

Photoemission from Biased Metal Surfaces

Quantum efficiency, Laser heating, Dielectric Coatings, and Quantum Pathways Interference

Yang Zhou

Department of Electrical and Computer Engineering

Michigan State University

zhouya22@msu.edu

March 2, 2023

Outline

- Background & Motivation
- Research Overview
- Effects of laser wavelength & heating
- Effects of cathode surface coating
- Summary

• Electron emission is important to fundamental research and various applications.

Trucchi, D. M., and Melosh, N. A.. Mrs Bulletin 42, no. 7, 488-492 (2017).

Published: 06 November 2017

Phase ordering of charge density waves traced by ultrafast low-energy electron diffraction

S. Vogelgesang, G. Storeck, J. G. Horstmann, T. Diekmann, M. Sivis, S. Schramm, K. Rossnagel, S. Schäfer & C. Ropers 🖂

Nature Physics 14, 184–190 (2018) Cite this article

• Electron emission is important to fundamental research and various applications.

Forati, E., Dill, T.J., Tao, A.R. and Sievenpiper, D. *Nature communications*, 7(1), p.13399 (2016).

Photomultiplier

Trucchi, D. M., and Melosh, N. A.. Mrs Bulletin 42, no. 7, 488-492 (2017).

Yang, Y., et al.. Nature communications, 11(1), p.3407 (2020).

• Electron emission is important to fundamental research and various applications.

https://en.wikipedia.org/wiki/Electron_microscop e#/media/File:Electron_Microscope.png

Ultrafast electron microscope

Grinolds, M.S., et al. *Proceedings of the National Academy of Sciences*, *103*(49), pp.18427-18431 (2006).

Photocathode for accelerator

https://web.physics.ucsb.edu/~smcbride/photocathodes/

High quantum efficiency, low emittance, long lifetime, and short response time

- Laser-matter interaction is primarily affected by the laser wavelength
 - a wide range of laser wavelength (~250 nm, ~800 nm, mid-infrared, THz)

electron emission mechanisms

Papadogiannis, N. A., S. D. Moustaïzis, and J. P. G rardeau-Montaut. J. Phys. D: Appl. Phys 30(17), 2389 (1997).

• Two-color laser coherent control of photoemission

Förster, M., et al. *Phys. Rev. Lett.* 117.21 (2016): 217601.

Dienstbier, Philip, Timo Paschen, and Peter Hommelhoff. *J. Phys. B: Atomic, Molecular and Optical Physics* 54.13 (2021): 134002.

Two-color laser, DC field?

- Cathode surface status influences the fundamental mechanisms of photoemission
 - Metals and semiconductors
 - Artificial coatings (graphene, nano-diamond, silicon dioxide, and zinc dioxide)
 - Natural coatings: oxide

Dowell, D. H., et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 622(3), 685-697 (2010).

Liu, F., et al. Applied Physics Letters, 110(4), p.041607 (2017). Tafel, A., Meier, S., Ristein, J. and Hommelhoff, P. Physical Review Letters, 123(14), p.146802 (2019).

Research Overview

Y. Zhou, and P. Zhang, J. Appl. Phys. 127, 164903 (2020).

- Electron waves $\psi_{II}(x,t) = \sum_{\substack{n=-\infty\\n=\infty}}^{n=\infty} T_n e^{i\sqrt{\frac{2mE_n}{\hbar^2}}\xi} e^{-i\frac{\varepsilon+n\hbar\omega}{\hbar}t} e^{\frac{ieF_1\sin\omega t}{\hbar\omega}x + \frac{ie^2F_1^2\sin 2\omega t}{8\hbar m\omega^3}}, x \ge 0 \qquad F_0 = 0$ $\psi_{II}(x,t) = \sum_{\substack{n=-\infty\\n=\infty}}^{n=-\infty} T_n [Ai(-\eta_n) - iBi(-\eta_n)]\Gamma, x \ge 0 \qquad F_0 \neq 0$ with $\Gamma = e^{i\sqrt{\frac{2mE_n}{\hbar^2}}\xi} e^{-i\frac{\varepsilon+n\hbar\omega}{\hbar}t} e^{\frac{ieF_1\sin\omega t}{\hbar\omega}x + \frac{ie^2F_1^2\sin 2\omega t}{8\hbar m\omega^3}} e^{-\frac{ie^2F_0F_1\sin\omega t}{\hbar m\omega^3}}$
 - Boundary conditions: ψ and $\partial \psi / \partial x$ continuous at the interface $\rightarrow R_n \& T_n$
 - Electron transmission probability at electron initial energy ε is defined as $w(\varepsilon, x, t) = \frac{j_t}{j_i}$, with $j = \frac{i\hbar}{2m} (\psi \nabla \psi^* - \psi^* \nabla \psi)$
 - Time-averaged electron transmission probability $w_n(\varepsilon)$

$$= \begin{cases} Im\left(i\frac{\sqrt{\varepsilon}+n\hbar\omega-V_0}{\sqrt{\varepsilon}}|T_n|^2\right), \mathbf{F_0} = \mathbf{0} \\ \frac{1}{\pi}\left[\frac{eF_0\hbar}{\sqrt{2m}}\right]^{1/3}\frac{W^{1/3}}{\varepsilon}, \mathbf{F_0} \neq \mathbf{0} \end{cases}$$

Electron transmission probability:

$$D(\varepsilon) = \sum_{n=-\infty}^{\infty} w_n(\varepsilon)$$

Y. Zhou, and P. Zhang, J. Appl. Phys. 127, 164903 (2020).

• Emission current density

$$J = e \int_0^\infty D(\varepsilon) N(\varepsilon) d\varepsilon$$

where $N(\varepsilon)d\varepsilon$ is the number density of electrons inside metal with longitudinal energy between ε and $\varepsilon + d\varepsilon$ impinging on the surface of metal per unit time.

• The quantum efficiency (QE)

$$QE = \frac{J/e}{I/\hbar\omega}$$

Y. Zhou, and P. Zhang, J. Appl. Phys. 127, 164903 (2020).

Y. Zhou, and P. Zhang, J. Appl. Phys. 127, 164903 (2020).

 $QE \propto F_1^{2(n-1)}, n = \left\langle \frac{W}{\hbar \omega} + 1 \right
angle$

- F₀ shifts step points and smooths curves
- Dominant **direct tunneling** for $F_0 = 5$ V/nm

Two-temperature model

$$C_e \frac{\partial T_e}{\partial t} = \frac{\partial}{\partial x} \kappa \frac{\partial T_e(x, t)}{\partial x} - g(T_e - T_l) + G(x, t)$$
$$C_l \frac{\partial T_l}{\partial t} = g(T_e - T_l)$$

- C_e and C_l are the electron and lattice capacity;
- T_e and T_l are the electron and lattice temperature;
- *g* is the electron-lattice coupling coefficient;
- $G(x,t) = I(t)P_{abs}\alpha \exp(-\alpha x)$ is the energy absorbed by the metal;
- κ is the thermal conductivity.

[1] S. I. Anisimov, et al., Sov. Phys. JETP 39, 375 (1974). [2] Y. Zhou and P. Zhang, J. Appl. Phys. 130, 064902 (2021).

- Laser heating results in more electron emission from initial energy above Fermi level.
- Laser heating has greater effects at step points and long laser wavelengths.

- Good **agreement** with experimental results.
- Lag between emission current peak and laser intensity peak.

• Potential profile

$$\phi(x,t) = \begin{cases} 0, & x < 0\\ V_0 - ef(t)x - eF_0x, & x \ge 0 \end{cases}$$

where $V_0 = E_F + W$, $W = W_0 - W_{Schottky}$, $f(t) = F_1 \cos(\omega t) + F_2 \cos(2\omega t + \theta)$

• Time-dependent Schrödinger equation

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + \phi(x,t)\psi(x)$$

Y. Zhou, and P. Zhang, Phys. Rev. B. 106, 085402 (2022).

- $D_I \propto \alpha^k (F_1^2)^k (\alpha^4 (F_1^2)^4) = K_I;$
- $D_{II} \propto \alpha^k (F_1^2)^k (\zeta^2 (F_1^2)^2 F_2^2) = K_{II} F_2^2;$
- $D_{III} \propto \alpha^k (F_1^2)^k (\beta^2 (F_2^2)^2) = K_{III} (F_2^2)^2;$
- $D_{I\&II} \propto 2\sqrt{D_I D_{II}} \cos\theta \propto \alpha^k (F_1^2)^k (2\alpha^2 \zeta (F_1^2)^3 \sqrt{F_2^2} \cos\theta) = K_{I\&II} \sqrt{F_2^2} \cos(2\omega\tau);$
- $D_{I\&III} \propto 2\sqrt{D_I D_{III}} \cos 2\theta \propto \alpha^k (F_1^2)^k \left(2\alpha^2 (F_1^2)^2 \beta F_2^2 \cos 2\theta\right) = K_{I\&III} F_2^2 \cos(4\omega\tau);$
- $D_{II\&III} \propto 2\sqrt{D_{II}D_{III}}\cos\theta \propto \alpha^k (F_1^2)^k \left(2\zeta F_1^2\beta\sqrt{(F_2^2)^3}\cos\theta\right) = K_{II\&III} \&\sqrt{(F_2^2)^3}\cos(2\omega\tau).$

$$D(\tau) = \frac{c_0}{2} + \sum_{n=1}^N c_n \sin(n(2\omega)\tau + \varphi_n)$$

• with $c_0 = \frac{2}{T} \int_0^T D(\tau) d\tau$, $c_n = \sqrt{a_n^2 + b_n^2}$, $a_n = \frac{2}{T} \int_0^T D(\tau) \cos(n(2\omega\tau)) d\tau$, $b_n = \frac{2}{T} \int_0^T D(\tau) \sin(n(2\omega)\tau) d\tau$, $T = \frac{2\pi}{2\omega}$, and $\varphi_n = \tan^{-1}\left(\frac{a_n}{b_n}\right)$.

Y. Zhou, and P. Zhang, Phys. Rev. B. 106, 085402 (2022).

 $F_1 = 2.6 \text{ V/nm}, F_0 = 0$

Y. Zhou, and P. Zhang, Phys. Rev. B. 106, 085402 (2022).

- DC field enhances electron emission
- Two peaks on visibility vs DC field

• Interference is sequentially suppressed as DC field increases

enhanced field emission

 An empirical relation between thickness threshold and dielectric constant threshold at room temperature

$$d_{th}[nm] = \frac{\varepsilon_{diel}^{th}W}{eF}$$

• Electron transmission probability $D(\varepsilon) = \exp[Q(\varepsilon)]$

with
$$Q(\varepsilon) = -2 \int_0^{x_1} \sqrt{\frac{2m}{\hbar^2}} [V(x) - \varepsilon] dx$$
 by WKBJ

approximation

• Electron emission current density $J = e \int_{0}^{\infty} D(\varepsilon) N(\varepsilon) d\varepsilon$

with $N(\varepsilon)$ the supply function $N(\varepsilon) = \frac{mk_BT}{2\pi^2\hbar^3} \ln\left[1 + \exp\left(\frac{E_F - \varepsilon}{k_BT}\right)\right]$

[1] Q.-A. Huang, J. Appl. Phys. 79(7), 3703-3707, (1996). [2] P. D. Keathley et al., Ann. Phys., 525(1–2), 144–150 (2013).
[3] K. L. Jensen, et al., J. Appl. Phys. 127(23), 235301, (2020).

- Good **agreement** in the scaling
- Resonance behavior in *J* vs. *d* cannot be revealed by the modified FN equation

Potential profile

 $\phi(x,t) = \begin{cases} 0, & x < 0, \\ E_F + W - \chi - eF_0^{diel}x - eF_1^{diel}x \cos \omega t, & 0 \le x < d, \\ E_F + W + e(F_0 - F_0^{diel})d + e(F_1 - F_1^{diel})d \cos \omega t - eF_0x - eF_1x \cos \omega t, & x \ge d. \end{cases}$

 $W = W_0 - \Delta W$, ΔW is the Schottky barrier lowering. $F_1^{diel} = F_1 / \varepsilon_{diel}$, $F_0^{diel} = F_0 / \varepsilon_{diel}$ for a perfectly flat surface

enhanced photoemission

Plasmon resonance enhancement

Au-nanopyramid emitter

Plasmon resonance enhancement

Effective barrier profile approximation

$$\phi(z,t) = \begin{cases} 0, & z < 0\\ E_F + W_{\text{eff}} - e\beta_{\text{eff}}Fz\cos\omega t, & z > 0 \end{cases}$$

with $W_{\text{eff}} = W - \chi$

Plasmon resonance enhancement

~2 orders of magnitude enhancement

Metal Surfaces with a Quantum Well

• Nanostructures or adsorbates (ions, atoms, or molecules etc.) on cathodes

Resonant Tunneling Enhanced Field Emission

• Potential to produce highly intense and highly collimated electron beams

Summary

Thank you!