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Motivation for Quantum Computing/Simulation

m Quantum computation is expected to efficiently handle
the exponential growth of information in entangled
quantum systems that overwhelms classical
computers.
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Motivation for Quantum Computing/Simulation

m Quantum computation is expected to efficiently handle
the exponential growth of information in entangled
quantum systems that overwhelms classical
computers.

m Despite of tremendous success of lattice QCD
calculations, there are some forbidden regions to
explore even with the largest supercomputers.

m For lattice gauge theories, quantum computers offer
hope for ab initio studies of non-zero density,
topological properties, and real-time phenomena,
which are exponentially hard to solve classically due
to sign problems.
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State of the art

Quantum computers are still at infancy just like classical
computers 40 years ago.

Present day’s effort:

m Contructing proposals for digital and analog quantum
simulation.

m NISQ era computation: quantum noise.

m Experimental implementation in both digital and analog for
simple and/or toy models.
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Quantum computation for gauge theories

Suitable Framework: Hamiltonian Lattice Gauge Theory )

Schwinger model: QED in 1 + 1 dimensions

Super simple to analyze yet contains rich physics

Real time simulation of Schwinger model shows dynamics
of pair production, string breaking etc.

Many analog proposals has been made in past five years.
European review: arXiv:1911.00003, Davoudi et al.
arXiv:1908.03210 and more.

Digital computation with Schwinger model: N. Klco et al:
arXiv:1803.03326 and more.

First experimental realization: Martinez et al, Nature’16

Many ongoing projects across the globe.
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Long Term Goal: Quantum Simulating QCD

QCD: Non-abelian (SU(3)) gauge theory in 3 + 1
dimensions.

v

Till date:

m ONLY A FEW ANALOG PROPOSALS
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Long Term Goal: Quantum Simulating QCD

QCD: Non-abelian (SU(3)) gauge theory in 3 + 1
dimensions.

v

Till date:

m ONLY A FEW ANALOG PROPOSALS
m FAR FROM EXPERIMENTAL IMPLEMENTATION.

m ONLY ONE DIGITAL COMPUTATION
(TROTTERIZATION), THAT IS TOO RESTRICTIVE [Klco
et al. arXiv: 1908.06935].
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Long Term Goal: Quantum Simulating QCD

QCD: Non-abelian (SU(3)) gauge theory in 3 + 1
dimensions.

v

Till date:

m ONLY A FEW ANALOG PROPOSALS
m FAR FROM EXPERIMENTAL IMPLEMENTATION.

m ONLY ONE DIGITAL COMPUTATION
(TROTTERIZATION), THAT IS TOO RESTRICTIVE [Klco
et al. arXiv: 1908.06935].

m WHY?
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Drawbacks of Conventional formalism

m Non-Abelian LGT : local Hamiltonian+ gauge theory Hilbert
space+ Gauss law for gauge invariance.

m States in the Hilbert space are predominantly unphysical,
and a noisy quantum computer would get lost among them.

m Gauss’s law is nontrivial on a quantum computer: color
components are not simultaneously diagonalizable.

m Different representations to be mapped onto a register of
qubits are on different footings under (and mixed by) the
action of the Hamiltonian.

m Crafting the action of the Hamiltonian in terms of quantum
computer operations — straightforward in principle but
rather unnatural to do.
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Alternate formulation

m Prepotential formulation of LGT is developed over last
decade starting with Mathur’05, '07.

m prepotential formulation of LGT uses gauge invariant
towers of states, characterized by integer quantum
numbers.

m The Hamiltonian acts as a sum of ladder operators on
those towers of states, which seems far more natural for
quantum computation.
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El Prepotential Framework: an overview
m Hamiltonian Lattice Gauge theory
m Introducing prepotentials
m Loop operators and loop states

B Variant Formulation: Simple constraint structure
m Virtual Point Splitting Scheme
m Prepotential coupled to matter
m In arbitrary dimension

Kl Practical Implementation
m SU(2) Physicality Oracle
m Trotterization
m Towards analog quantum simulation of Non-Abelian LGT
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Prepotential Framework: an overview Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

Hamiltonian LGT: Variables

Discrete Space

;\:::ieContlnuous On a link of the spatial lattice

# L (nti,i)

ime E,(ni)® T

E&(n+ i,i) = EP(n, )R (U(n, 1))
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Prepotential Framework: an overview Hamiltonian Lattice Gauge theory
Introducing prepotentials

Loop operators and loop states

Huy

Canonical conjugate variables satisfy:

Er, 0 = —1o°U , [EL, U] = 100", )
The Gauss law: G|phys)x = 0 where,
~ d ~ ~ ~ ~
G'(x) = > (B} j(¥) + ER (%)) — 30L(x)0%aptha(x),  (3)
P
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Prepotential Framework: an overview Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

Wilson loops and Mandelstam Constraints: SU(2)

Involving two loops, each carrying one unit of flux
_

ONLY NON-INTERSECTING LOOPS ARE PHYSICAL
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Prepotential Framework: an overview Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

Wilson loops and Mandelstam Constraints: SU(2)

m Increasing number of Loops = Increasing number of
Mandelstam Identities!

m In prepotential formulation these fundamental Mandelstam
identities becomes local and can be analyzed as well as
solved to get Orthonormal Loop states.
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Prepotential Framework: an overview Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

Prepotentials

m Harmonic oscillators belonging to the fundamental
representation of the gauge group defined at each
lattice site.

m Prepotentials transform as matter fields — construct

local gauge invariant variables and states from them!

m Local Mandelstam constraints = Exact solution is
non-trivial but possible.

m Prepotential formulation of SU(2), SU(3) and arbitrary
SU(N) exists (ref:IR, PhD Thesis) , but we will confine
ourselves to SU(2) only in this talk.
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Prepotential Framework: an overview Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

SU(2) Prepotentials

a' (L)ea(l)=a' (R)ea(R)

al,(l)m a aj(R)
ne . ®n + 1
E}(n,i) U(n.1) EX(n+1i,i)
Left electric fields: Ein,i) = a'(nil)Z 5 (n ii L),
Right electric fields: Ei(n+i,i) = a'(n+i,i; R)%a(nJr i,i; R).

Under SU(2) gauge transformation
al(L) = ah(L) (A)) e, al(R) = ab(R) (AR) s
ao‘(L) — (/\L)ag aﬁ(L), a"(R) — (/\R)ag aﬁ(R).
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Prepotential Framework: an overview Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

Link Operator

m From SU(2) ® U(1) gauge transformations of the
prepotentials,

U5 = &L naly(R) + a*(L) 0 25(R)

m Calculating the coefficients from UTU = UU' =1,

yo ! (aé(L) a1(L)>(aI(R) az(m) 1
Ari \ —all) al) )\ aR) ~aR) ) Jig+1

UL UR
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Prepotential Framework: an overview Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

Abelian Weaving, Non-abelian Intertwining and Loop

Link operator: U% 53 =
‘ /A+1

Four basic gauge invariant operators constructed by U~ g(n, /)U” (n+1i,j)atsite (n+1i):
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Prepotential Framework: an overview Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

Loop States and Linking Numbers

li
=TT 0

i#
Linking numbers in 2d
123 124
112
) 113
134 114
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Prepotential Framework: an overview Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states
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Prepotential Framework: an overview Hamiltonian Lattice Gauge theory
Introducing prepotentials
Loop operators and loop states

Linking Numbers and Constraints

Loop State characterized by 6 linking numbers

(k)™ ()T (k)" (2

o (szré)’zz (kié)’i‘
ha! I I

[h2s his h3, bt bas iz) = 1{1}) = = -
i h3! 1! 23!

[0) (4)

withny = hp +h5+hs , n2=hi+hs+he , ng=ks+hi+hi, ns=1Ils+hs+ks

One Mandelstam constraint

12,12 12, 21 17,22
k“k® — Kk “ky + kKT =0

Two U(1) Gauss Law constraints

ny(x) = nj(x + e1) & m(x) = nz(x + e2)
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Motivation

m In two spatial dimension, at each site there is exactly three
physical degrees of freedom.

m In terms of linking variables or fusion variables, identifying
these three quantum numbers to characterize a loop state
is not straightforward.

m Non-linear Constraints: difficult to analyze

m An observation: dynamics on a square plaquette is
identical to the dynamics on hexagonal plaquette with only
linear constraints (IR ’18)
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Example: point splitting in 2D

Site ‘x” on a square lattice is virtually split into two sites
‘Xe & X, connected by a third virtual direction 3 — 3
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

The virtual Hexagonal Lattice

Abelian Gauss law
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Prepotential Formulation

Local Loop Operators
Lt =alhELG) . £ = al()aa() (5)

Above, 5 = e”ﬁéﬁﬂ, 3, = c,38°, and i,j are direction indices
with i # J.
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Local loop state:

23

(£++)l12(£++)123(£"3—‘k1+)131
ha + b3 + k1) h2! 3! 3!

|OX7

~
—

(22
~

|2, b3, k1) = (
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Action of local loop operators

2/—/’—+‘llj> = \/(llj + 1)(/12 + b3 + k1 +2)“’] + 1>’ (7)
L3V = =/ U+ Dl =1 b 1), (9)
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Pictorial representation of loops

Local loops on hexagonal lattice

J e j\‘.\\ j\;\\
b
i ol o|s

Oi;Jr 0;7 O+,

ry
Action on loop states
, : A A k
N i RN
o — . .1Il — 1| () -
S oo i

(a) (b) (@
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Occupation number basis

At each site x:

M =ho+hy, no=ha+ks , n3=hs+hki (10)

. 1
or equivalently, ho==(n + N2 —ng),

2
1

/23:§(n2+n3—n1), (11)
1

hi = 5(m +n3 — )

Abelian Gauss law

ni(x) = n; (x + &;)
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Counting degrees of freedom

m For x on square lattice:
6 linking numbers — 2 Abelian Gauss law along two
directions — 1 Mandelstam constraint = three physical
degrees of freedom.

m For hexagonal lattice, two sites xy & x» corresponds to
actual site x on the square lattice and together should have
only three degrees of freedom.

m 2 x 3 linking numbers — 3 Abelian Gauss law = 3
physical degrees of freedom

m No Mandelstam Constraint!
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

In any dimensions

m For arbitrary dimension d, split each lattice site into S three
point vertices.

m Total 3S number of loop states per original lattice site.

m d Abelian Gauss law per lattice site.

m S virtual sites has introduced S — 1 number of virtual links
in the lattice, each containing one Abelian Gauss law
constraint.

m The number of independent loop degrees of freedom per
original lattice site counts to

3S-d-S+1 = 3(d-1)
=S = 2(d-1)

where, 3(d — 1) is the physical degrees of freedom per
lattice site.
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter

In arbitrary dimension

m In 2D, point splitting results in a hexagonal lattice.

m Prepotential formulation.

m On this hexagonal lattice, physical lattice directions are
along 1 and 2, and only the electric fields along these two
directions contribute to Hg.

m However, in Hg, the elementary loops are indeed
hexagonal plaquettes.

m The matter field, originally at sites x of the square lattice,
now lives on sites x,;, which is at the middle of virtual link
along 3.

m We treat the sites x’, x” on the same footing as in pure
gauge theory and xp, to be a site of 1D lattice with matter.
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Inclusion of Matter in 2d
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

3d lattice with matter

Matter as in 1D + pure gluonic vertices
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Matter couples to gauge fields in the same way in all
spatial dimention as in 1D

Hamiltonian

H= HE =+ HM
G'(x) = E}(x) + E3(x) — 301(x)0*aptp(x), (12)
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Prepotentials in 1D:

b!
b}

]
¥)

i x o

&}, (b} is attached to the link along the direction 1 (1) and a
staggered fermion field ' = ()1, 1) lives on the sites x.

E;, E, and U,z can be rewritten using prepotentials. J

Ref: Loop, String, and Hadron Dynamics in SU(2)
Hamiltonian Lattice Gauge Theories, /IR, Jesse Strylker,
arXiv: 1912:06133.
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

SU(2)-invariant Operators: Loops, Strings and
hadrons

Hermitian number operators:

Na=ala,
Np = blb,
NQ/) = ﬂﬂ/@
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

SU(2)-invariant Operators: Loops, Strings and
hadrons

Pure gauge operators: Loops

LT = eagblag

LT = Eagbaag = (L:—H_)]L
Lt~ =bla,

L = el = ()
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

SU(2)-invariant Operators: Loops, Strings and
hadrons

Gauge-Matter operators: Incoming Strings

Sifr = €a6bch¢Z"

Si” = €apbatip = (SH)
Siﬁi = blﬂ/’a

St = bathl = (S57)

Indrakshi Raychowdhury Towards Quantum Simulation of Non-Abelian Lattice Gauge



Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

SU(2)-invariant Operators: Loops, Strings and
hadrons

Gauge-Matter operators: Outgoing Strings

St = eapyilal

out
Sout = €apthads = (ST
Sax = Vadl
S = vlas = (S5
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

SU(2)-invariant Operators: Loops, Strings and
hadrons

Pure matter operators: hadrons
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter

In arbitrary dimension

This set of invariants is indeed a complete set; the bosonic
operator algebra closes

[N [ NGl [ NY] i N O il I 5 N O “n N 109 <A B 09 <
W, ]| O 0 0 —L~ —LTF 4L +LTT 0 0
Na, ] 0 0 0 —L7~ +L7T LT +LtT 0 0
Wy, 1| 0 0 0 0 0 0 0 2Bt 2B~
L= =277 0 [-Na =N, —2 0 0 0 0 0
==t +£t o0 0 My — Na 0 0 0 0
=t )+t -7t o 0 0 M-N 0 0 0
L7 ]|+L7" 4L 0 0 0 0 Na+MNy+2| 0 0
S S +S3 —SJt 0 0 0 +8i
S B (R ~Soue ~Sot 0 0 +85*
[Su[+Sat 00 =S.T 0 0 +SIi +S&E 0 =8
Sy 4SSy~ 0 +8, 0 0 +Sout ~Sout “Sat 0
Sou-1| 0 —So —Sowm | —Sum’ 0o st 0 0 S
[Seut ][ 0 —Sot +Sout +8” 0 S~ 0 +Sat 0
[Shees ]| 0 +S3w —Siw 0 +S,5 0 =St 0 =S
[Souwes ]l 0 480 +Sour 0 +S,.” 0 +S1 St 0
B o 0 2B 0 0 0 0 1-Ny 0
BTl 0 0 281+ 0 0 0 0 0 Ny—1
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter

In arbitrary dimension

The incoming and outgoing string operators are Fermionic (due
to single fermionic content) and satisfy the following
anticommutation relations

sy hsity sty (s sty {siey sty {hSant

{Sa7 ) 0 0 277 2+ No — Ny 0 0 T T
{Su 7} 0 0 MN+Ny, 2B Vans £ 0 0
{Sut}| 2B L+ Ny 0 0 0 0 £+ £
{5, He+N Ny 2B 0 0 £t L 0 0
{Som T 0 L7 0 LT 0 287 0 2+ N.- Ny
{Sowes ) 0 ct 0 L 2B+ 0 Nat Ny 0
{Sout s} —£T 0 £t 0 0 NotNy 0 2B~
{Sou> £ 0 L7 0 24N, =Ny 0 287~ 0
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Loop-String Basis States:

||n/7 nla n0>
V'l (n+1+ (n; @ np))!
where @ denotes addition modulo two

‘n/7nlan0>

[y, nj = 0,n, =0) = (L) |0)

|y, nj=0,n, =1) = (LT7)"St[0)
[|n,ni=1,n,=0) = (L—H—)n/S;]rJr 0)
I, ni=1,n0=1) = (LY)"B*710)
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

= (£TH)"B [0) , HOW?

Strsiil0) = strissy, BT1110)

out out

— Sl-l-l-i- —+B++ |0>

out

— {SET, S50 o)

in out

— —£++B++ |O>
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Occupation number basis of prepotentials and matter
to loop-string basis

_§m+m Ny + = @@(%—Mﬂ]

or equivalently,
Ny = Ni+No .
Na=N;+ (1 =N)No
Np =Nj+ (1 = No)N,.
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

The Hamiltonian

Heis Y "(gP/2)ER(x. 1) (or > (9%/2)E(x, 1)), which in terms

of Ioop-étring quantum number reads as

I LLCREV I
09+ 00N
2
E%(X)E%(X) _ [M(X) + (1 —zNo(X))M(X)] »
[+ (1 = NotDAit)
2
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

The Hamiltonian

Hon = M3 (=) (Ni(X) + No(x))

H = (X)U(X Nh(x+e) ¢

(X = e,-) L

/—Na Z ut (X)S Nb(X T ei) 1

v
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter

In arbitrary dimension

Gauss Law at site x: Equivalent to U(1) theory

Na(X) — Np(X) = No(x) — ni(x)

Indrakshi Raychowdhury wards Quantum Simulati ian Lattice Gauge



Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter

In arbitrary dimension

operator || action (a) action (b)

irp=—2
L”(x)s-----’x-\ -----
yz—Len
SN A
L)z e-- T .
..... .:",0_ —
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter

In arbitrary dimension

operator || action (a) action (b)

A [T
St =
nOER —0 00
G )

x o \
50y =— .
S0 =0

X
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter

In arbitrary dimension

operator || action (a) action (b)

S5 5’9\—

So () = "
A
s 9....
) o
ot () = —— 5
O_
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter

In arbitrary dimension

LT = ATWVNWN+1D)+ N, aN,) +2

L7 = AMVNWN—D+N:aN,)+2
£ = x! x
L5 =—xix!

e VNIF2-N,
Si;‘ = xi A VN +2(1 = N,)
Wi VNI 2-N;
ot = Xo (A‘)Ni N +2(1 = N;)
L NO/NG 2N
Ni+1+N;
— )1—No Ni + 2N,
Sout = xi WN)TVVNFTHN,
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Global Loop-string Hilbert space on 1D lattice:
local loop-string Hilbert space + Abelian Gauss Law

Abelian Gauss law

n(x) + no(x)[1 — ni(x)] = mi(x + 1) + ni(x + 1)[1 — no(x + 1)]

or,
Np(x) = na(x + 1)
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Wigner-Jordan transform in one dimension

m We have expressed physical matter degrees of freedom in
terms of the excitations of fermionic modes x;(x), xo(x) for
X:O,...,LX_1.
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Wigner-Jordan transform in one dimension

m We have expressed physical matter degrees of freedom in
terms of the excitations of fermionic modes x;(x), xo(x) for
x=0,...,Ly—1.

m These couple to each other through the hopping terms,
where it is apparent that x;’s and x,’s are decoupled.
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Wigner-Jordan transform in one dimension

m We have expressed physical matter degrees of freedom in
terms of the excitations of fermionic modes x;(x), xo(x) for
x=0,...,Ly—1.

m These couple to each other through the hopping terms,
where it is apparent that x;’s and x,’s are decoupled.

m Let us relabel the fermionic modes using W for
k=0,...,2Lx — 1, identifying

XI_>k:07177LX_1 XO_>LX7LX+13"'72LX_1
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terms of the excitations of fermionic modes x;(x), xo(x) for
x=0,...,Ly—1.
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m Let us relabel the fermionic modes using W for
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m Assuming open boundary conditions, all fermionic
couplings are nearest-neighbor.
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Wigner-Jordan transform in one dimension

m We have expressed physical matter degrees of freedom in
terms of the excitations of fermionic modes x;(x), xo(x) for
x=0,...,Ly—1.

m These couple to each other through the hopping terms,
where it is apparent that x;’s and x,’s are decoupled.

m Let us relabel the fermionic modes using W for
k=0,...,2Lx — 1, identifying

XI_>k:07177LX_1 XO_>LX7LX+13"'72LX_1

m Assuming open boundary conditions, all fermionic
couplings are nearest-neighbor.
m All couplings can be of the form 0%0@_1:

X,T(X)X/(X +1) = -0y, . Xb(X)Xo(Xx +1) — _sz+xazrx+x+
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Inclusion of Matter in 2d

Matter as in 1D + pure gluonic vertices
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter

In arbitrary dimension

(i) The two sites x’, x" have only loop states |12, k3, 31 ) x /x
being treated identically as in pure gauge theory.

(i) The third virtual site x,, along the 3 — 3 direction contains
both local loop and string states |/33, S3, S3), being structurally
identical to a site with matter in 1D.

(iii) The Abelian Gauss laws along the three directions of the
hexagonal lattice are

ny(x) = nj(x + e1), Na(x) = n3(x + ez) , (21)
n3(X) + sz = N3(x + e3) + sz, (22)
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

3d lattice with matter

Matter as in 1D + pure gluonic vertices

The modified Abelian Gauss laws on the 3D lattice are

ni(X) = n;(x-l— ei) ) (I = 1a2)35476) (23)
ns(x)+ss = ng(x+es)+Ss. (24)
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Virtual Point Splitting Scheme
Variant Formulation: Simple constraint structure Prepotential coupled to matter
In arbitrary dimension

Operator Factorization at pure Gluonic vertices

~

L= AGVWNG + DN + 1)

L = AGVNGN:

L3 = —ALAGN Wei + DN

L = =AM AS v/ Nei (Wi + 1)
iik = 123. 231. or 312

Indrakshi Raychowdhury Towards Quantum Simulation of Non-Abelian Lattice Gauge



SU(2) Physicality Oracle
Trotterization
Practical Implementation Towards analog quantum simulation of Non-Abelian LGT

Advantages of using this framework

m Non-Abelian gauge theories are now in the very same
footing as Abelian Gauge theories.
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Advantages of using this framework

m Non-Abelian gauge theories are now in the very same
footing as Abelian Gauge theories.

m There has been several efforts in quantum simulating
Schwinger model. Many of these can be directly utilized to
construct quantum simulator for SU(2) theory.
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Advantages of using this framework

m Non-Abelian gauge theories are now in the very same
footing as Abelian Gauge theories.

m There has been several efforts in quantum simulating
Schwinger model. Many of these can be directly utilized to
construct quantum simulator for SU(2) theory.

m This formalism is completely geometric and free from using
Clebsch Gordon coefficients specific to SU(2), and hence
is generalizable to SU(3).
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Advantages of using this framework

m Non-Abelian gauge theories are now in the very same
footing as Abelian Gauge theories.

m There has been several efforts in quantum simulating
Schwinger model. Many of these can be directly utilized to
construct quantum simulator for SU(2) theory.

m This formalism is completely geometric and free from using
Clebsch Gordon coefficients specific to SU(2), and hence
is generalizable to SU(3).

m Constructing quantum simulator for QCD may not be so far.
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SU(2) Physicality Oracle
Trotterization
Practical Implementation Towards analog quantum simulation of Non-Abelian LGT

Necassary tool for state preparation: IR, Stryker’'18

m We construct an oracle for checking the Abelian Gauss law
constraints along a link.

m The same circuit can actually be used for all possible links
in any dimension.

m These routines are likely to be useful in digital simulations
because non-gauge invariant errors can easily arise from
the Trotter approximation to e~ or from quantum noise.
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Practical Implementation

SU(2) Physicality Oracle
Trotterization
Towards analog quantum simulation of Non-Abelian
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SU(2) Physicality Oracle
Trotterization

Practical Implementation Towards analog quantum simulation of Non-Abelian LGT

m An analogous construction using the conventional group
representation states is much less straightforward because
different components of the non-Abelian Gauss law
operator are not simultaneously diagonalizable.
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SU(2) Physicality Oracle
Trotterization

Practical Implementation Towards analog quantum simulation of Non-Abelian LGT

m An analogous construction using the conventional group
representation states is much less straightforward because
different components of the non-Abelian Gauss law
operator are not simultaneously diagonalizable.

m The present SU(2) physicality oracle valid in any dimension

is actually simpler and cheaper than the Abelian Gauss
Law Oracle (Stryker'18) for 3 (or more) dimenions.
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SU(2) Physicality Oracle
Trotterization
Practical Implementation Towards analog quantum simulation of Non-Abelian LGT

Trotterization of SU(2) Hamiltonian: Work in progress

m Utilizes the loop-string operators and factorization into
normalized ladder operators discussed before.
m Utilizes the trotterization technique for Schwinger model

Hamiltonian developed in INT-ORNL collaboration, that is
yet to be communicated.
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SU(2) Physicality Oracle
Trotterization

Practical Implementation Towards analog quantum simulation of Non-Abelian LGT

m In 1 spatial dimension, the loop-string-hadron model is
mapped directly to a spin system and is free from any
cut-off dependence with open boundary condition. Work is
in progress in this direction.

m Comparative study of resource requirement for different
Hamiltonian frameworks available in literature is under
progress.
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SU(2) Physicality Oracle

Trotterization
Towards analog quantum simulation of Non-Abelian LGT

Practical Implementation

KS to LSB: Gain in qubits

Before imposing Abelian Gauss law

N =]
————

o
—————

d=3

AN, isite

30

15 20 25

of 5 10
Cut-off

of qubits required in ( KS — LSB)

Towards Quantum Simulation of Non-Abelian Lattice Gauge

ANy = no.
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SU(2) Physicality Oracle
Trotterization
Practical Implementation Towards analog quantum simulation of Non-Abelian LGT

Summary: some general features of this formalism

m non-Abelian gauge redundancy is absent: attain a higher
cutoff on the physical Hilbert space than when working
with all the redundant gauge degrees of freedom with
same number of qubits.

m Abelian Gauss law constraints are checked using the
physicality oracles for SU(2), in any dimension.

m Dynamics within infinite towers of states rather than
multiplets of varying dimensions: natural truncation
scheme [; = 2",

m Operating on towers of states more closely resembles U(1)
gauge theory, so it is conceivable that other algorithms
developed for Abelian theories can also be ported over to
SU(2).
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SU(2) Physicality Oracle
Trotterization
Practical Implementation Towards analog quantum simulation of Non-Abelian LGT

Summary: some general features of this formalism

Drawbacks: )

m point splitting technique increases the number of links to
be simulated and that plaquette operators must deal with
more links.

Hope, that this drawback is outweighed by the simpler action of
individual link operators in a plaquette.

Our construction nonetheless stands to more directly benefit
from any progress made in algorithms for implementing U(1)
plaquette operators.
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THANK YOU

Indrakshi Raychowdhury
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