Bosonic doublets {a†

1, a
†
2} &{b†

1, b
†
2} are as-

sociated with links along 1 & 1̄-direction respectively origi-
nating and ending at site x.

fined in Fig. 3 can couple in various ways to form SU(2)
singlets. Hence, SU(2) invariance can be built into the
theory by passing from the Schwinger boson doublets to
only their SU(2)-invariant combinations. The theory will
be expressed in terms of the dynamics generated by all
such operators.

A. SU(2)-invariant Operators: Loops, Strings and
Baryons

The complete set of SU(2) invariants at site x are listed
below.

• Hermitian number operators:

Na = a†
↵a↵ (17a)

Nb = b†
↵b↵ (17b)

N =  †
↵ ↵ (17c)

• Pure gauge operators: Loops

L++ = ✏↵�b
†
↵a†

� (18a)

L�� = ✏↵�b↵a� = (L++)† (18b)

L+� = b†
↵a↵ (18c)

L�+ = b↵a†
↵ = (L+�)† (18d)

• Gauge-Matter operators: Incoming Strings

S++
in = ✏↵�b

†
↵ 

†
� (19a)

S��
in = ✏↵�b↵ � = (S++

in )† (19b)

S+�
in = b†

↵ ↵ (19c)

S�+
in = b↵ 

†
↵ = (S+�

in )† (19d)

• Gauge-Matter operators: Outgoing Strings

S++
out = ✏↵� 

†
↵a†

� (20a)

S��
out = ✏↵� ↵a� = (S++

out )† (20b)

S+�
out =  ↵a†

↵ (20c)

S�+
out =  †

↵a↵ = (S�+
out )† (20d)

â†α (b̂†α) is attached to the link along the direction 1 (1̄) and a
staggered fermion field ψ̂† = (ψ̂†1, ψ̂

†
2) lives on the sites x .

Ei ,Eo and Uαβ can be rewritten using prepotentials.

Ref: Loop, String, and Hadron Dynamics in SU(2)
Hamiltonian Lattice Gauge Theories, IR, Jesse Strylker,
arXiv: 1912:06133.
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SU(2)-invariant Operators: Loops, Strings and
hadrons

Hermitian number operators:

Na = a†αaα
Nb = b†αbα
Nψ = ψ†αψα
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SU(2)-invariant Operators: Loops, Strings and
hadrons

Pure gauge operators: Loops

L++ = εαβb†αa†β
L−− = εαβbαaβ = (L++)†

L+− = b†αaα
L−+ = bαa†α = (L+−)†
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SU(2)-invariant Operators: Loops, Strings and
hadrons

Gauge-Matter operators: Incoming Strings

S++
in = εαβb†αψ

†
β

S−−in = εαβbαψβ = (S++
in )†

S+−
in = b†αψα
S−+

in = bαψ†α = (S+−
in )†
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SU(2)-invariant Operators: Loops, Strings and
hadrons

Gauge-Matter operators: Outgoing Strings

S++
out = εαβψ

†
αa†β

S−−out = εαβψαaβ = (S++
out )†

S+−
out = ψαa†α
S−+

out = ψ†αaα = (S−+
out )†
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SU(2)-invariant Operators: Loops, Strings and
hadrons

Pure matter operators: hadrons

B++ =
1
2!
εαβψ

†
αψ
†
β

B−− =
1
2!
εαβψαψβ = (B++)†
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This set of invariants is indeed a complete set; the bosonic
operator algebra closes

5

[·, Nb] [·, Na] [·, N ] [·, L��] [·, L�+] [·, L+�] [·, L++] [·, B++] [·, B��]

[Nb, ·] 0 0 0 �L�� �L�+ +L+� +L++ 0 0
[Na, ·] 0 0 0 �L�� +L�+ �L+� +L++ 0 0
[N , ·] 0 0 0 0 0 0 0 2B++ �2B��

[L++, ·] �L++ �L++ 0 �Na � Nb � 2 0 0 0 0 0
[L+�, ·] �L+� +L+� 0 0 Nb � Na 0 0 0 0
[L�+, ·] +L�+ �L�+ 0 0 0 Na � Nb 0 0 0
[L��, ·] +L�� +L�� 0 0 0 0 Na + Nb + 2 0 0

[S++
in , ·] �S++

in 0 �S++
in +S+�

out �S++
out 0 0 0 +S+�

in

[S+�
in , ·] �S+�

in 0 +S+�
in �S��

out �S�+
out 0 0 +S++

in 0
[S�+

in , ·] +S�+
in 0 �S�+

in 0 0 +S+�
out +S++

out 0 �S��
in

[S��
in , ·] +S��

in 0 +S��
in 0 0 +S��

out �S�+
out �S�+

in 0

[S++
out , ·] 0 �S++

out �S++
out �S�+

in 0 �S++
in 0 0 +S�+

out

[S�+
out , ·] 0 �S�+

out +S�+
out +S��

in 0 �S+�
in 0 +S++

out 0
[S+�

out , ·] 0 +S+�
out �S+�

out 0 +S�+
in 0 �S++

in 0 �S��
out

[S��
out , ·] 0 +S��

out +S��
out 0 +S��

in 0 +S+�
in �S+�

out 0

[B��, ·] 0 0 2B�� 0 0 0 0 1 � N 0
[B++, ·] 0 0 �2B++ 0 0 0 0 0 N � 1

TABLE I. Commutator algebra for the Loop-String operators: divided into many subtables which summarize the algebra of
operators at di↵erent sectors.

{·, S++
in } {·, S+�

in } {·, S�+
in } {·, S��

in } {·, S++
out } {·, S+�

out } {·, S�+
out } {·, S��

out }
{S++

in , ·} 0 0 2B++ 2 + Nb � N 0 0 �L++ L+�

{S+�
in , ·} 0 0 Nb + N 2B�� L++ L+� 0 0

{S�+
in , ·} 2B++ Nb + N 0 0 0 0 L�+ L��

{S��
in , ·} 2 + Nb � N 2B�� 0 0 L�+ �L�� 0 0

{S++
out , ·} 0 L++ 0 L�+ 0 2B++ 0 2 + Na � N 

{S+�
out , ·} 0 L+� 0 �L�� 2B++ 0 Na + N 0

{S�+
out , ·} �L++ 0 L�+ 0 0 Na + N 0 2B��

{S��
out , ·} L+� 0 L�� 0 2 + Na � N 0 2B�� 0

TABLE II. Anticommutator algebra for the incoming and outgoing String operators: subdivided into four sectors.

On the AGL subspace, we can equivalently use ĤE =P
x,i(g

2/2)Ê2
L(x, i) =

P
x,i(g

2/2)Ê2
R(x, i).

The hopping terms from HI can be translated by look-
ing at each end of a link separately. The link operator
was given in terms of Schwinger bosons by

Û(x, i) = ÛL(x)ÛR(x + ei) ,

ÛL(x) =
1q

N̂L(x) + 1

✓
â†
2(x) â1(x)

�â†
1(x) â2(x)

◆

ÛR(x) =

✓
b̂†
1(x) b̂†

2(x)

�b̂2(x) b̂1(x)

◆
1q

N̂R(x) + 1

From this it follows that

 ̂†(x)ÛL(x) =
1p

Na(x) + 1

�
S++

out (x), S+�
out (x)

�
(26)

ÛR(x) ̂(x) =

✓
S+�

in (x)
�S��

in (x)

◆
1p

Nb(x) + 1
(27)

Thus, the translation of a hopping term into the Loop-

String framework is

 ̂†(x)Û(x, i) ̂(x + ei) $
1p

Na(x) + 1

X

�=±
�S+,�

out (x)S�,�
in (x + ei)⇥

1p
Nb(x + ei) + 1

(28)

A staggered mass term is trivially given by

(�)x ̂†(x) ·  ̂(x) = (�)xN (x). (29)

That is all there is to HM .

C. Dynamics on an orthonormal basis

Our next objective will be to describe dynamics with
respect to an orthonormal basis. The Hamiltonian has
been given in terms of loop and string operators, but in
an orthonormal basis these operators change state nor-
malization in addition to state quantum numbers. We
will set up a basis and factorize these two behaviors be-
fore describing dynamics.
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The incoming and outgoing string operators are Fermionic (due
to single fermionic content) and satisfy the following
anticommutation relations

5

[·, Nb] [·, Na] [·, N ] [·, L��] [·, L�+] [·, L+�] [·, L++] [·, B++] [·, B��]

[Nb, ·] 0 0 0 �L�� �L�+ +L+� +L++ 0 0
[Na, ·] 0 0 0 �L�� +L�+ �L+� +L++ 0 0
[N , ·] 0 0 0 0 0 0 0 2B++ �2B��

[L++, ·] �L++ �L++ 0 �Na � Nb � 2 0 0 0 0 0
[L+�, ·] �L+� +L+� 0 0 Nb � Na 0 0 0 0
[L�+, ·] +L�+ �L�+ 0 0 0 Na � Nb 0 0 0
[L��, ·] +L�� +L�� 0 0 0 0 Na + Nb + 2 0 0

[S++
in , ·] �S++

in 0 �S++
in +S+�

out �S++
out 0 0 0 +S+�

in

[S+�
in , ·] �S+�

in 0 +S+�
in �S��

out �S�+
out 0 0 +S++

in 0
[S�+

in , ·] +S�+
in 0 �S�+

in 0 0 +S+�
out +S++

out 0 �S��
in

[S��
in , ·] +S��

in 0 +S��
in 0 0 +S��

out �S�+
out �S�+

in 0

[S++
out , ·] 0 �S++

out �S++
out �S�+

in 0 �S++
in 0 0 +S�+

out

[S�+
out , ·] 0 �S�+

out +S�+
out +S��

in 0 �S+�
in 0 +S++

out 0
[S+�

out , ·] 0 +S+�
out �S+�

out 0 +S�+
in 0 �S++

in 0 �S��
out

[S��
out , ·] 0 +S��

out +S��
out 0 +S��

in 0 +S+�
in �S+�

out 0

[B��, ·] 0 0 2B�� 0 0 0 0 1 � N 0
[B++, ·] 0 0 �2B++ 0 0 0 0 0 N � 1

TABLE I. Commutator algebra for the Loop-String operators: divided into many subtables which summarize the algebra of
operators at di↵erent sectors.

{·, S++
in } {·, S+�

in } {·, S�+
in } {·, S��

in } {·, S++
out } {·, S+�

out } {·, S�+
out } {·, S��

out }
{S++

in , ·} 0 0 2B++ 2 + Nb � N 0 0 �L++ L+�

{S+�
in , ·} 0 0 Nb + N 2B�� L++ L+� 0 0

{S�+
in , ·} 2B++ Nb + N 0 0 0 0 L�+ L��

{S��
in , ·} 2 + Nb � N 2B�� 0 0 L�+ �L�� 0 0

{S++
out , ·} 0 L++ 0 L�+ 0 2B++ 0 2 + Na � N 

{S+�
out , ·} 0 L+� 0 �L�� 2B++ 0 Na + N 0

{S�+
out , ·} �L++ 0 L�+ 0 0 Na + N 0 2B��

{S��
out , ·} L+� 0 L�� 0 2 + Na � N 0 2B�� 0

TABLE II. Anticommutator algebra for the incoming and outgoing String operators: subdivided into four sectors.

On the AGL subspace, we can equivalently use ĤE =P
x,i(g

2/2)Ê2
L(x, i) =

P
x,i(g

2/2)Ê2
R(x, i).

The hopping terms from HI can be translated by look-
ing at each end of a link separately. The link operator
was given in terms of Schwinger bosons by

Û(x, i) = ÛL(x)ÛR(x + ei) ,

ÛL(x) =
1q

N̂L(x) + 1

✓
â†
2(x) â1(x)

�â†
1(x) â2(x)

◆

ÛR(x) =

✓
b̂†
1(x) b̂†

2(x)

�b̂2(x) b̂1(x)

◆
1q

N̂R(x) + 1

From this it follows that

 ̂†(x)ÛL(x) =
1p

Na(x) + 1

�
S++

out (x), S+�
out (x)

�
(26)

ÛR(x) ̂(x) =

✓
S+�

in (x)
�S��

in (x)

◆
1p

Nb(x) + 1
(27)

Thus, the translation of a hopping term into the Loop-

String framework is

 ̂†(x)Û(x, i) ̂(x + ei) $
1p

Na(x) + 1

X

�=±
�S+,�

out (x)S�,�
in (x + ei)⇥

1p
Nb(x + ei) + 1

(28)

A staggered mass term is trivially given by

(�)x ̂†(x) ·  ̂(x) = (�)xN (x). (29)

That is all there is to HM .

C. Dynamics on an orthonormal basis

Our next objective will be to describe dynamics with
respect to an orthonormal basis. The Hamiltonian has
been given in terms of loop and string operators, but in
an orthonormal basis these operators change state nor-
malization in addition to state quantum numbers. We
will set up a basis and factorize these two behaviors be-
fore describing dynamics.

Indrakshi Raychowdhury Towards Quantum Simulation of Non-Abelian Lattice Gauge Theories



Prepotential Framework: an overview
Variant Formulation: Simple constraint structure

Practical Implementation

Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Loop-String Basis States:

|nl ,ni ,no〉 =
||nl ,ni ,no〉√

nl ! (nl + 1 + (ni ⊕ no))!
,

where ⊕ denotes addition modulo two

||nl ,ni = 0,no = 0〉 ≡ (L++)nl |0〉
||nl ,ni = 0,no = 1〉 ≡ (L++)nlS++

out |0〉
||nl ,ni = 1,no = 0〉 ≡ (L++)nlS++

in |0〉
||nl ,ni = 1,no = 1〉 ≡ (L++)nlB++ |0〉
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||nl ,ni = 1,no = 1〉 ≡ (L++)nlB++ |0〉 , HOW?

6

1. On-site Hilbert space construction

Until this point our construction has been built on un-
derlying SHO degrees of freedom, but we did not require
choosing a basis. Now we use these tools to construct
a basis in which we can explicitly express the action of
the Hamiltonian. We start by defining “on-site” bases
and afterward stitch these together to construct lattice
states.

The on-site Hilbert space has three degrees of freedom
corresponding to the original occupation numbers nb, nb,
and n . By themselves, these numbers are not indepen-
dently SU(2)-invariant; we will construct an on-site basis
|nl, ni, noi with the loop quantum number nl and quark
numbers ni, no describing strictly SU(2)-invariant exci-
tations.

A basis of unnormalized kets, denoted by a double-bar
|| i, can be defined as follows:

||nl, ni = 0, no = 0i ⌘ (L++)nl |0i (30a)

||nl, ni = 0, no = 1i ⌘ (L++)nlS++
out |0i (30b)

||nl, ni = 1, no = 0i ⌘ (L++)nlS++
in |0i (30c)

||nl, ni = 1, no = 1i ⌘ (L++)nlB++ |0i (30d)

where

ni = 0, 1 no = 0, 1 nl = 0, 1, 2, · · · , (31)

|0i is annihilated by any operator carrying at least one
minus sign, and h0|0i = 1. These states uniquely enumer-
ate all SU(2)-invariant excitations that can be hosted by
a site. 1 2

The norms of ||nl, ni, noi can be derived by repeated
use of the operator algebra. These types of calculations
are described in Appendix A. The result is that a nor-
malized basis is given by:

|nl, ni, noi =
||nl, ni, noip

nl! (nl + 1 + (ni � no))!
, (37)

1 Though its utility is limited, it is straightforward to give one
unifying expression valid for all states:

||nl, ni, noi = (L++)nl [⇧00 + ⇧01 + ⇧10

�(1/2)L��⇤
(S++

in )ni (S++
out )no |0i ,

(32)

where

⇧00 = B��B++ , (33)

⇧01 = L�+L+� , (34)

⇧10 = L+�L�+ , (35)

and

(�1/2)L��(S++
in )ni (S++

out )no |0i = �ni,1�no,1B++ |0i . (36)

2 We point out that the “baryonic” states ||nl, 1, 1i are defined
on a slightly di↵erent footing. It may have seemed more natural
to introduce the states ||nl, 1, 1i as (L++)nlS++

in S++
out |0i. The

problem with this follows from the fact that both string operators
acting on the vacuum is identical to passing pure gauge flux

where � denotes addition modulo two.
To describe dynamics, the SU(2)-invariant Loop-String

quantum numbers will have to be related to the non-
SU(2)-invariant quantum numbers. This relationship can
be inferred from

N |nl, ni, noi = (ni + no) |nl, ni, noi , (38a)

Na |nl, ni, noi = (nl + (1 � ni)no) |nl, ni, noi , (38b)

Nb |nl, ni, noi = (nl + (1 � no)ni) |nl, ni, noi . (38c)

These imply that the following act as number operators
in our basis:

Ni ⌘
1

2
(N + Nb � Na) (39a)

No ⌘ 1

2
(N + Na � Nb) (39b)

Nl ⌘
1

2


Na + Nb � N +

1

2

�
N 2
 � (Na � Nb)

2
��

(39c)

Using these, (38) are promoted to operator identities to
be used in the Hamiltonian:

N = Ni + No , (40a)

Na = Nl + (1 � Ni)No , (40b)

Nb = Nl + (1 � No)Ni . (40c)

2. Operator factorization

Continuing to consider just one site, Loop-String op-
erators change quantum numbers as well as state nor-
malization. Now we will factor the operators in order to
isolate each action.

Pertaining to the loop quantum number, we introduce
“normalized” ladder operators, ⇤±:3

⇤̂+ ⌘ L++ 1p
Nl(Nl + 1) + (Ni � No) + 2

(41a)

⇤̂� ⌘ L�� 1p
Nl(Nl � 1) + (Ni � No) + 2

(41b)

through a baryon:

S++
in S++

out |0i = S++
in [S�+

out , B++] |0i Table I

= S++
in S�+

out B++ |0i
= {S++

in , S�+
out }B++ |0i

= �L++B++ |0i Table II

Consequently, we would have to generalize nl to start at �1
for the 11-type states only and understand (L++)�1 to mean
(L++)† = L��. Instead, we choose to use one set of uncon-
strained quantum numbers to capture all states uniquely.

3 We refer to an operator O as a “normalized operator” if all non-
vanishing eigenvalues of O†O are unity.

Indrakshi Raychowdhury Towards Quantum Simulation of Non-Abelian Lattice Gauge Theories



Prepotential Framework: an overview
Variant Formulation: Simple constraint structure

Practical Implementation

Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Occupation number basis of prepotentials and matter
to loop-string basis

Ni ≡
1
2

(Nψ +Nb −Na)

No ≡
1
2

(Nψ +Na −Nb)

Nl ≡
1
2

[
Na +Nb −Nψ +

1
2

(
N 2
ψ − (Na −Nb)2

)]

or equivalently,

Nψ = Ni +No ,

Na = Nl + (1−Ni)No ,

Nb = Nl + (1−No)Ni .
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The Hamiltonian

ĤE is
∑

x ,i

(g2/2)Ê2
L (x , i) (or

∑

x ,i

(g2/2)Ê2
R(x , i)), which in terms

of loop-string quantum number reads as

Êα
L (x)Êα

L (x) =

[Nl(x) + (1−Ni(x))No(x)

2

]
×

[Nl(x) + (1−Ni(x))No(x)

2
+ 1
]

Êα
R (x)Êα

R (x) =

[Nl(x) + (1−No(x))Ni(x)

2

]
×

[Nl(x) + (1−No(x))Ni(x)

2
+ 1
]
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The Hamiltonian

ĤM = Hm + HI

Hm = m
∑

x

(−)x (Ni(x) +No(x))

and

HI = ψ̂†(x)Û(x , i)ψ̂(x + ei) ↔
1√

Na(x) + 1

∑

σ=±
σS+,σ

out (x)Sσ,−in (x + ei)
1√

Nb(x + ei) + 1
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Gauss Law at site x : Equivalent to U(1) theory

na(x)− nb(x) = no(x)− ni(x)
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operator action (a) action (b)

–

–

–

–
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Loop-String operator factorizations

L++ = ⇤+
p

Nl(Nl + 1) + (Ni � No) + 2 (46a)

L�� = ⇤�pNl(Nl � 1) + (Ni � No) + 2 (46b)

L+� = �†
i �o (46c)

L�+ = ��i �
†
o (46d)

S++
in = �†

i (⇤+)No
p

Nl + 2 � No (46e)

S��
in = �i (⇤�)No

p
Nl + 2(1 � No) (46f)

S++
out = �†

o (⇤+)Ni
p

Nl + 2 � Ni (46g)

S��
out = �o (⇤�)Ni

p
Nl + 2(1 � Ni) (46h)

S�+
in = ��†

o (⇤�)1�Ni
p

Nl + 2Ni (46i)

S+�
in = ��o (⇤+)1�Ni

p
Nl + 1 + Ni (46j)

S+�
out = �†

i (⇤�)1�No
p

Nl + 2No (46k)

S�+
out = �i (⇤+)1�No

p
Nl + 1 + No (46l)

B++ = �†
i�

†
o (46m)

B�� = ��i�o (46n)

TABLE III. Factorization of all SU(2) invariant operator into
canonically-normalized fermionic modes times a loop ladder
operator times a function of number operators. The operator
exponentials are defined in (45).

The purpose of ⇤± is that their non-vanishing matrix
elements in our orthonormal basis are all unity:

hn0
l, n

0
i, n

0
o| ⇤̂± |nl, ni, noi = �n0

l,nl±1�n0
i,ni

�n0
o,no

(42)

By construction, we can trivially factorize L++ and L��

by rearranging (41a) and (41b).
As for the quark quantum numbers, these are a↵ected

by the string operators and by the mixed-type loop oper-
ators. We have seen that the string operators obey Fermi-
like anticommutation relations, but they are not canon-
ically normalized. This motivates introducing SU(2)-
invariant fermionic modes �i,�o to describe them, with

{�i,�o} = {�†
i ,�

†
o} = 0, (43)

{�i,�
†
i} = {�o,�

†
o} = 1 (44)

Because string operators can a↵ect loop numbers, it will
prove helpful to also introduce the following shorthand
operator exponentials:

(⇤±)Nq ⌘ (1 � Nq) + ⇤±Nq (q = i, o) (45a)

(⇤±)1�Nq ⌘ ⇤±(1 � Nq) + Nq (q = i, o) (45b)

Equipped with these, all loop and string operators can
be factorized as shown in Table III. The justification for
these operator factorizations is that they realize the exact

same operator algebra. The SU(2)-invariant quark modes
�i and �o will also be helpful for characterizing global
basis states.

3. Global Hilbert space construction in one dimension

In the loop-string framework, the lattice “vacant” state
|0i is characterized as that state on which

Ni(x) |0i = No(x) |0i = Nl(x) |0i = 0 for all x . (47)

It is annihilated by any L±±, S±±, or B±± carrying at
least one minus sign:

L+�(x) |0i = L�+(x) |0i = L��(x) |0i = 0 (48)

S+�
in (x) |0i = S�+

in (x) |0i = S��
in (x) |0i = 0 (49)

S+�
out (x) |0i = S�+

out (x) |0i = S��
out (x) |0i = 0 (50)

B��(x) |0i = 0 (51)

The staggered strong-coupling vacuum |⌦i or simply
“vacuum” can then be defined as one with vanishing elec-
tric fields and full fermion orbitals on the odd sites:

Nl |⌦i = 0

(Ni + No) |⌦i = 0 for x = 0, 2, 4, · · ·
(Ni + No) |⌦i = 2 |⌦i for x = 1, 3, 5, · · ·

S±,�
in (x) |⌦i = S�,±

out (x) |⌦i = 0 for x = 0, 2, 4, · · ·
S±,+

in (x) |⌦i = S+,±
out (x) |⌦i = 0 for x = 1, 3, 5, · · ·

For lattice basis states, matter particles are created
starting at x = Lx � 1 down to x = 0.

|nl(0), ni(0), no(0); nl(1), ni(1), no(1); · · ·
· · · ; nl(Lx � 1), ni(Lx � 1), no(Lx � 1)i (52)

For example, the (normalized) staggered strong-coupling
vacuum of a four site lattice is given by

|⌦i = | 0, 0, 0; 0, 1, 1; 0, 0, 0; 0, 1, 1i
= B++(1)B++(3) |0i

(53)

The ordering is most important for states with on-site
fermionic excitations. For example, a basis state describ-
ing a meson string between sites x = 0 and x = 1 is given
by

|mesoni = |0, 0, 1; 0, 0, 1; 0, 0, 0; 0, 1, 1i

=
1

2
S++

out (0)S+�
in (1) |⌦i ,

(54)

as opposed to the opposite ordering 1
2S+�

in (1)S++
in (0) |⌦i.

Using the physical quark modes �i,�o, we can more
succinctly characterize lattice basis states with the fol-
lowing rule: Physical quarks are created from starting
from site x = Lx � 1, working down to site x = 0, and

with �†
o(x) always acting before �†

i (x).

Indrakshi Raychowdhury Towards Quantum Simulation of Non-Abelian Lattice Gauge Theories



Prepotential Framework: an overview
Variant Formulation: Simple constraint structure

Practical Implementation

Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Global Loop-string Hilbert space on 1D lattice:
local loop-string Hilbert space + Abelian Gauss Law

Abelian Gauss law

nl(x) + no(x)[1− ni(x)] = nl(x + 1) + ni(x + 1)[1− no(x + 1)]

or,
nb(x) = na(x + 1)
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Wigner-Jordan transform in one dimension

We have expressed physical matter degrees of freedom in
terms of the excitations of fermionic modes χi(x), χo(x) for
x = 0, . . . ,Lx − 1.

These couple to each other through the hopping terms,
where it is apparent that χi ’s and χo ’s are decoupled.
Let us relabel the fermionic modes using Ψk for
k = 0, . . . ,2Lx − 1, identifying

χi → k = 0,1, . . . ,Lx − 1 χo → Lx ,Lx + 1, . . . ,2Lx − 1

Assuming open boundary conditions, all fermionic
couplings are nearest-neighbor.
All couplings can be of the form σ±k σ

∓
k+1:

χ†i (x)χi(x + 1)→ −σ−x σ+
x+1 , χ†o(x)χo(x + 1) → −σ−Lx +xσ

+
Lx +x+1

Indrakshi Raychowdhury Towards Quantum Simulation of Non-Abelian Lattice Gauge Theories



Prepotential Framework: an overview
Variant Formulation: Simple constraint structure

Practical Implementation

Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Wigner-Jordan transform in one dimension

We have expressed physical matter degrees of freedom in
terms of the excitations of fermionic modes χi(x), χo(x) for
x = 0, . . . ,Lx − 1.
These couple to each other through the hopping terms,
where it is apparent that χi ’s and χo ’s are decoupled.

Let us relabel the fermionic modes using Ψk for
k = 0, . . . ,2Lx − 1, identifying

χi → k = 0,1, . . . ,Lx − 1 χo → Lx ,Lx + 1, . . . ,2Lx − 1

Assuming open boundary conditions, all fermionic
couplings are nearest-neighbor.
All couplings can be of the form σ±k σ

∓
k+1:

χ†i (x)χi(x + 1)→ −σ−x σ+
x+1 , χ†o(x)χo(x + 1) → −σ−Lx +xσ

+
Lx +x+1

Indrakshi Raychowdhury Towards Quantum Simulation of Non-Abelian Lattice Gauge Theories



Prepotential Framework: an overview
Variant Formulation: Simple constraint structure

Practical Implementation

Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Wigner-Jordan transform in one dimension

We have expressed physical matter degrees of freedom in
terms of the excitations of fermionic modes χi(x), χo(x) for
x = 0, . . . ,Lx − 1.
These couple to each other through the hopping terms,
where it is apparent that χi ’s and χo ’s are decoupled.
Let us relabel the fermionic modes using Ψk for
k = 0, . . . ,2Lx − 1, identifying

χi → k = 0,1, . . . ,Lx − 1 χo → Lx ,Lx + 1, . . . ,2Lx − 1

Assuming open boundary conditions, all fermionic
couplings are nearest-neighbor.
All couplings can be of the form σ±k σ

∓
k+1:

χ†i (x)χi(x + 1)→ −σ−x σ+
x+1 , χ†o(x)χo(x + 1) → −σ−Lx +xσ

+
Lx +x+1

Indrakshi Raychowdhury Towards Quantum Simulation of Non-Abelian Lattice Gauge Theories



Prepotential Framework: an overview
Variant Formulation: Simple constraint structure

Practical Implementation

Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Wigner-Jordan transform in one dimension

We have expressed physical matter degrees of freedom in
terms of the excitations of fermionic modes χi(x), χo(x) for
x = 0, . . . ,Lx − 1.
These couple to each other through the hopping terms,
where it is apparent that χi ’s and χo ’s are decoupled.
Let us relabel the fermionic modes using Ψk for
k = 0, . . . ,2Lx − 1, identifying

χi → k = 0,1, . . . ,Lx − 1 χo → Lx ,Lx + 1, . . . ,2Lx − 1

Assuming open boundary conditions, all fermionic
couplings are nearest-neighbor.

All couplings can be of the form σ±k σ
∓
k+1:

χ†i (x)χi(x + 1)→ −σ−x σ+
x+1 , χ†o(x)χo(x + 1) → −σ−Lx +xσ

+
Lx +x+1

Indrakshi Raychowdhury Towards Quantum Simulation of Non-Abelian Lattice Gauge Theories



Prepotential Framework: an overview
Variant Formulation: Simple constraint structure

Practical Implementation

Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Wigner-Jordan transform in one dimension

We have expressed physical matter degrees of freedom in
terms of the excitations of fermionic modes χi(x), χo(x) for
x = 0, . . . ,Lx − 1.
These couple to each other through the hopping terms,
where it is apparent that χi ’s and χo ’s are decoupled.
Let us relabel the fermionic modes using Ψk for
k = 0, . . . ,2Lx − 1, identifying

χi → k = 0,1, . . . ,Lx − 1 χo → Lx ,Lx + 1, . . . ,2Lx − 1

Assuming open boundary conditions, all fermionic
couplings are nearest-neighbor.
All couplings can be of the form σ±k σ

∓
k+1:

χ†i (x)χi(x + 1)→ −σ−x σ+
x+1 , χ†o(x)χo(x + 1) → −σ−Lx +xσ

+
Lx +x+1

Indrakshi Raychowdhury Towards Quantum Simulation of Non-Abelian Lattice Gauge Theories



Prepotential Framework: an overview
Variant Formulation: Simple constraint structure

Practical Implementation

Virtual Point Splitting Scheme
Prepotential coupled to matter
In arbitrary dimension

Inclusion of Matter in 2d

Matter as in 1D + pure gluonic vertices
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(i) The two sites x ′, x ′′ have only loop states |l12, l23, l31〉x ′/x ′′ ,
being treated identically as in pure gauge theory.
(ii) The third virtual site xm along the 3− 3̄ direction contains
both local loop and string states |l33̄, s3, s3̄〉, being structurally
identical to a site with matter in 1D.
(iii) The Abelian Gauss laws along the three directions of the
hexagonal lattice are

n1(x) = n1̄(x + e1), n2(x) = n2̄(x + e2) , (21)
n3(x) + s3̄ = n3̄(x + e3) + s3 , (22)
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3d lattice with matter

Matter as in 1D + pure gluonic vertices

The modified Abelian Gauss laws on the 3D lattice are

ni(x) = nī(x + ei) , (i = 1,2,3,4,6) (23)
n5(x) + s5̄ = n5̄(x + e5) + s5 . (24)
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Operator Factorization at pure Gluonic vertices

17

[·, L++
12 ] [·, L+�

12 ] [·, L�+
12 ] [·, L��

12 ] [·, L++
23 ] [·, L+�

23 ] [·, L�+
23 ] [·, L��

23 ] [·, L++
31 ] [·, L+�

31 ] [·, L�+
31 ] [·, L��

31 ]

[L++
12 , ·] 0

[L+�
12 , ·] 0 0

[L�+
12 , ·] 0 N2N1 0

[L��
12 , ·] N1 + N2 + 2 0 0 0

[L++
23 , ·] 0 L++

31 0 L+�
31 0

[L+�
23 , ·] 0 �L�+

31 0 L��
31 0 0

[L�+
23 , ·] �L++

31 0 L+�
31 0 0 N3N2 0

[L��
23 , ·] �L�+

31 0 �L��
31 0 N2 + N3 + 2 0 0 0

[L++
31 , ·] 0 0 L++

23 L�+
23 0 L++

12 0 L+�
12 0

[L+�
31 , ·] �L++

23 L�+
23 0 0 0 �L�+

12 0 L��
12 0 0

[L�+
31 , ·] 0 0 �L+�

23 L��
23 �L++

12 0 L+�
12 0 0 N1N3 0

[L��
31 , ·] �L+�

23 �L��
23 0 0 �L�+

12 0 �L��
12 0 N3 + N1 + 2 0 0 0

TABLE V. Commutator algebra obeyed by the loop operators at a gluonic (pure gauge) vertex.

Loop operator factorizations

L++
ij = ⇤̂+

ij

p
(Nij + 1)(Nt + 1) (74a)

L��
ij = ⇤̂�

ij

p
NijNt (74b)

L+�
ij = �⇤̂+

ki⇤̂
�
jk

p
(Nki + 1)Njk (74c)

L�+
ij = �⇤̂�

ki⇤̂
+
jk

p
Nki(Njk + 1) (74d)

ijk = 123, 231, or 312

TABLE VI. Factorization of all SU(2)-invariant operators at
a gluonic site. Indrakshi Raychowdhury Towards Quantum Simulation of Non-Abelian Lattice Gauge Theories
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SU(2) Physicality Oracle
Trotterization
Towards analog quantum simulation of Non-Abelian LGT

Advantages of using this framework

Non-Abelian gauge theories are now in the very same
footing as Abelian Gauge theories.

There has been several efforts in quantum simulating
Schwinger model. Many of these can be directly utilized to
construct quantum simulator for SU(2) theory.
This formalism is completely geometric and free from using
Clebsch Gordon coefficients specific to SU(2), and hence
is generalizable to SU(3).
Constructing quantum simulator for QCD may not be so far.
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projects
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Necassary tool for state preparation: IR, Stryker’18

We construct an oracle for checking the Abelian Gauss law
constraints along a link.
The same circuit can actually be used for all possible links
in any dimension.
These routines are likely to be useful in digital simulations
because non-gauge invariant errors can easily arise from
the Trotter approximation to e−itĤ or from quantum noise.
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An analogous construction using the conventional group
representation states is much less straightforward because
different components of the non-Abelian Gauss law
operator are not simultaneously diagonalizable.

The present SU(2) physicality oracle valid in any dimension
is actually simpler and cheaper than the Abelian Gauss
Law Oracle (Stryker’18) for 3 (or more) dimenions.
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Trotterization of SU(2) Hamiltonian: Work in progress

Utilizes the loop-string operators and factorization into
normalized ladder operators discussed before.
Utilizes the trotterization technique for Schwinger model
Hamiltonian developed in INT-ORNL collaboration, that is
yet to be communicated.
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In 1 spatial dimension, the loop-string-hadron model is
mapped directly to a spin system and is free from any
cut-off dependence with open boundary condition. Work is
in progress in this direction.
Comparative study of resource requirement for different
Hamiltonian frameworks available in literature is under
progress.
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KS to LSB: Gain in qubits

Before imposing Abelian Gauss law

∆Nq = no. of qubits required in ( KS − LSB)
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Summary: some general features of this formalism

non-Abelian gauge redundancy is absent: attain a higher
cutoff on the physical Hilbert space than when working
with all the redundant gauge degrees of freedom with
same number of qubits.
Abelian Gauss law constraints are checked using the
physicality oracles for SU(2), in any dimension.
Dynamics within infinite towers of states rather than
multiplets of varying dimensions: natural truncation
scheme lij = 2nq .
Operating on towers of states more closely resembles U(1)
gauge theory, so it is conceivable that other algorithms
developed for Abelian theories can also be ported over to
SU(2).
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Summary: some general features of this formalism

Drawbacks:

point splitting technique increases the number of links to
be simulated and that plaquette operators must deal with
more links.

Hope, that this drawback is outweighed by the simpler action of
individual link operators in a plaquette.
Our construction nonetheless stands to more directly benefit
from any progress made in algorithms for implementing U(1)
plaquette operators.
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T HANK YOU
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