Demonstration of electron cooling using a pulsed beam from an electrostatic cooler

F. Ma, J. Li, X. M. Ma, L. J. Mao, X. P. Sha, M. T. Tang, J. C. Yang, X. D. Yang, H. Zhao, H. W. Zhao (IMP, Lanzhou, China)

with support from J. Musson, E. Nissen, C. Wilson, J. Yan

August 6, 2020
Principle of electron cooling

- reduce ion/proton beam emittance ("heat") by mixing with cold medium
- \(v_{\text{elec}} = \langle v_{\text{ion}} \rangle \Rightarrow E_{\text{kin,elec}} = \frac{m_{\text{elec}}}{m_{\text{ion}}} \langle E_{\text{kin,ion}} \rangle \)
- e.g. protons @ EIC: \(E_{\text{kin,elec}} = 12.5 \text{ MeV} \) at \(E_{\text{kin,proton}} = 23.8 \text{ GeV} \)
- cooling depends on velocity deviation in rest frame
- takes high number of passes ⇒ limited to storage rings
Principle of energy recovery for DC beams

- Cathode
- Anode
- Collector

\propto MV, 0 A

\propto kV, 1 A
Some history

- First electron cooler: 1974, Novosibirsk (DC, 37 keV electrons)
- Highest energy: 2005–2011, Fermilab (DC, 4.3 MeV electrons)
- DC acceleration limited in energy; exact limit difficult to assess but likely too low for EIC
- 2012: JLab-IMP collaboration established to demonstrate cooling with electron bunches
- 2013: BNL proposes RF-based bunched-beam cooling facility LEReC at RHIC
- 2016–2019: bunched-beam cooling experiments at IMP
- Feb 2020: BNL publication on successful cooling at LEReC
- July 2020: JLab-IMP publication submitted for peer review
Purpose of the experiment

Open questions in electron cooling

• If RF-based linac is used as electron cooler, electron beam has time structure
• How does this affect the cooling properties?
• Can we use it to our advantage to mitigate overcooling?

Experimental approach

• Use available DC cooler at CSRm (IMP) and pulse the gun
• Synchronize electron pulses with ion ring RF
• But relative phase is adjustable and can be made time-dependent
RF-based cooling considerations

- cooling force scales unfavorably with energy ⇒ compensate with current
- option: use ERL to mitigate beam power issues (under consideration for EIC at low energy)
- move/“dither” bunches as a function of time to improve overlap pattern?

Diagram:

- HAR
- linac
- injector
- beam dump
- cooling section
- e^−, p
- HAR

Jefferson Lab
Bunched cooling with synchrotron dynamics

- Cooling force cares about velocity; bunch overlap is temporal/spatial
- High synchrotron amplitude results in...
 - Less time spent in region of overlap
 - High velocity deviation at $\Psi_S = 0$

(copied from Ya. Derbenev: Theory of electron cooling)
Principle of the bunched-beam cooling experiment

- Pulse length, delay
- Pulsing magic
- Gun
- Cooler
- BPM
- RF voltage
- RF system (synchronizes)
- Cavity (powers)
- Ion ring (BPM)
Beam parameters

Ion beam
- Particle: $^{86}\text{Kr}^{25+}$
- E_{kin}: 5 MeV/nucleon
- β: 0.103
- f_{rev}: 191.5 kHz
- h: 2

Electron beam
- E_{kin}: 2.7 keV
- bunch rate: $hf_{\text{rev}} = 383$ kHz (phase adjustable)
- bunch length: 100–1000 ns, i.e. 3–30 m
- bunch current: \propto bunch length (uniform density, 30 mA)
Available instrumentation

- RF pickup for spectral analysis
 - gives the synchrotron frequency \Rightarrow calibrate U_{RF}
 - may yield $\Delta p/p$ and tune spread
- individual BPMs for ions and electrons
 - measure relative longitudinal bunch position and overlap
 - also used as longitudinal profile monitor to observe cooling
- ionization profile monitor (IPM) for transverse profile measurement
- DCCT: ion current measurement
 - not strictly necessary but a nice consistency check
BPM setup and transfer impedance model

• sum signals of opposite plates to remove transverse information

• $U = Z I_{\text{beam}}$ with $Z(\omega) \propto \frac{i\omega RC}{(1+i\omega RC)}$

• record $U(t)$ with DSO

• $\mathcal{F} + \text{Ohm's law} + \mathcal{F}^{-1}$ gives $I(t)$
Experimental procedure

- ion current measurement
- spectrum analyzer
- IPM
- BPM
- DC cooling
- RF
- bunched cooling

Window of interest

Ion current

Time (not to scale)

Accumulation
Idle
Bunched
Experimental results:
constant bunch phase
Synchronization of DAQ devices: spectrogram

- DC cooling off
- beam bunched
- bunched cooling
- RF off
- cooling off

\[f - f_0 \text{ (kHz)} \]

\[\text{time (s)} \]
Synchronization: beam current measurement

- consistency check with BPM intensity and global timing
- markers calculated from procedure; referenced to dump
Transverse profile example (500 ns, 1.0 kV)

Intensity (arb. unit)

x (mm)

$t = 0.2 \, \text{s}$

$t = 0.4 \, \text{s}$
Bunch delay measurement: whole frame (500 ns, 1 kV)

- electron time axis shifted by measured Δ in propagation delay: 286 ns
Method to determine $I_{beam}(t)$ bunch by bunch

- estimate location of ion peak maxima
- slice frame halfway between peaks; select 2$^{\text{nd}}$–5$^{\text{th}}$ slices
- remove unphysical slope of background: fit line through left-sided and right-sided minimum and subtract it; set everything outside that region to zero
- “true” ion peak center determined by statistical mean
- average these four peaks, apply correction again
- from the resulting shape, compute central moments:
 Variance: $\sigma^2 = \frac{1}{n} \sum_i (x_i - \bar{x})^2$
 Excess kurtosis: $K - 3 = \frac{1}{\sigma^4} \frac{1}{n} \sum_i (x_i - \bar{x})^4 - 3$
Example averaged bunch with corrections (500 ns, 1 kV)
Bunch phase consistency between runs

![Graph showing bunch phase consistency between runs with different delays and RF voltages. The graph plots the delay (ns) against the calculated RF voltage ($U_{RF,calc}$) (kV). There are markers for different delay times (400 ns, 500 ns, 600 ns, 700 ns, 800 ns, 900 ns, 1000 ns) and RF voltages.](image)
Electron bunch length distribution

![Histograms of electron bunch length distribution at different times](image)

- **400 ns**
 - T\(_{\text{bunch}}\) (ns): 330, 360, 390
 - Count: 600

- **500 ns**
 - T\(_{\text{bunch}}\) (ns): 435, 445
 - Count: 400

- **600 ns**
 - T\(_{\text{bunch}}\) (ns): 555, 565
 - Count: 200

- **700 ns**
 - T\(_{\text{bunch}}\) (ns): 615, 625
 - Count: 0

- **800 ns**
 - T\(_{\text{bunch}}\) (ns): 740, 750
 - Count: 400

- **900 ns**
 - T\(_{\text{bunch}}\) (ns): 855, 865
 - Count: 200

- **1000 ns**
 - T\(_{\text{bunch}}\) (ns): 915, 925
 - Count: 0
Evolution of longitudinal profile (example: 500 ns, 1.0 kV)
Evolution of statistical moments (example: 1.0 kV)
Cooling rates \((0.2 \, \text{s} < t < 0.4 \, \text{s})\)

\[
-\frac{1}{\sigma_z} \frac{d \sigma_z}{dt} (\text{s}^{-1})
\]

\[
-\frac{1}{\sigma_x} \frac{d \sigma_x}{dx} (\text{s}^{-1})
\]

\[
U_{\text{RF,calc}} (\text{kV})
\]
Experimental results:
Bunch phase modulation ("dithering")
with triangle waveform
Electron bunch length distribution (with dithering)

- bunch length stable and without surprises
- also independent of delay
Aliasing image of modulation waveform (300 ns bunches)
Particle loss with modulation

- Cooling investigation pointless. Find reason for loss first
Understanding the particle loss issue: Tracking simulation
What are we dealing with here?

- Similar issue with bunch length jitter and phase modulation
- Assumption: unrelated to cooling, has to do with space charge
 - longitudinal: carrot force as function of synchrotron phase
 - transverse: lens that is turned on/off as function of synchrotron phase (synchro-betatron coupling)
Simulation strategy

- In MAD-X: Divide the cooler into N drifts extending slightly beyond the actual edges.
- Take transport matrices and track in 6-d phase space.
- Use discrete 2-d or 3-d macrocharge distribution and calculate $\vec{E}(\vec{r})$ from first principles. Non-relativistic OK.
 - Caution: longitudinal coordinate in 6-d phase space is time with unit length.
 - *Position* of ion on s axis is fixed by discretization of the drift.
 - Recalculate field distribution for every ion because it is a function of the arrival time.
Example field distribution (on-axis projection)

- Shape depends on longitudinal coordinate of ion. Shown for an ion located deep inside the electron bunch
- Beam pipe neglected; normally ought to be accounted for
Tracking simulation

- ion beam has no space charge ⇒ single-particle simulation
- synchrotron motion, per revolution:
 - $\Delta E_{\text{kin}} = Uq \sin \Psi$
- apply transport matrices one by one, check for transverse aperture
- for every transport matrix within the cooling drift:
 - compute electric field \vec{E}
 - $\vec{F} = \dot{\vec{p}} \Rightarrow \Delta \vec{p} = -\vec{E}q\frac{L_{\text{slice}}}{\beta_c}$
 - if coordinates are inside the cooling beam, apply friction force (wild guess just for fun, optional)
400 ns electron bunches, 30 ns rise/fall, central phase: Ensemble of 1000 ions according to initial emittance
400 ns electron bunches, 30 ns rise/fall, central phase: Phase space trajectory of a single example ion
1/3 of bunches (random) with edge shift, $\Delta L = 50$ ns:
Ensemble of 1000 ions according to initial emittance
1/3 of bunches (random) with edge shift, $\Delta L = 50$ ns:
Phase space trajectory of a single example ion
Particle loss rate (assuming transverse aperture ±50 mm)

- Considering the simplified assumptions, result not terrible
- Explains dithering issue as well (not shown here)
- Stable bunch length/phase more important than we thought
Conclusions

- Electron cooling with bunches works without major surprises
- Dithering does not! (not with high space-charge forces, anyway)
- Be careful to keep the bunch length and phase stable