The role of Chiral Effective Field Theory in the precision era

Jose Manuel Alarcón
Introduction
Introduction

• There is an increasing interest in precision measurements to test our knowledge of the fundamental interactions.
Introduction

• There is an increasing interest in precision measurements to test our knowledge of the fundamental interactions.
• Some quantities that can be measured very accurately in experiments can be used to test the Standard Model predictions.
Introduction

• There is an increasing interest in precision measurements to test our knowledge of the fundamental interactions.
• Some quantities that can be measured very accurately in experiments can be used to test the Standard Model predictions.
• These predictions require often input related to properties of hadrons (hadronic matrix elements).
Introduction

- There is an increasing interest in precision measurements to test our knowledge of the fundamental interactions.
- Some quantities that can be measured very accurately in experiments can be used to test the Standard Model predictions.
- These predictions require often input related to properties of hadrons (hadronic matrix elements).
- Example of this is $\langle N | \hat{m}(\bar{u}u + \bar{d}d) | N \rangle$
Introduction

• There is an increasing interest in precision measurements to test our knowledge of the fundamental interactions.
• Some quantities that can be measured very accurately in experiments can be used to test the Standard Model predictions.
• These predictions require often input related to properties of hadrons (hadronic matrix elements).
• Example of this is \(\langle N | \hat{m}(\bar{u}u + \bar{d}d) | N \rangle \)
 • DM detection
Introduction

• There is an increasing interest in precision measurements to test our knowledge of the fundamental interactions.
• Some quantities that can be measured very accurately in experiments can be used to test the Standard Model predictions.
• These predictions require often input related to properties of hadrons (hadronic matrix elements).
• Example of this is $\langle N | \hat{m} (\bar{u}u + \bar{d}d) | N \rangle$
 • DM detection
 • CP violation
• There is an increasing interest in precision measurements to test our knowledge of the fundamental interactions.
• Some quantities that can be measured very accurately in experiments can be use to test the Standard Model predictions.
• These predictions require often input related to properties of hadrons (hadronic matrix elements).
• Example of this is \(\langle N | \hat{m}(\bar{u}u + \bar{d}d) | N \rangle \)
 • DM detection
 • CP violation
• High demand of calculations from first principles with reliable error estimation.
Introduction

• There is an increasing interest in precision measurements to test our knowledge of the fundamental interactions.
• Some quantities that can be measured very accurately in experiments can be used to test the Standard Model predictions.
• These predictions require often input related to properties of hadrons (hadronic matrix elements).
• Example of this is \(\langle N | \hat{m}(\bar{u}u + \bar{d}d) | N \rangle \)
 • DM detection
 • CP violation
• High demand of calculations from first principles with reliable error estimation.
 • Important to disentangle new physics from theoretical or systematic errors.
Introduction

- In the energy regimes of interest, chiral symmetry provides genuine predictions for hadronic interactions on QCD grounds.
In the energy regimes of interest, chiral symmetry provides genuine predictions for hadronic interactions on QCD grounds.

<table>
<thead>
<tr>
<th>MESONS</th>
<th>(MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_1(s=0)$</td>
<td>1300</td>
</tr>
<tr>
<td>$b_1(s=0)$</td>
<td>1200</td>
</tr>
<tr>
<td>$b_2(s=0)$</td>
<td>1100</td>
</tr>
<tr>
<td>$\phi(s=0)$</td>
<td>1000</td>
</tr>
<tr>
<td>$\phi_0(s=0)$</td>
<td>900</td>
</tr>
<tr>
<td>$f_0(s=0)$</td>
<td>800</td>
</tr>
<tr>
<td>$f_0^0(s=0)$</td>
<td>700</td>
</tr>
<tr>
<td>$K^0(s=0)$</td>
<td>600</td>
</tr>
<tr>
<td>$K^0_0(s=0)$</td>
<td>500</td>
</tr>
<tr>
<td>$K^{*+}(s=±1)$</td>
<td>400</td>
</tr>
<tr>
<td>$\rho(s=0)$</td>
<td>300</td>
</tr>
<tr>
<td>$\pi^+(s=0)$</td>
<td>200</td>
</tr>
<tr>
<td>$\pi^0(s=0)$</td>
<td>100</td>
</tr>
<tr>
<td>$P = -1$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BARYONS</th>
<th>(MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N(s=0)$</td>
<td>1500</td>
</tr>
<tr>
<td>$\Lambda(s=0)$</td>
<td>1450</td>
</tr>
<tr>
<td>$\Lambda(s=1)$</td>
<td>1400</td>
</tr>
<tr>
<td>$\Xi(s=0)$</td>
<td>1350</td>
</tr>
<tr>
<td>$\Xi(s=1)$</td>
<td>1300</td>
</tr>
<tr>
<td>$\Sigma(s=0)$</td>
<td>1250</td>
</tr>
<tr>
<td>$\Sigma(s=1)$</td>
<td>1200</td>
</tr>
<tr>
<td>$\Sigma^*(s=0)$</td>
<td>1150</td>
</tr>
<tr>
<td>$\Sigma^*(s=1)$</td>
<td>1100</td>
</tr>
<tr>
<td>$\Lambda^0(s=0)$</td>
<td>1050</td>
</tr>
<tr>
<td>$\Lambda^0(s=1)$</td>
<td>1000</td>
</tr>
<tr>
<td>$P = -1$</td>
<td></td>
</tr>
</tbody>
</table>

$P = -1$ $P = +1$
In the energy regimes of interest, chiral symmetry provides genuine predictions for hadronic interactions on QCD grounds.

Introduction

- In the energy regimes of interest, chiral symmetry provides genuine predictions for hadronic interactions on QCD grounds.

Chiral symmetry is:
- Global symmetry derivative coupling of the Goldstone bosons.
- Spontaneously broken Constrains the interactions.
- Explicitly broken Corrections are treated perturbatively

MESONS

<table>
<thead>
<tr>
<th></th>
<th>(MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi(x=0)$</td>
<td>1300</td>
</tr>
<tr>
<td>$\eta(x=0)$</td>
<td>1200</td>
</tr>
<tr>
<td>$K^0, K^0(s=\pm 1)$</td>
<td>1000</td>
</tr>
<tr>
<td>$\rho(x=0)$</td>
<td>800</td>
</tr>
<tr>
<td>$K^0, K^0(s=\pm 1)$</td>
<td>600</td>
</tr>
<tr>
<td>$\pi^0(x=0)$</td>
<td>500</td>
</tr>
<tr>
<td>$\pi^0(s=0)$</td>
<td>400</td>
</tr>
<tr>
<td>$\eta(x=0)$</td>
<td>300</td>
</tr>
<tr>
<td>$\pi^0(s=0)$</td>
<td>200</td>
</tr>
<tr>
<td>$\eta'(s=0)$</td>
<td>100</td>
</tr>
</tbody>
</table>

BARYONS

<table>
<thead>
<tr>
<th></th>
<th>(MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N^*(s=0)$</td>
<td>1500</td>
</tr>
<tr>
<td>$\Lambda(s=-1)$</td>
<td>1450</td>
</tr>
<tr>
<td>$\Lambda(s=-1)$</td>
<td>1400</td>
</tr>
<tr>
<td>$\Sigma^*(s=-1)$</td>
<td>1350</td>
</tr>
<tr>
<td>$\Xi^*(s=-2)$</td>
<td>1300</td>
</tr>
<tr>
<td>$\Xi^*(s=-2)$</td>
<td>1250</td>
</tr>
<tr>
<td>$\Lambda^0(s=0)$</td>
<td>1200</td>
</tr>
<tr>
<td>$\Sigma^*(s=-1)$</td>
<td>1150</td>
</tr>
<tr>
<td>$\Sigma^*(s=-1)$</td>
<td>1100</td>
</tr>
<tr>
<td>$\Sigma^*(s=-1)$</td>
<td>1050</td>
</tr>
<tr>
<td>$\Sigma^*(s=-1)$</td>
<td>1000</td>
</tr>
<tr>
<td>$\eta(x=0)$</td>
<td>950</td>
</tr>
<tr>
<td>$\rho(x=0)$</td>
<td>900</td>
</tr>
</tbody>
</table>

J. M. Alarcón (UCM)

The role of Chiral EFT in the precision era
Introduction

• In the energy regimes of interest, chiral symmetry provides genuine predictions for hadronic interactions on QCD grounds.

<table>
<thead>
<tr>
<th>MESONS</th>
<th>BARYONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi(s=0))</td>
<td>(N(s=0))</td>
</tr>
<tr>
<td>(\eta(s=0))</td>
<td>(\Lambda(s=-1))</td>
</tr>
<tr>
<td>(K^0, K^+(s=\pm 1))</td>
<td>(\Xi(s=-2))</td>
</tr>
<tr>
<td>(f_0(s=0))</td>
<td>(\Lambda(s=-1))</td>
</tr>
<tr>
<td>(\eta'(s=0))</td>
<td>(N^*(s=0))</td>
</tr>
<tr>
<td>(K^*(s=\pm 1))</td>
<td>(\Sigma(s=-1))</td>
</tr>
<tr>
<td>(\rho(s=0))</td>
<td>(\Omega(s=-2))</td>
</tr>
</tbody>
</table>

Chiral symmetry is:

• Global symmetry \(\rightarrow \) derivative coupling of the Goldstone bosons.
• Spontaneously broken \(\rightarrow \) Constrains the interactions.
• Explicitly broken \(\rightarrow \) Corrections are treated perturbatively

• Chiral EFT provides a way to incorporate systematically corrections to the low energy theorems.
In the energy regimes of interest, chiral symmetry provides genuine predictions for hadronic interactions on QCD grounds.

- Chiral symmetry is:
 - Global symmetry → derivative coupling of the Goldstone bosons.
 - Spontaneously broken → Constrains the interactions.
 - Explicitly broken → Corrections are treated perturbatively

- Chiral EFT provides a way to incorporate systematically corrections to the low energy theorems.
- Theoretical progress in the recent years opened new possibilities in the field → Provide hadronic ME and nuclear corrections!
πN - scattering
\(\pi N - \text{scattering} \)

- The fundamental purely hadronic interaction involving one nucleon.
πN - scattering

- The fundamental purely hadronic interaction involving one nucleon.
- πN gives the long-range part of the 2NF (3fm).
The fundamental purely hadronic interaction involving one nucleon.

\(\pi N \) gives the long-range part of the 2NF (3fm).

\(\pi N \rightarrow \pi N \) makes the subleading long-range part (2fm).
\(\pi N \) - scattering

- The fundamental purely hadronic interaction involving one nucleon.
- \(\pi N \) gives the long-range part of the 2NF (3fm).
- \(\pi N \rightarrow \pi N \) makes the subleading long-range part (2fm).
- Good knowledge of the interaction (\(g_{\pi N} \)) is essential to describe NN data [Navarro Pérez, Amaro and Ruiz Arriola, PRC 95 (2017)].
• The fundamental purely hadronic interaction involving one nucleon.
• πN gives the long-range part of the 2NF (3fm).
• $\pi N \to \pi N$ makes the subleading long-range part (2fm).
• Good knowledge of the interaction $(g_{\pi N})$ is essential to describe NN data [Navarro Pérez, Amaro and Ruiz Arriola, PRC 95 (2017)].
• πN-scattering is a way to access the scalar coupling of the nucleon (DM detection).
\(\pi N\) - scattering

- The fundamental purely hadronic interaction involving one nucleon.
- \(\pi N\) gives the long-range part of the 2NF (3fm).
- \(\pi N\rightarrow\pi N\) makes the subleading long-range part (2fm).
- Good knowledge of the interaction \((g_{\pi N})\) is essential to describe NN data [Navarro Pérez, Amaro and Ruiz Arriola, PRC 95 (2017)].
- \(\pi N\)-scattering is a way to access the scalar coupling of the nucleon (DM detection).
- First calculation of \(\pi N\) was done in [Gasser, Sainio and Svarc, NPB 307 (1988)].
The fundamental purely hadronic interaction involving one nucleon.

- πN gives the long-range part of the 2NF (3fm).
- $\pi N \rightarrow \pi N$ makes the subleading long-range part (2fm).
- Good knowledge of the interaction ($g_{\pi N}$) is essential to describe NN data [Navarro Pérez, Amaro and Ruiz Arriola, PRC 95 (2017)].

- πN-scattering is a way to access the scalar coupling of the nucleon (DM detection).
- First calculation of πN was done in [Gasser, Sainio and Svarc, NPB 307 (1988)].
 - Problem with the power counting due to the heavy scale m_N.
The fundamental purely hadronic interaction involving one nucleon.

πN gives the long-range part of the 2NF (3fm).

$\pi N \rightarrow \pi N$ makes the subleading long-range part (2fm).

Good knowledge of the interaction $(g_{\pi N})$ is essential to describe NN data [Navarro Pérez, Amaro and Ruiz Arriola, PRC 95 (2017)].

πN-scattering is a way to access the scalar coupling of the nucleon (DM detection).

First calculation of πN was done in [Gasser, Sainio and Svarc, NPB 307 (1988)].

Problem with the power counting due to the heavy scale m_N.

Heavy Baryon ChPT [Jenkins and Manohar, PLB 255 (1991)]

Infrared Regularization [Becher and Leutwyler, EPJ C9 (1999)]

Extended-On-Mass-Shell [Fuchs, Gegelia, Japaridze and Scherer, PRD68 (2003)]
We used EOMS to study πN at low energies up to $O(p^3)$ [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)].
We used EOMS to study πN at low energies up to $\mathcal{O}(p^3)$ [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)].

The first relativistic analysis of πN with the right analytic structure and a consistent power counting.
• We used EOMS to study πN at low energies up to $O(p^3)$ [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)].
• The first relativistic analysis of πN with the right analytic structure and a consistent power counting.
• Small $N-\Delta$ mass gap and strong coupling of Δ to πN
\(\pi N \) - scattering

- We used EOMS to study \(\pi N \) at low energies up to \(O(p^3) \) \cite{Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)}.
- The first relativistic analysis of \(\pi N \) with the right analytic structure and a consistent power counting.
 - Small \(N-\Delta \) mass gap and strong coupling of \(\Delta \) to \(\pi N \)
 - \(\Delta(1232) \) degrees of freedom
We used EOMS to study πN at low energies up to $O(p^3)$ [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)].

The first relativistic analysis of πN with the right analytic structure and a consistent power counting.

- Small $N-\Delta$ mass gap and strong coupling of Δ to πN
 - $\Delta(1232)$ degrees of freedom
- LECs are fixed with PWAs information (phase shifts).
\(\pi N \) - scattering

- We used EOMS to study \(\pi N \) at low energies up to \(O(p^3) \) [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)].

- The first relativistic analysis of \(\pi N \) with the right analytic structure and a consistent power counting.

- Small \(N-\Delta \) mass gap and strong coupling of \(\Delta \) to \(\pi N \)
 - \(\Delta(1232) \) degrees of freedom

- LECs are fixed with PWAs information (phase shifts).
 - Karlsruhe-Helsinki (KA85) [Koch, NPA 448, (1986); Koch and Pietarinen, NPA 336, (1980)]
 - George Washington University (WI08) [Workman, et al., PRC 86, (2012)]
 - Zürich group (EM06) [Matsinos, Woolcock, Oades, Rasche and Gashi, NPA 95 (2006)]
πN - scattering

- We used EOMS to study πN at low energies up to $O(p^3)$ [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)].
- The first relativistic analysis of πN with the right analytic structure and a consistent power counting.
 - Small N-Δ mass gap and strong coupling of Δ to πN
 - $\Delta(1232)$ degrees of freedom
 - LECs are fixed with PWAs information (phase shifts).
 - Karlsruhe-Helsinki (KA85) [Koch, NPA 448, (1986); Koch and Pietarinen, NPA 336, (1980)]
 - George Washington University (WI08) [Workman, et al. PRC 86, (2012)]
 - Zürich group (EM06) [Matsinos, Woolcock, Oades, Rasche and Gashi, NPA 95 (2006)]
 - The low-energy phase shifts are used to determine the LECs.
\[\pi N - \text{scattering} \]

- We used EOMS to study \(\pi N \) at low energies up to \(\mathcal{O}(p^3) \) [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)].

- The first relativistic analysis of \(\pi N \) with the right analytic structure and a consistent power counting.

 - Small \(N-\Delta \) mass gap and strong coupling of \(\Delta \) to \(\pi N \)
 - \(\Delta(1232) \) degrees of freedom

 - LECs are fixed with PWAs information (phase shifts).
 - Karlsruhe-Helsinki (KA85) [Koch, NPA 448, (1986); Koch and Pietarinen, NPA 336, (1980)]
 - George Washington University (WI08) [Workman, et al. PRC 86, (2012)]
 - Zürich group (EM06) [Matsinos, Woolcock, Oades, Rasche and Gashi, NPA 95 (2006)]

- The low-energy phase shifts are used to determine the LECs. Used to extract valuable phenomenological information
πN - scattering

Fits to WI08

S_{31}, P_{31}, S_{11}, P_{11}, P_{33}, P_{13}

Δ-less ChPT, Δ-ChPT

[Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]
Threshold parameters

<table>
<thead>
<tr>
<th>Partial Wave</th>
<th>Δ-ChPT πN</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{0+}</td>
<td>-1.1(1.0)</td>
<td>-0.12(33)</td>
<td>0.23(20)</td>
<td>-0.8</td>
<td>-0.10(12)</td>
<td>0.22(12)</td>
</tr>
<tr>
<td>a_{0+}</td>
<td>8.8(5)</td>
<td>8.33(44)</td>
<td>7.70(8)</td>
<td>9.2</td>
<td>8.83(5)</td>
<td>7.742(61)</td>
</tr>
<tr>
<td>$a_{S_{11}}$</td>
<td>-10.00(1.1)</td>
<td>-8.5(6)</td>
<td>-7.47(22)</td>
<td>-10.0(4)</td>
<td>-8.4</td>
<td>-7.52(16)</td>
</tr>
<tr>
<td>$a_{S_{11}}$</td>
<td>16.6(1.5)</td>
<td>16.6(9)</td>
<td>15.63(26)</td>
<td>17.5(3)</td>
<td>17.1</td>
<td>15.71(13)</td>
</tr>
<tr>
<td>$a_{P_{11}}$</td>
<td>-4.15(35)</td>
<td>-3.89(35)</td>
<td>-4.10(9)</td>
<td>-4.4(2)</td>
<td>-3.8</td>
<td>-4.176(80)</td>
</tr>
<tr>
<td>$a_{P_{13}}$</td>
<td>-8.4(5)</td>
<td>-7.5(1.0)</td>
<td>-8.43(18)</td>
<td>-7.8(2)</td>
<td>-5.8</td>
<td>-7.99(16)</td>
</tr>
<tr>
<td>$a_{P_{31}}$</td>
<td>22.69(30)</td>
<td>21.4(5)</td>
<td>20.89(9)</td>
<td>21.4(2)</td>
<td>19.4</td>
<td>21.00(20)</td>
</tr>
<tr>
<td>$a_{P_{33}}$</td>
<td>-3.00(32)</td>
<td>-2.84(31)</td>
<td>-3.09(8)</td>
<td>-3.0(2)</td>
<td>-2.3</td>
<td>-3.159(67)</td>
</tr>
</tbody>
</table>
Threshold parameters

<table>
<thead>
<tr>
<th>Partial Wave</th>
<th>KA85</th>
<th>W108</th>
<th>EM06</th>
<th>KA85</th>
<th>W108</th>
<th>EM06</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{q^+})</td>
<td>-1.1(1.0)</td>
<td>-0.12(33)</td>
<td>0.23(20)</td>
<td>-0.8</td>
<td>-0.10(12)</td>
<td>0.22(12)</td>
</tr>
<tr>
<td>(a_{g^+})</td>
<td>8.8(5)</td>
<td>8.33(44)</td>
<td>7.70(8)</td>
<td>9.2</td>
<td>8.83(5)</td>
<td>7.742(61)</td>
</tr>
<tr>
<td>(a_{S_{31}})</td>
<td>-10.0(1.1)</td>
<td>-8.5(6)</td>
<td>-7.47(22)</td>
<td>-10.0(4)</td>
<td>-8.4</td>
<td>-7.52(16)</td>
</tr>
<tr>
<td>(a_{S_{11}})</td>
<td>16.6(1.5)</td>
<td>16.6(9)</td>
<td>15.63(26)</td>
<td>17.5(3)</td>
<td>17.1</td>
<td>15.71(13)</td>
</tr>
<tr>
<td>(a_{P_{33}})</td>
<td>-4.15(35)</td>
<td>-3.89(35)</td>
<td>-4.10(9)</td>
<td>-4.4(2)</td>
<td>-3.8</td>
<td>-4.176(80)</td>
</tr>
<tr>
<td>(a_{P_{11}})</td>
<td>-8.4(5)</td>
<td>-7.5(1.0)</td>
<td>-8.43(18)</td>
<td>-7.8(2)</td>
<td>-5.8</td>
<td>-7.99(16)</td>
</tr>
<tr>
<td>(a_{P_{31}})</td>
<td>22.69(30)</td>
<td>21.4(5)</td>
<td>20.89(9)</td>
<td>21.4(2)</td>
<td>19.4</td>
<td>21.00(20)</td>
</tr>
<tr>
<td>(a_{P_{13}})</td>
<td>-3.00(32)</td>
<td>-2.84(31)</td>
<td>-3.09(8)</td>
<td>-3.0(2)</td>
<td>-2.3</td>
<td>-3.159(67)</td>
</tr>
</tbody>
</table>

Pion-nucleon coupling \((d_{18})\)

<table>
<thead>
<tr>
<th></th>
<th>KA85 (\Delta\text{-ChPT})</th>
<th>W108 (\Delta\text{-ChPT})</th>
<th>EM06 (\Delta\text{-ChPT})</th>
<th>KA85 (\Delta\text{-ChPT})</th>
<th>W108 (\Delta\text{-ChPT})</th>
<th>EM06 (\Delta\text{-ChPT})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta_{GT})</td>
<td>5.1(8)%</td>
<td>1.0(2.5)%</td>
<td>2.0(4)%</td>
<td>4.5(7)%</td>
<td>2.1(1)%</td>
<td>0.2(1.0)%</td>
</tr>
<tr>
<td>(g_{\pi N})</td>
<td>13.53(10)</td>
<td>13.00(31)</td>
<td>13.13(5)</td>
<td>13.46(9)</td>
<td>13.15(1)</td>
<td>12.90(12)</td>
</tr>
</tbody>
</table>
Threshold parameters

<table>
<thead>
<tr>
<th>Partial Wave</th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{q+}</td>
<td>-1.1(1.0)</td>
<td>-0.12(33)</td>
<td>0.23(20)</td>
<td>-0.8</td>
<td>-0.10(12)</td>
<td>0.22(12)</td>
</tr>
<tr>
<td>a_{q+}</td>
<td>8.8(5)</td>
<td>8.33(44)</td>
<td>7.70(8)</td>
<td>9.2</td>
<td>8.83(5)</td>
<td>7.742(61)</td>
</tr>
<tr>
<td>$a_{S_{n1}}$</td>
<td>-10.0(1.1)</td>
<td>-8.5(6)</td>
<td>-7.47(22)</td>
<td>-10.0(4)</td>
<td>-8.4</td>
<td>-7.52(16)</td>
</tr>
<tr>
<td>$a_{S_{n1}}$</td>
<td>16.6(1.5)</td>
<td>16.6(9)</td>
<td>15.63(26)</td>
<td>17.5(3)</td>
<td>17.1</td>
<td>15.71(13)</td>
</tr>
<tr>
<td>$a_{P_{n1}}$</td>
<td>-4.15(35)</td>
<td>-3.89(35)</td>
<td>-4.10(9)</td>
<td>-4.4(2)</td>
<td>-3.8</td>
<td>-4.176(80)</td>
</tr>
<tr>
<td>$a_{P_{n1}}$</td>
<td>-8.4(5)</td>
<td>-7.5(1.0)</td>
<td>-8.43(18)</td>
<td>-7.8(2)</td>
<td>-5.8</td>
<td>-7.99(16)</td>
</tr>
<tr>
<td>$a_{P_{n3}}$</td>
<td>22.69(30)</td>
<td>21.4(5)</td>
<td>20.89(9)</td>
<td>21.4(2)</td>
<td>19.4</td>
<td>21.00(20)</td>
</tr>
<tr>
<td>$a_{P_{n3}}$</td>
<td>-3.00(32)</td>
<td>-2.84(31)</td>
<td>-3.09(8)</td>
<td>-3.0(2)</td>
<td>-2.3</td>
<td>-3.159(67)</td>
</tr>
</tbody>
</table>

Pion-nucleon coupling (d_{18})

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_{GT}</td>
<td>5.1(8)%</td>
<td>1.0(2.5)%</td>
<td>2.0(4)%</td>
<td>4.5(7)%</td>
<td>2.1(1)%</td>
<td>0.2(1.0)%</td>
</tr>
<tr>
<td>$g_{\pi N}$</td>
<td>13.53(10)</td>
<td>13.00(31)</td>
<td>13.13(5)</td>
<td>13.46(9)</td>
<td>13.15(1)</td>
<td>12.90(12)</td>
</tr>
</tbody>
</table>

Sigma-term (c_1)

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\pi N}$(MeV)</td>
<td>43(5)</td>
<td>59(4)</td>
<td>59(2)</td>
<td>45(8)</td>
<td>64(7)</td>
<td>56(9)</td>
</tr>
</tbody>
</table>
Threshold parameters

<table>
<thead>
<tr>
<th>Partial Wave</th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
</tr>
</thead>
<tbody>
<tr>
<td>0+</td>
<td>0.1(1.0)</td>
<td>-0.12(2.0)</td>
<td>-0.04(4.0)</td>
<td>-0.12(2.0)</td>
<td>-0.04(4.0)</td>
<td>-0.12(2.0)</td>
<td>-0.04(4.0)</td>
<td>-0.12(2.0)</td>
<td>-0.04(4.0)</td>
</tr>
<tr>
<td>1+</td>
<td>5.8(5)</td>
<td>8.33(10)</td>
<td>8.43(15)</td>
<td>5.8(5)</td>
<td>8.33(10)</td>
<td>8.43(15)</td>
<td>5.8(5)</td>
<td>8.33(10)</td>
<td>8.43(15)</td>
</tr>
<tr>
<td>2s31</td>
<td>-10(1.1)</td>
<td>-8.5(6)</td>
<td>-7.47(22)</td>
<td>-10(1.1)</td>
<td>-8.5(6)</td>
<td>-7.47(22)</td>
<td>-10(1.1)</td>
<td>-8.5(6)</td>
<td>-7.47(22)</td>
</tr>
<tr>
<td>1s11</td>
<td>-6.0(1.5)</td>
<td>16.6(9)</td>
<td>15.63(26)</td>
<td>-6.0(1.5)</td>
<td>16.6(9)</td>
<td>15.63(26)</td>
<td>-6.0(1.5)</td>
<td>16.6(9)</td>
<td>15.63(26)</td>
</tr>
<tr>
<td>1p1</td>
<td>-1.0(1.2)</td>
<td>-2.4(3)</td>
<td>-2.4(3)</td>
<td>-1.0(1.2)</td>
<td>-2.4(3)</td>
<td>-2.4(3)</td>
<td>-1.0(1.2)</td>
<td>-2.4(3)</td>
<td>-2.4(3)</td>
</tr>
<tr>
<td>1p31</td>
<td>-2.69(30)</td>
<td>21.4(5)</td>
<td>20.89(9)</td>
<td>-2.69(30)</td>
<td>21.4(5)</td>
<td>20.89(9)</td>
<td>-2.69(30)</td>
<td>21.4(5)</td>
<td>20.89(9)</td>
</tr>
<tr>
<td>1p33</td>
<td>-3.00(32)</td>
<td>-2.84(31)</td>
<td>-3.09(8)</td>
<td>-3.00(32)</td>
<td>-2.84(31)</td>
<td>-3.09(8)</td>
<td>-3.00(32)</td>
<td>-2.84(31)</td>
<td>-3.09(8)</td>
</tr>
</tbody>
</table>

Pion-nucleon coupling (d_{18})

<table>
<thead>
<tr>
<th></th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{0+}</td>
<td>-8.4(5)</td>
<td>-7.5(1.0)</td>
<td>-8.43(18)</td>
<td>-8.4(5)</td>
<td>-7.5(1.0)</td>
<td>-8.43(18)</td>
</tr>
<tr>
<td>a_{1+}</td>
<td>8.8(5)</td>
<td>8.33(44)</td>
<td>7.70(8)</td>
<td>9.0(5)</td>
<td>8.33(44)</td>
<td>7.70(8)</td>
</tr>
<tr>
<td>a_{2s31}</td>
<td>-8.4(5)</td>
<td>-7.5(1.0)</td>
<td>-8.43(18)</td>
<td>-8.4(5)</td>
<td>-7.5(1.0)</td>
<td>-8.43(18)</td>
</tr>
<tr>
<td>a_{1s11}</td>
<td>8.8(5)</td>
<td>8.33(44)</td>
<td>7.70(8)</td>
<td>9.0(5)</td>
<td>8.33(44)</td>
<td>7.70(8)</td>
</tr>
<tr>
<td>a_{3p1}</td>
<td>-8.4(5)</td>
<td>-7.5(1.0)</td>
<td>-8.43(18)</td>
<td>-8.4(5)</td>
<td>-7.5(1.0)</td>
<td>-8.43(18)</td>
</tr>
<tr>
<td>a_{3p31}</td>
<td>8.8(5)</td>
<td>8.33(44)</td>
<td>7.70(8)</td>
<td>9.0(5)</td>
<td>8.33(44)</td>
<td>7.70(8)</td>
</tr>
<tr>
<td>a_{3p33}</td>
<td>-8.4(5)</td>
<td>-7.5(1.0)</td>
<td>-8.43(18)</td>
<td>-8.4(5)</td>
<td>-7.5(1.0)</td>
<td>-8.43(18)</td>
</tr>
</tbody>
</table>

Sigma-term (c_1)

<table>
<thead>
<tr>
<th></th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\pi N}$ (MeV)</td>
<td>43(5)</td>
<td>59(4)</td>
<td>59(2)</td>
<td>45(8)</td>
<td>64(7)</td>
<td>56(9)</td>
</tr>
</tbody>
</table>

Agreement with the PWA that provides the input. Never achieved before in ChEFT !!!
Agreement with the PWA that provides the input.

Never achieved before in ChEFT !!!
Subthreshold region

Agreement with the PWA that provides the input. Never achieved before in ChEFT !!!

Agreement with the dispersive results for first time!

Solves the problem found by Becher and Leutwyler!

Pion-nucleon coupling (d_{18})

<table>
<thead>
<tr>
<th></th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ-ChPT</td>
<td>Δ-ChPT</td>
<td>Δ-ChPT</td>
<td>Δ-ChPT</td>
<td>Δ-ChPT</td>
<td>Δ-ChPT</td>
<td>Δ-ChPT</td>
</tr>
<tr>
<td>a_{0+}</td>
<td>-2.02(41)</td>
<td>-1.65(15)</td>
<td>-1.56(5)</td>
<td>-1.48(15)</td>
<td>-1.20(13)</td>
<td>-0.95(17)</td>
</tr>
<tr>
<td>a_{0+}</td>
<td>0.02(6)</td>
<td>0.00(6)</td>
<td>0.00(6)</td>
<td>0.00(6)</td>
<td>0.00(6)</td>
<td>0.00(6)</td>
</tr>
<tr>
<td>a_{0+}</td>
<td>-15.2(4)</td>
<td>-7.4(16)</td>
<td>-7.0(13)</td>
<td>-5.1(17)</td>
<td>-4.5(9)</td>
<td>-4.2(9)</td>
</tr>
<tr>
<td>a_{0+}</td>
<td>-0.35(10)</td>
<td>-0.33(10)</td>
<td>-0.267(14)</td>
<td>-0.18(5)</td>
<td>-0.16(5)</td>
<td>-0.0892(41)</td>
</tr>
</tbody>
</table>

Agreement with the dispersive results for first time!

Solves the problem found by Becher and Leutwyler!

Table 12

<table>
<thead>
<tr>
<th>$\sigma_{\pi N}$ (MeV)</th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ-ChPT</td>
<td>Δ-ChPT</td>
<td>Δ-ChPT</td>
<td></td>
</tr>
<tr>
<td>43(5)</td>
<td>59(4)</td>
<td>59(2)</td>
<td></td>
</tr>
</tbody>
</table>

[Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]

Table 13

<table>
<thead>
<tr>
<th>Phase shifts in 0^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\partial \upmu$</td>
</tr>
<tr>
<td>φ</td>
</tr>
<tr>
<td>φ</td>
</tr>
<tr>
<td>φ</td>
</tr>
<tr>
<td>φ</td>
</tr>
</tbody>
</table>

The role of Chiral EFT in the precision era

J. M. Alarcón (UCM)
The pion-nucleon σ-term
The pion-nucleon σ-term

- The sigma-term is defined as

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$
• The sigma-term is defined as

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N| (\bar{u}u + \bar{d}d)|N\rangle$$

• Fundamental quantity in QCD
The pion-nucleon σ-term

- The sigma-term is defined as

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

- Fundamental quantity in QCD \(\rightarrow\) Measures of the strength of explicit chiral symmetry breaking.
The sigma-term is defined as

\[\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle \]

- Fundamental quantity in QCD measures the strength of explicit chiral symmetry breaking.
- It is important on searches of physics beyond the standard model.
The pion-nucleon σ-term

- The sigma-term is defined as

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

- Fundamental quantity in QCD Measures of the strength of explicit chiral symmetry breaking.
- It is important on searches of physics beyond the standard model.
 - Dark Matter detection
The sigma-term is defined as
\[
\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle
\]

• Fundamental quantity in QCD Measures of the strength of explicit chiral symmetry breaking.

• It is important on searches of physics beyond the standard model.
 • CP violation [de Vries, Mereghetti, Walker-Loud, PRC 92 (2015)]
The pion-nucleon σ-term

• The sigma-term is defined as

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

• Fundamental quantity in QCD Measures of the strength of explicit chiral symmetry breaking.

• It is important on searches of physics beyond the standard model.
 • CP violation [de Vries, Mereghetti, Walker-Loud, PRC 92 (2015)]

• Key to understand the origin of the mass of the ordinary matter:
The pion-nucleon σ-term

- The sigma-term is defined as
 \[
 \sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle
 \]

- Fundamental quantity in QCD Measures of the strength of explicit chiral symmetry breaking.

- It is important on searches of physics beyond the standard model.
 - CP violation [de Vries, Mereghetti, Walker-Loud, PRC 92 (2015)]

- Key to understand the origin of the mass of the ordinary matter:
 \[
 m_N = \frac{1}{2m_N} \langle N | \theta^\mu_\mu | N \rangle = \frac{1}{2m_N} \langle N | \frac{\beta}{2g} G^\mu_\nu G^a_\mu_\nu + \sum_{q=u,d,s} m_q \bar{q}q + \ldots | N \rangle
 \]

“2nd Workshop on The Proton Mass; At the Heart of Most Visible Matter”, ECT*, April 2017, Trento.
The pion-nucleon σ-term

- The sigma-term is defined as

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

- Fundamental quantity in QCD → Measures of the strength of explicit chiral symmetry breaking.

- It is important on searches of physics beyond the standard model.
 - CP violation [de Vries, Mereghetti, Walker-Loud, PRC 92 (2015)]

- Key to understand the origin of the mass of the ordinary matter:

$$m_N = \frac{1}{2m_N} \langle N | \theta^\mu_\mu | N \rangle = \frac{1}{2m_N} \langle N | \frac{\beta}{2g} G^\mu_\nu G^a_{\mu\nu} + \sum_{q=u,d,s} m_q \bar{q}q + \ldots | N \rangle$$

"2nd Workshop on The Proton Mass; At the Heart of Most Visible Matter", ECT*, April 2017, Trento.
• Tension between the “canonical” value and the updated evaluation:
The pion-nucleon σ-term

- Tension between the “canonical” value and the updated evaluation:

\[
\sigma \approx 45 \text{ MeV}, \quad \Sigma \approx 60 \text{ MeV}
\]
The pion-nucleon σ-term

- Tension between the “canonical” value and the updated evaluation:

\[\sigma \approx 45 \text{ MeV}, \quad \Sigma \approx 60 \text{ MeV} \]

\[\sigma_{\pi N} = 64 \text{ MeV} \quad \Sigma = 79 \text{ MeV} \]
The pion-nucleon σ-term

- Tension between the “canonical” value and the updated evaluation:

$$\sigma \approx 45 \text{ MeV, } \Sigma \approx 60 \text{ MeV}$$

$$\sigma_{\pi N} = 64 \text{ MeV} \quad \Sigma = 79 \text{ MeV}$$

- Despite GWU utilizes updated experimental information, the lower value was more common in the literature.
The pion-nucleon σ-term

- Tension between the “canonical” value and the updated evaluation:

$$\sigma \approx 45 \text{ MeV}, \quad \Sigma \approx 60 \text{ MeV}$$

- Despite GWU utilizes updated experimental information, the lower value was more common in the literature.
- $\sigma_{\pi N} \sim 60 \text{ MeV}$ was puzzling:
The pion-nucleon σ-term

- Tension between the “canonical” value and the updated evaluation:

 $\sigma \approx 45$ MeV, $\Sigma \approx 60$ MeV

 $\sigma_{\pi N} = 64$ MeV $\Sigma = 79$ MeV

- Despite GWU utilizes updated experimental information, the lower value was more common in the literature.

- $\sigma_{\pi N} \sim 60$ MeV was puzzling:
 - Large violation of the OZI rule.
The pion-nucleon σ-term

- Tension between the “canonical” value and the updated evaluation:

$$\sigma \approx 45 \text{ MeV}, \quad \Sigma \approx 60 \text{ MeV}$$

- Despite GWU utilizes updated experimental information, the lower value was more common in the literature.

- $\sigma_{\pi N} \sim 60$ MeV was puzzling:
 - Large violation of the OZI rule.
 - Restoration of chiral symmetry in nuclear matter at lower densities.

The pion-nucleon Σ term is definitely large: results from a G.W.U. analysis of πN scattering data

M.M. Pavana, R.A. Arndtb, I.I. Strakovskiyb and R.L. Workmanb

aUniversity of Regina
TRIUMF, Vancouver, B.C. V6T-2A3, Canada
bCenter for Nuclear Studies, Department of Physics,
The George Washington University, Washington, DC 20052, U.S.A.

$\sigma_{\pi N} = 64 \text{ MeV} \quad \Sigma = 79 \text{ MeV}$
The pion-nucleon σ-term

- Tension between the “canonical” value and the updated evaluation:

$$\sigma \approx 45 \text{ MeV}, \quad \Sigma \approx 60 \text{ MeV}$$

- Despite GWU utilizes updated experimental information, the lower value was more common in the literature.

- $\sigma_{\pi N} \sim 60 \text{ MeV}$ was puzzling:
 - Large violation of the OZI rule.
 - Restoration of chiral symmetry in nuclear matter at lower densities.
 - Necessary to give a picture fully consistent with phenomenology!
The pion-nucleon σ-term

• However, the scatt. lengths from π-atoms point to a large $\sigma_{\pi N}$!
However, the scattering lengths from π-atoms point to a large $\sigma_{\pi N}$!

\[\sigma_{\pi N} = \Sigma_d - (3.3 \pm 0.2) \text{ MeV} \]

[Gasser, Leutwyler and Sainio, PLB 253 (1991)]
The pion-nucleon σ-term

However, the scatt. lengths from π-atoms point to a large $\sigma_{\pi N}$!

\[\sigma_{\pi N} = \Sigma_d - (3.3 \pm 0.2) \text{ MeV} \]

Solution A: Fit to data of $[P. Y. Bertin et al., NPB 106 (1976)]$

\[a_{0+}^+ \approx -8 \times 10^{-3} M_\pi^{-1} \quad \rightarrow \quad \Sigma_d = 48 \pm 4 \pm 4 \pm 4 \text{ MeV} \]

Solution B: Fit to data of $[J. S. Frank et al., PRD 28 (1983)]$

\[a_{0+}^+ \approx -10 \times 10^{-3} M_\pi^{-1} \quad \rightarrow \quad \Sigma_d = 50 \pm 3 \pm 7 \pm 4 \text{ MeV} \]

[Gasser, Leutwyler and Sainio, PLB 253 (1991)]

J. M. Alarcón (UCM)
The pion-nucleon σ-term

- However, the scatt. lengths from π-atoms point to a large $\sigma_{\pi N}$!

Solution A: Fit to data of [P.Y. Bertin et al., NPB 106 (1976)]

$$a_0^+ \approx -8 \times 10^{-3} M_\pi^{-1} \quad \Rightarrow \quad \Sigma_d = 48 \pm 4 \pm 4 \pm 4 \text{ MeV}$$

Solution B: Fit to data of [J. S. Frank et al., PRD 28 (1983)]

$$a_0^+ \approx -10 \times 10^{-3} M_\pi^{-1} \quad \Rightarrow \quad \Sigma_d = 50 \pm 3 \pm 7 \pm 4 \text{ MeV}$$

$\sigma_{\pi N} = \Sigma_d - (3.3 \pm 0.2) \text{ MeV}$

[Gasser, Leutwyler and Sainio, PLB 253 (1991)]
However, the scattering lengths from $\pi\text{-atoms}$ point to a large $\sigma_{\pi N}$!

Solution A: Fit to data of $[P. Y. Bertin et al., NPB 106 (1976)]$

\[a_{0+}^+ \approx -8 \times 10^{-3} M_\pi^{-1} \quad \Sigma_d = 48 \pm 4 \pm 4 \pm 4 \text{ MeV} \]

Solution B: Fit to data of $[J. S. Frank et al., PRD 28 (1983)]$

\[a_{0+}^+ \approx -1 \times 10^{-3} M_\pi^{-1} \quad \Sigma_d = 50 \pm 3 \pm 7 \pm 4 \text{ MeV} \]

$\pi\text{-atoms}$ $[Baru, et al. NPA 872 (2011)]$

\[a_{0+}^+ \approx -1 \times 10^{-3} M_\pi^{-1} \quad \text{Larger } \Sigma_d! \]
However, the scattering lengths from $\pi\pi$-atoms point to a large $\sigma_{\pi\pi N}$!

Solution A: Fit to data of [P.Y. Bertin et al., NPB 106 (1976)]

$$a^+_{0+} \approx -8 \times 10^{-3} M^{-1}_\pi \quad \Sigma_d = 48 \pm 4 \pm 4 \pm 4 \text{ MeV}$$

Solution B: Fit to data of [J. S. Frank et al., PRD 28 (1983)]

$$a^+_{0+} \approx -10 \times 10^{-3} M^{-1}_\pi \quad \Sigma_d = 50 \pm 3 \pm 7 \pm 4 \text{ MeV}$$

$\pi\pi$-atoms [Baru et al., NPA 872 (2011)]

$$a^+_{0+} \approx -1 \times 10^{-3} M^{-1}_\pi \quad \text{Larger } \Sigma_d!$$

Threshold parameters determine $\sigma_{\pi\pi N}$ [Olsson, PLB 482 (2000)]
The pion-nucleon σ-term

• However, the scatt. lengths from $\pi\pi$-atoms point to a large $\sigma_{\pi N}$!

Solution A: Fit to data of [P.Y. Bertin et al., NPB 106 (1976)]

$$a_{0+}^+ \approx -8 \times 10^{-3} M_{\pi}^{-1} \quad \rightarrow \quad \Sigma_d = 48 \pm 4 \pm 4 \pm 4 \text{ MeV}$$

Solution B: Fit to data of [J. S. Frank et al., PRD 28 (1983)]

$$a_{0+}^+ \approx -10 \times 10^{-3} M_{\pi}^{-1} \quad \rightarrow \quad \Sigma_d = 50 \pm 3 \pm 7 \pm 4 \text{ MeV}$$

$\pi\pi$-atoms [Baru, et al., NPA 872 (2011)]

$$a_{0+}^+ \approx -1 \times 10^{-3} M_{\pi}^{-1} \quad \rightarrow \quad \text{Larger } \Sigma_d!$$

• Threshold parameters determine $\sigma_{\pi N}$ [Olsson, PLB 482 (2000)]

$$\bar{D}^+(0, 2M_{\pi}^2) = 14.5a_{0+}^+ - 5.06(a_{0+}^{(1/2)})^2 - 10.13(a_{0+}^{(3/2)})^2 - 5.55C(+) - 0.06a_{1-}^+ + 5.70a_{1+}^+ - (0.08 \pm 0.03)$$
The pion-nucleon σ-term

- However, the scattering lengths from $\pi\pi$-atoms point to a large $\sigma_{\pi N}$!

![Diagram showing pion-nucleon scattering lengths](Gasser, Leutwyler and Sainio, PLB 253 (1991))

Solution A: Fit to data of [P.Y. Bertin et al., NPB 106 (1976)]

\[a_{0+}^+ \approx -8 \times 10^{-3} M_\pi^{-1} \quad \Rightarrow \quad \Sigma_d = 48 \pm 4 \pm 4 \pm 4 \text{ MeV} \]

Solution B: Fit to data of [J. S. Frank et al., PRD 28 (1983)]

\[a_{0+}^+ \approx -10 \times 10^{-3} M_\pi^{-1} \quad \Rightarrow \quad \Sigma_d = 50 \pm 3 \pm 7 \pm 4 \text{ MeV} \]

$\pi\pi$-atoms [Baru, et al. NPA 872 (2011)]

\[a_{0+}^+ \approx -1 \times 10^{-3} M_\pi^{-1} \quad \Rightarrow \quad \text{Larger } \Sigma_d! \]

- Threshold parameters determine $\sigma_{\pi N}$ [Olsson, PLB 482 (2000)]

\[\bar{D}^+(0,2M_\pi^2) = 14.5a_{0+}^+ - 5.06(a_{0+}^{(1/2)})^2 - 10.13(a_{0+}^{(3/2)})^2 - 5.55 C^{(+)} - 0.06a_{1-}^+ + 5.70a_{1+}^+ - (0.08 \pm 0.03) \]

\[a_{0+}^+ = 3.5(2.6) \times 10^{-3} M_\pi^{-1} \quad \text{[Gashi, et al., NPA 778 (2006)]} \]

\[\sigma_{\pi N} = 56(9) \text{ MeV} \]
The pion-nucleon σ-term

- However, the scatt. lengths from $\pi\pi$-atoms point to a large $\sigma_{\pi N}$!

\[\sigma_{\pi N} = \Sigma_d - (3.3 \pm 0.2) \text{ MeV} \]

Solution A: Fit to data of [P.Y. Bertin et al., NPB 106 (1976)]
\[a_{0+}^+ \approx -8 \times 10^{-3} M_{\pi}^{-1} \quad \rightarrow \quad \Sigma_d = 48 \pm 4 \pm 4 \pm 4 \text{ MeV} \]

Solution B: Fit to data of [J. S. Frank et al., PRD 28 (1983)]
\[a_{0+}^+ \approx -10 \times 10^{-3} M_{\pi}^{-1} \quad \rightarrow \quad \Sigma_d = 50 \pm 3 \pm 7 \pm 4 \text{ MeV} \]

$\pi\pi$-atoms [Baru, et al. NPA 872 (2011)]
\[a_{0+}^+ \approx -1 \times 10^{-3} M_{\pi}^{-1} \quad \text{Larger} \quad \Sigma_d ! \]

- Threshold parameters determine $\sigma_{\pi N}$ [Olsson, PLB 482 (2000)]

\[\bar{D}^+(0,2M_{\pi}^2) = 14.5a_{0+}^+ - 5.06(a_{0+}^{(1/2)})^2 - 10.13(a_{0+}^{(3/2)})^2 - 5.55C^{(+) - 0.06a_{1-}^+ + 5.70a_{1+}^+ - (0.08 \pm 0.03) \]

\[a_{0+}^+ = 3.5(2.6) \times 10^{-3} M_{\pi}^{-1} \quad \text{[Gashi, et al., NPA 778 (2006)]} \]

\[\sigma_{\pi N} = 56(9) \text{ MeV} \]

In order to recover $\sigma_{\pi N} = 45 \text{ MeV}$ one needs $a_{0+}^+ \sim -9 \times 10^{-3} M_{\pi}^{-1}$
From our fits to KA85, WI08 and EM06, we obtain:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\pi N}$ (MeV)</td>
<td>43(5)</td>
<td>59(4)</td>
<td>59(2)</td>
<td>45(8)</td>
<td>64(7)</td>
<td>56(9)</td>
</tr>
</tbody>
</table>

The pion-nucleon σ-term
The pion-nucleon σ-term

- From our fits to KA85, WI08 and EM06, we obtain:

<table>
<thead>
<tr>
<th>$\sigma_{\pi N}$ (MeV)</th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>43(5)</td>
<td>59(4)</td>
<td>59(2)</td>
<td>45(8)</td>
<td>64(7)</td>
<td>56(9)</td>
</tr>
</tbody>
</table>

- NN scattering and $\pi\pi$-atoms can provide valuable external information to compare with.
The pion-nucleon σ-term

- From our fits to KA85, WI08 and EM06, we obtain:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\pi N}$ (MeV)</td>
<td>43(5)</td>
<td>59(4)</td>
<td>59(2)</td>
<td>45(8)</td>
<td>64(7)</td>
<td>56(9)</td>
</tr>
</tbody>
</table>

- NN scattering and π-atoms can provide valuable external information to compare with.

- Goldberger-Treiman violation:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>NN scattering $[1]$</th>
<th>π-atoms $[2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_{GT}</td>
<td>5.1(8)%</td>
<td>1.0(2.5)%</td>
<td>2.0(4)%</td>
<td>1.9(6)%</td>
<td>1.9(7)%</td>
</tr>
<tr>
<td>$g_{\pi N}$</td>
<td>13.53(10)</td>
<td>13.00(31)</td>
<td>13.13(5)</td>
<td>13.12(8)</td>
<td>13.12(9)</td>
</tr>
</tbody>
</table>
The pion-nucleon σ-term

• From our fits to KA85, W108 and EM06, we obtain:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>W108 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>KA85 Δ-ChPT</th>
<th>W108 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\pi N}$ (MeV)</td>
<td>43(5)</td>
<td>59(4)</td>
<td>59(2)</td>
<td>45(8)</td>
<td>64(7)</td>
<td>56(9)</td>
</tr>
</tbody>
</table>

• NN scattering and π-atoms can provide valuable external information to compare with.

• Goldberger-Treiman violation:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>W108 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>NN scattering $[1]$</th>
<th>π-atoms $[2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_{GT}</td>
<td>5.1(8)%</td>
<td>1.0(2.5)%</td>
<td>2.0(4)%</td>
<td>1.9(6)%</td>
<td>1.9(7)%</td>
</tr>
<tr>
<td>$g_{\pi N}$</td>
<td>13.53(10)</td>
<td>13.00(31)</td>
<td>13.13(5)</td>
<td>13.12(8)</td>
<td>13.12(9)</td>
</tr>
</tbody>
</table>
The pion-nucleon σ-term

- From our fits to KA85, WI08 and EM06, we obtain:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\pi N}$ (MeV)</td>
<td>43(5)</td>
<td>59(4)</td>
<td>59(2)</td>
<td>45(8)</td>
<td>64(7)</td>
<td>56(9)</td>
</tr>
</tbody>
</table>

- NN scattering and π-atoms can provide valuable external information to compare with.

- Goldberger-Treiman violation:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>NN scattering $[1]$</th>
<th>π-atoms $[2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_{GT}</td>
<td>5.1(8)%</td>
<td>1.0(2.5)%</td>
<td>2.0(4)%</td>
<td>1.9(6)%</td>
<td>1.9(7)%</td>
</tr>
<tr>
<td>$g_{\pi N}$</td>
<td>13.53(10)</td>
<td>13.00(31)</td>
<td>13.13(5)</td>
<td>13.12(8)</td>
<td>13.12(9)</td>
</tr>
</tbody>
</table>

- Γ_{Δ}:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>PDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_{Δ} (MeV)</td>
<td>128(3)</td>
<td>115(3)</td>
<td>125(2)</td>
<td>117(3)</td>
</tr>
</tbody>
</table>
The pion-nucleon σ-term

- From our fits to KA85, WI08 and EM06, we obtain:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\pi N}$ (MeV)</td>
<td>43(5)</td>
<td>59(4)</td>
<td>59(2)</td>
<td>45(8)</td>
<td>64(7)</td>
<td>56(9)</td>
</tr>
</tbody>
</table>

- NN scattering and π-atoms can provide valuable external information to compare with.

- Goldberger-Treiman violation:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>$NN \ [1]$ scattering</th>
<th>π-atoms $[2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_{GT}</td>
<td>5.1(8)%</td>
<td>1.0(2.5)%</td>
<td>2.0(4)%</td>
<td>1.9(6)%</td>
<td>1.9(7)%</td>
</tr>
<tr>
<td>$g_{\pi N}$</td>
<td>13.53(10)</td>
<td>13.00(31)</td>
<td>13.13(5)</td>
<td>13.12(8)</td>
<td>13.12(9)</td>
</tr>
</tbody>
</table>

- Γ_{Δ}:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>PDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_{Δ} (MeV)</td>
<td>128(3)</td>
<td>115(3)</td>
<td>125(2)</td>
<td>117(3)</td>
</tr>
</tbody>
</table>
From our fits to KA85, WI08 and EM06, we obtain:

<table>
<thead>
<tr>
<th></th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_{\pi N}) (MeV)</td>
<td>43(5)</td>
<td>59(4)</td>
<td>59(2)</td>
<td>45(8)</td>
<td>64(7)</td>
<td>56(9)</td>
</tr>
</tbody>
</table>

NN scattering and \(\pi\)-atoms can provide valuable external information to compare with.

Goldberger-Treiman violation:

<table>
<thead>
<tr>
<th></th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
<th>(\Gamma_D)</th>
<th>(\Delta GT)</th>
<th>(g_{\pi N})</th>
<th>(NN) scattering</th>
<th>(\pi)-atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\Delta)-ChPT</td>
<td>(\Delta)-ChPT</td>
<td>(\Delta)-ChPT</td>
<td>(\Delta)-ChPT</td>
<td>(\Delta)-ChPT</td>
<td>(\Delta)-ChPT</td>
<td>(\Delta)-ChPT</td>
<td>(\Delta)-ChPT</td>
</tr>
<tr>
<td>(\Delta GT)</td>
<td>5.1(8)%</td>
<td>1.0(2.5)%</td>
<td>2.0(4)%</td>
<td>1.9(6)%</td>
<td>1.9(7)%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g_{\pi N})</td>
<td>13.53(10)</td>
<td>13.00(31)</td>
<td>13.13(5)</td>
<td>13.12(8)</td>
<td>13.12(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\Gamma_D\):

<table>
<thead>
<tr>
<th></th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
<th>PDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma_D) (MeV)</td>
<td>128(3)</td>
<td>115(3)</td>
<td>125(2)</td>
<td>117(3)</td>
</tr>
</tbody>
</table>

\(a_{0+}\):

<table>
<thead>
<tr>
<th></th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
<th>(\pi)-atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{0+})</td>
<td>(10^{-3} M_{\pi}^{-1})</td>
<td>(10^{-3} M_{\pi}^{-1})</td>
<td>(10^{-3} M_{\pi}^{-1})</td>
<td>(10^{-3} M_{\pi}^{-1})</td>
</tr>
<tr>
<td>KA85 (\Delta)-ChPT</td>
<td>-11(10)</td>
<td>-1.2(3.3)</td>
<td>2.3(2.0)</td>
<td>-1.0(9)</td>
</tr>
</tbody>
</table>

• From our fits to KA85, WI08 and EM06, we obtain:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\pi N} (\text{MeV})$</td>
<td>43(5)</td>
<td>59(4)</td>
<td>59(2)</td>
<td>45(8)</td>
<td>64(7)</td>
<td>56(9)</td>
</tr>
</tbody>
</table>

• NN scattering and π-atoms can provide valuable external information to compare with.

• Goldberger-Treiman violation:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>NN scattering</th>
<th>π-atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_{GT}</td>
<td>5.1(8)%</td>
<td>1.0(2.5)%</td>
<td>2.0(4)%</td>
<td>1.9(6)%</td>
<td>1.9(7)%</td>
</tr>
<tr>
<td>$g_{\pi N}$</td>
<td>13.53(10)</td>
<td>13.00(31)</td>
<td>13.13(5)</td>
<td>13.12(8)</td>
<td>13.12(9)</td>
</tr>
</tbody>
</table>

• Γ_{Δ}:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>PDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma_{\Delta} (\text{MeV})$</td>
<td>128(3)</td>
<td>115(3)</td>
<td>125(2)</td>
<td>117(3)</td>
</tr>
</tbody>
</table>

• a_{0+}^+:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>π-atoms $[2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{0+}^+ (10^{-3} M_{\pi}^{-1})$</td>
<td>-11(10)</td>
<td>-1.2(3.3)</td>
<td>2.3(2.0)</td>
<td>-1.0(9)</td>
</tr>
</tbody>
</table>

The pion-nucleon σ-term

- From our fits to KA85, WI08 and EM06, we obtain:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\pi N}$ (MeV)</td>
<td>43(5)</td>
<td>59(4)</td>
<td>59(2)</td>
<td>45(8)</td>
<td>64(7)</td>
<td>56(9)</td>
</tr>
</tbody>
</table>

- NN scattering and π-atoms can provide valuable external information to compare with.

- Goldberger-Treiman violation:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>$N N$ scattering</th>
<th>π-atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_{GT}</td>
<td>5.1(8)$%$</td>
<td>1.0(2.5)$%$</td>
<td>2.0(4)$%$</td>
<td>1.9(6)$%$</td>
<td>1.9(7)$%$</td>
</tr>
<tr>
<td>$g_{\pi N}$</td>
<td>13.53(10)</td>
<td>13.00(11)</td>
<td>13.13(5)</td>
<td>13.12(8)</td>
<td>13.12(9)</td>
</tr>
</tbody>
</table>

- Γ_{Δ}:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>PDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_{Δ} (MeV)</td>
<td>128(3)</td>
<td>115(3)</td>
<td>125(2)</td>
<td>117(3)</td>
</tr>
</tbody>
</table>

- a_{0+}^+:

<table>
<thead>
<tr>
<th></th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>π-atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{0+}^+\left(10^{-3} M_{\pi}^{-1}\right)$</td>
<td>-11(10)</td>
<td>-1.2(3.3)</td>
<td>2.3(2.0)</td>
<td>-1.0(9)</td>
</tr>
</tbody>
</table>

The pion-nucleon σ-term

Convergence

$O(p^2)$

$O(p^3)$

$\sigma_{\pi N} = 78(4)$ MeV $- 19$ MeV $= 59(7)$ MeV

$\sigma_{\pi N} = 78(4)$ MeV $- 19$ MeV $= 59(7)$ MeV
The pion-nucleon σ-term

- **Convergence**

\[\mathcal{O}(p^2) \quad \mathcal{O}(p^3) \quad \mathcal{O}(p^{7/2}) \]

- $\mathcal{O}(p^2)$
 - $78(4)$ MeV

- $\mathcal{O}(p^3)$
 - -19 MeV

- $\mathcal{O}(p^{7/2})$
 - -6 MeV

\[\sigma_{\pi N} = 78(4) \text{ LO} \quad -19 \text{ NLO} \quad (6) \text{ N}\text{LO} \text{ MeV} = 59 \pm 4(\text{stat.}) \pm 6(\text{sys.}) \text{ MeV} = 59(7) \text{ MeV} \]
The pion-nucleon σ-term

- **Convergence**

<table>
<thead>
<tr>
<th>Order</th>
<th>Term</th>
<th>NLO</th>
<th>MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(p^2)$</td>
<td></td>
<td></td>
<td>78(4) MeV</td>
</tr>
<tr>
<td>$O(p^3)$</td>
<td></td>
<td>1</td>
<td>−19 MeV</td>
</tr>
<tr>
<td>$O(p^{7/2})$</td>
<td></td>
<td>1</td>
<td>−6 MeV</td>
</tr>
<tr>
<td>$O(p^4)$</td>
<td></td>
<td></td>
<td>−3(2) MeV</td>
</tr>
</tbody>
</table>

$$\sigma_{\pi N} = 78(4) \text{ MeV} ^{\text{LO}} - 19(6) \text{ MeV} ^{\text{NLO}} - 6 \text{ MeV} ^{\text{N^2LO}} = 59(7) \text{ MeV}$$
The pion-nucleon σ-term

- **Convergence**

\[
\begin{align*}
\mathcal{O}(p^2) & : 78(4) \text{ MeV} \\
\mathcal{O}(p^3) & : -19 \text{ MeV} \\
\mathcal{O}(p^{7/2}) & : -6 \text{ MeV} \\
\mathcal{O}(p^4) & : -3(2) \text{ MeV}
\end{align*}
\]

\[\sigma_{\pi N} = 78(4)_{\text{LO}} - 19(6)_{\text{NLO}} \text{ MeV} = 59\pm4(\text{stat.})\pm6(\text{sys.}) \text{ MeV} = 59(7) \text{ MeV}\]

- **Summarizing …**
The pion-nucleon σ-term

- **Convergence**

 \[
 \mathcal{O}(p^2) \quad \mathcal{O}(p^3) \quad \mathcal{O}(p^{7/2}) \quad \mathcal{O}(p^4)
 \]

 \[
 \begin{array}{c}
 2 \\
 78(4) \text{ MeV} \\
 \end{array}
 \begin{array}{c}
 1 \quad 1 \\
 -19 \text{ MeV} \\
 \end{array}
 \begin{array}{c}
 1 \\
 -6 \text{ MeV} \\
 \end{array}
 \begin{array}{c}
 2 \\
 -3(2) \text{ MeV} \\
 \end{array}
 \]

 \[
 \sigma_{\pi N} = 78(4)_{\text{LO}} -19_{\text{NLO}} (6)_{\text{NLO}} \text{ MeV} = 59 \pm 4(\text{stat.}) \pm 6(\text{sys.}) \text{ MeV} = 59(7) \text{ MeV}
 \]

- **Summarizing …**

 Modern πN scattering data
The pion-nucleon σ-term

• Convergence

\[\mathcal{O}(p^2) \quad \mathcal{O}(p^3) \quad \mathcal{O}(p^{7/2}) \quad \mathcal{O}(p^4) \]

\[\begin{array}{c}
\text{2} \\
78(4) \text{ MeV} \\
\end{array} \quad \begin{array}{c}
\text{1} \\
-19 \text{ MeV} \\
\end{array} \quad \begin{array}{c}
\text{1} \\
-6 \text{ MeV} \\
\end{array} \quad \begin{array}{c}
\text{2} \\
-3(2) \text{ MeV} \\
\end{array} \]

\[\sigma_{\pi N} = \left(\begin{array}{c}
\mathcal{O}(p^2) \\
78(4) \text{ MeV} \\
\end{array} \right)_{\text{LO}} \quad \left(\begin{array}{c}
\mathcal{O}(p^3) \\
-19 \text{ MeV} \\
\end{array} \right)_{\text{NLO}} \quad \left(\begin{array}{c}
\mathcal{O}(p^{7/2}) \\
-6 \text{ MeV} \\
\end{array} \right)_{\text{N^2LO}} \quad \left(\begin{array}{c}
\mathcal{O}(p^4) \\
-3(2) \text{ MeV} \\
\end{array} \right) \\
\]

\[= 59 \pm 4(\text{stat.}) \pm 6(\text{sys.}) \text{ MeV} = 59(7) \text{ MeV} \]

• Summarizing …

Modern πN scattering data

π-atoms

[Baru, et al. NPA 872 (2011)]
The pion-nucleon σ-term

- **Convergence**

 \[
 \mathcal{O}(p^2) \quad O(p^3) \quad O(p^{7/2}) \quad O(p^4)
 \]

 \[
 78(4) \text{ MeV} \quad -19 \text{ MeV} \quad -6 \text{ MeV} \quad -3(2) \text{ MeV}
 \]

 \[
 \sigma_{\pi N} = 78(4)\text{ MeV}^{\text{LO}} - 19\text{ MeV}^{\text{NLO}} (6)\text{ MeV}^{\text{N^2LO}} = 59 \pm 4(\text{stat.}) \pm 6(\text{sys.}) \text{ MeV} = 59(7) \text{ MeV}
 \]

- **Summarizing …**

Modern πN scattering data

π-atoms

[Baru, et al. NPA 872 (2011)]

$\sigma_{\pi N} = 59(7) \text{ MeV}$

[Alarcón, Martin Camalich and Oller, PRD 85 (2012)]
The pion-nucleon σ-term

- Convergence

\[\mathcal{O}(p^2) \]
\[\mathcal{O}(p^3) \]
\[\mathcal{O}(p^{7/2}) \]
\[\mathcal{O}(p^4) \]

<table>
<thead>
<tr>
<th>Term</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{O}(p^2)$</td>
<td>78(4) MeV</td>
</tr>
<tr>
<td>$\mathcal{O}(p^3)$</td>
<td>-19 MeV</td>
</tr>
<tr>
<td>$\mathcal{O}(p^{7/2})$</td>
<td>-6 MeV</td>
</tr>
<tr>
<td>$\mathcal{O}(p^4)$</td>
<td>-3(2) MeV</td>
</tr>
</tbody>
</table>

$$\sigma_{\pi N} = \frac{78(4)}{\text{LO}} - 19(6) \text{ MeV} = 59 \pm 4(\text{stat.}) \pm 6(\text{sys.}) \text{ MeV} = 59(7) \text{ MeV}$$

- Summarizing ...

Modern πN scattering data

π-atoms

[Baru, et al. NPA 872 (2011)]

$$\sigma_{\pi N} = 59(7) \text{ MeV}$$

[Alarcón, Martin Camalich and Oller, PRD 85 (2012)]
The pion-nucleon σ-term

- **Convergence**

\[
\begin{align*}
\mathcal{O}(p^2) & : 78(4) \text{ MeV} \\
\mathcal{O}(p^3) & : -19 \text{ MeV} \\
\mathcal{O}(p^{7/2}) & : -6 \text{ MeV} \\
\mathcal{O}(p^4) & : -3(2) \text{ MeV}
\end{align*}
\]

\[
\sigma_{\pi N} = \begin{cases}
78(4) \text{ MeV} & \text{LO} \\
-19 \text{ MeV} & \text{NLO} \\
6 \text{ MeV} & \text{N}^2\text{LO}
\end{cases}
\]

\[
\sigma_{\pi N} = 59(7) \text{ MeV}
\]

- **Summarizing ...**

Modern πN scattering data

π-atoms

[Baru, et al. NPA 872 (2011)]

$\sigma_{\pi N} = 59(7) \text{ MeV}$

[Alarcón, Martin Camalich and Oller, PRD 85 (2012)]
The pion-nucleon σ-term

- Convergence

$O(p^2)$

$O(p^3)$

$O(p^{7/2})$

$O(p^4)$

$\sigma_{\pi N} = \begin{cases} 78(4) \text{ MeV} & \text{LO} \\ -19 \text{ MeV} & \text{NLO} \\ -6 \text{ MeV} & \text{N}^2\text{LO} \\ -3(2) \text{ MeV} & \text{N}^3\text{LO} \end{cases}$

$\sigma_{\pi N} = 59(7) \text{ MeV} = 59 \pm 4(\text{stat.}) \pm 6(\text{sys.}) \text{ MeV}$

- Summarizing …

Modern πN scattering data

π-atoms

[Baru, et al. NPA 872 (2011)]

$\sigma_{\pi N} = 59(7) \text{ MeV}$

[Alarcón, Martin Camalich and Oller, PRD 85 (2012)]
The strangeness content of the nucleon

- The strangeness content of the nucleon is related to the sigma-term through

\[
\sigma_0 \equiv \frac{\hat{m}}{2m_N} \langle N | \bar{u}u + \bar{d}d - 2\bar{s}s | N \rangle
\]

J. M. Alarcón (UCM)
The strangeness content of the nucleon

- The strangeness content of the nucleon is related to the sigma-term through

\[\sigma_0 \equiv \frac{\hat{m}}{2m_N} \langle N | \bar{u}u + \bar{d}d - 2\bar{s}s | N \rangle \]

\[\sigma_s \equiv \frac{m_s}{2m_N} \langle N | \bar{s}s | N \rangle \]
The strangeness content of the nucleon

- The strangeness content of the nucleon is related to the sigma-term through

\[\sigma_0 \equiv \frac{\hat{m}}{2m_N} \langle N|\bar{u}u + \bar{d}d - 2\bar{s}s|N \rangle \]

\[\sigma_s \equiv \frac{m_s}{2m_N} \langle N|\bar{s}s|N \rangle \]

\[\sigma_s = \frac{m_s}{2\hat{m}} (\sigma_{\pi N} - \sigma_0) \]
The strangeness content of the nucleon

- The strangeness content of the nucleon is related to the sigma-term through:

\[
\sigma_0 \equiv \frac{\hat{m}}{2m_N} \langle N|\bar{u}u + \bar{d}d - 2\bar{s}s|N\rangle
\]

\[
\sigma_s \equiv \frac{m_s}{2m_N} \langle N|\bar{s}s|N\rangle \quad \Rightarrow \quad \sigma_s = \frac{m_s}{2\hat{m}} (\sigma_{\pi N} - \sigma_0) \sim 1.4
\]
The strangeness content of the nucleon

- The strangeness content of the nucleon is related to the sigma-term through

\[\sigma_0 \equiv \frac{\hat{m}}{2m_N} \langle N | \bar{u}u + \bar{d}d - 2\bar{s}s | N \rangle \]

\[\sigma_s \equiv \frac{m_s}{2m_N} \langle N | \bar{s}s | N \rangle \]

\[\sigma_s = \frac{m_s}{2\hat{m}} (\sigma_{\pi N} - \sigma_0) \approx 14 \]

- A reevaluation of \(\sigma_0 \) points to a larger value, a sigma-term of \(\sim 60 \text{ MeV} \) does not imply a large strangeness content
The strangeness content of the nucleon

- The strangeness content of the nucleon is related to the sigma-term through
 \[\sigma_0 \equiv \frac{\hat{m}}{2m_N} \langle N | \bar{u}u + \bar{d}d - 2\bar{s}s | N \rangle \]

- A reevaluation of \(\sigma_0 \) points to a larger value \(\sim 60 \text{ MeV} \) does not imply a large strangeness content.

- A new scenario emerges:

\[\sigma_s \equiv \frac{m_s}{2m_N} \langle N | \bar{s}s | N \rangle \]

\[\sigma_s = \frac{m_s}{2\hat{m}} (\sigma_{\pi N} - \sigma_0) \sim 14 \]

- \(\sigma_{\pi N} \approx 16/33 \)
The strangeness content of the nucleon

- The strangeness content of the nucleon is related to the sigma-term through
 \[\sigma_0 \equiv \frac{\hat{m}}{2m_N} \langle N|\bar{u}u + \bar{d}d - 2\bar{s}s|N \rangle \]

- \[\sigma_s \equiv \frac{m_s}{2m_N} \langle N|\bar{s}s|N \rangle \]

- \[\sigma_s = \frac{m_s}{2\hat{m}} (\sigma_{\pi N} - \sigma_0) \sim 14 \]

- A reevaluation of \(\sigma_0 \) points to a larger value, a sigma-term of \(\sim 60 \text{ MeV} \) does not imply a large strangeness content

- A new scenario emerges:

<table>
<thead>
<tr>
<th></th>
<th>(\sigma_{\pi N})</th>
<th>(\sigma_0)</th>
<th>(\sigma_s)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old scenario</td>
<td>45(8)</td>
<td>35(5)</td>
<td>130(91)</td>
<td>0.23</td>
</tr>
<tr>
<td>New scenario</td>
<td>59(7)</td>
<td>58(8)</td>
<td>16(80)</td>
<td>0.02(13)</td>
</tr>
</tbody>
</table>
The strangeness content of the nucleon

- The strangeness content of the nucleon is related to the sigma-term through
 \[\sigma_0 \equiv \frac{\hat{m}}{2m_N} \langle N | \bar{u}u + \bar{d}d - 2\bar{s}s | N \rangle \]

- \[\sigma_s \equiv \frac{m_s}{2m_N} \langle N | \bar{s}s | N \rangle \]
 \[\sigma_s = \frac{m_s}{2\hat{m}} (\sigma_{\pi N} - \sigma_0) \]

- A reevaluation of \(\sigma_0 \) points to a larger value \(\sigma_{\pi N} \) a sigma-term of \(\sim 60 \text{ MeV} \) does not imply a large strangeness content

- A new scenario emerges:

<table>
<thead>
<tr>
<th>(\sigma_{\pi N})</th>
<th>(\sigma_0)</th>
<th>(\sigma_s)</th>
<th>(\mathcal{Y})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old scenario</td>
<td>45(8)</td>
<td>35(5)</td>
<td>130(91)</td>
</tr>
<tr>
<td>New scenario</td>
<td>59(7)</td>
<td>58(8)</td>
<td>16(80)</td>
</tr>
</tbody>
</table>

- Compatible with modern experimental information.
- \(\sigma_s \) Compatible with LQCD.
Nucleon Polarizabilities & Lamb shift
Nucleon Polarizabilities & the Proton Radius Puzzle

- Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.
Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.

Show up in the theoretical prediction ($\mathcal{O}(\alpha_{em}^5)$) of the proton radius through the Lamb shift ΔE_{2P-2S}.
Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.

- Show up in the theoretical prediction \(\mathcal{O}(\alpha_{em}^5) \) of the proton radius through the Lamb shift \(\Delta E_{2P-2S} \).
- They have the potential to solve “Proton Radius Puzzle”:
Nucleon Polarizabilities & the Proton Radius Puzzle

- Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.
- Show up in the theoretical prediction ($\mathcal{O}(\alpha^5_{em})$) of the proton radius through the Lamb shift ΔE_{2P-2S}.
- They have the potential to solve “Proton Radius Puzzle”:

$$\Delta E_{2P-2S}^{exp} = \Delta E_{2P-2S}^{th}(r_E^{\text{CODATA}}) = 0.31 \text{ meV} = 310 \mu\text{eV}$$
Nucleon Polarizabilities & the Proton Radius Puzzle

- Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.
- Show up in the theoretical prediction \(\mathcal{O}(\alpha_{em}^5) \) of the proton radius through the Lamb shift \(\Delta E_{2P-2S} \).
- They have the potential to solve “Proton Radius Puzzle”:
 \[
 \Delta E_{2P-2S}^{\text{exp}} = \Delta E_{2P-2S}^{\text{th}}(r_E^{\text{CODATA}}) = 0.31 \text{ meV} = 310 \mu\text{eV}
 \]
- The polarizability contributions starts with the 2\(\gamma \) exchange.
Nucleon Polarizabilities & the Proton Radius Puzzle

- Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.
- Show up in the theoretical prediction \(\mathcal{O}(\alpha_{em}^5) \) of the proton radius through the Lamb shift \(\Delta E_{2P-2S} \).
- They have the potential to solve “Proton Radius Puzzle”:
 \[
 \Delta E_{2P-2S}^{exp} - \Delta E_{2P-2S}^{th}(r_{E}^{\text{CODATA}}) = 0.31 \text{ meV} = 310 \mu\text{eV}
 \]
- The polarizability contributions starts with the \(2\gamma \) exchange.

\[
T^{\mu\nu}(P, q) = -\left(g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) T_1(\nu^2, Q^2) + \frac{1}{M_p^2} \left(P^{\mu} - \frac{P \cdot q}{q^2} q^{\mu} \right) \left(P^{\nu} - \frac{P \cdot q}{q^2} q^{\nu} \right) T_2(\nu^2, Q^2)
\]
Nucleon Polarizabilities & the Proton Radius Puzzle

- Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.
- Show up in the theoretical prediction \(\mathcal{O}(\alpha_{\text{em}}^5) \) of the proton radius through the Lamb shift \(\Delta E_{2P-2S} \).
- They have the potential to solve “Proton Radius Puzzle”:

\[
\Delta E_{2P-2S}^{\text{exp}} - \Delta E_{2P-2S}^{\text{th}}(r_{E}\text{CODATA}) = 0.31 \text{ meV} = 310 \mu\text{eV}
\]
- The polarizability contributions starts with the \(2\gamma \) exchange.

\[
T^\mu\nu(P,q) = - \left(g^{\mu\nu} + \frac{q^\mu q^\nu}{q^2} \right) T_1(\nu^2,Q^2) + \frac{1}{M_p^2} \left(P^\mu - \frac{P\cdot q}{q^2} q^\mu \right) \left(P^\nu - \frac{P\cdot q}{q^2} q^\nu \right) T_2(\nu^2,Q^2)
\]

\[
\Delta E^{(pol)}_{2S} \approx \frac{\alpha_{\text{em}}^2}{\pi^2} \phi_n^2 \int_0^\infty \frac{dQ}{Q^2} w(\tau e) \left[T_1^{(NB)}(0,Q^2) - T_2^{(NB)}(0,Q^2) \right] \begin{align*}
T_1^{(NB)} &= 4\pi Q^2 \beta_{M1}(Q^2) + \ldots \\
T_2^{(NB)} &= 4\pi Q^2 [\alpha_{E1}(Q^2) + \beta_{M1}(Q^2)] + \ldots
\end{align*}
\]
The main contribution to the polarizabilities comes from the low Q^2 region.
Lamb shift

- The main contribution to the polarizabilities comes from the low Q^2 region \rightarrow Chiral EFT
Lamb shift

- The main contribution to the polarizabilities comes from the low Q^2 region → Chiral EFT
- Chiral EFT provides *predictions* of the leading contribution.
The main contribution to the polarizabilities comes from the low Q^2 region → Chiral EFT

Chiral EFT provides *predictions* of the leading contribution.

Important to reduce contributions from $Q^2 > \Lambda_{\chi_{SB}}^2$.
Lamb shift

- The main contribution to the polarizabilities comes from the low \(Q^2 \) region → Chiral EFT
- Chiral EFT provides predictions of the leading contribution.
- Important to reduce contributions from \(Q^2 > \Lambda_{\chi SB}^2 \).

\[
\Delta E_{2S}^{(pol)} \approx \frac{\alpha_{em}}{\pi} \Phi_n^2 \int_0^{Q_{max}} \frac{dQ}{Q^2} w(\tau_{\ell}) \left[T_1^{(NB)}(0, Q^2) - T_2^{(NB)}(0, Q^2) \right]
\]

\[
w(\tau_{\ell}) = \sqrt{1 + \tau_{\ell}} - \sqrt{\tau_{\ell}}
\]

\[
\tau_{\ell} = \frac{Q^2}{4m_{\ell}^2}
\]

\[\Delta E_{2S}^{(pol)} \text{ (\mu eV)}\]

\(Q_{max}^2 \text{ (GeV}^2\) \)

\[\{\text{Within the uncertainty of the calculation}\]

\[\{\text{Too large contribution from } Q^2 > \Lambda_{\chi SB}^2\}

[Alarcón, Lensky, Pascalutsa, EPJ C 74 (2014).]

J. M. Alarcón (UCM)
Lamb shift

- The relativistic structure is important to agree with phenomenological determinations of $\Delta E_{2S}^{(pol)}$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta E_{2S}^{(pol)}$</td>
<td>-12(2)</td>
<td>-11.5</td>
<td>-18.5</td>
<td>-7.4(2.4)</td>
<td>-8.5(1.1)</td>
<td>-15.3(5.6)</td>
<td>-8.2 $^{+2.0}_{-2.5}$</td>
<td>-26.5</td>
</tr>
</tbody>
</table>

- **Chiral EFT calculations**
- **Phenomenological determinations (dispersion relations+data)**

- Relativistic chiral EFT agrees with dispersive determinations!
Lamb shift

- The relativistic structure is important to agree with phenomenological determinations of $\Delta E_{2S}^{(\text{pol})}$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta E_{2S}^{(\text{pol})}$</td>
<td>-12(2)</td>
<td>-11.5</td>
<td>-18.5</td>
<td>-7.4(2.4)</td>
<td>-8.5(1.1)</td>
<td>-15.3(5.6)</td>
<td>-8.2 +2.0 -2.5</td>
<td>-26.5</td>
</tr>
</tbody>
</table>

- Chiral EFT calculations
- Phenomenological determinations (dispersion relations+data)

- Relativistic chiral EFT agrees with dispersive determinations!
Lamb shift

- The relativistic structure is important to agree with phenomenological determinations of $\Delta E_{2S}^{(\text{pol})}$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta E_{2S}^{(\text{pol})}$</td>
<td>-12(2)</td>
<td>-11.5</td>
<td>-18.5</td>
<td>-7.4(2.4)</td>
<td>-8.5(1.1)</td>
<td>-15.3(5.6)</td>
<td>-8.2</td>
<td>-26.5</td>
</tr>
</tbody>
</table>

- Relativistic chiral EFT agrees with dispersive determinations!

Form Factors & Proton Radius
Form Factors & Proton Radius

• Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
• Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
• Provide information about the nucleon internal structure.
• Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
• Provide information about the nucleon internal structure.
• Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) \(\rightarrow \) Moment of the GPD.
• Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
• Provide information about the nucleon internal structure.
• Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) \(\rightarrow \) Moment of the GPD.
• A deeper knowledge of the FFs is needed in order to understand the properties of the nucleon in terms of its QCD constituents.
Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.

- Provide information about the nucleon internal structure.
- Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) – Moment of the GPD.
- A deeper knowledge of the FFs is needed in order to understand the properties of the nucleon in terms of its QCD constituents.

Scalar FF:
- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.
- Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) \(\rightarrow \) Moment of the GPD.
- A deeper knowledge of the FFs is needed in order to understand the properties of the nucleon in terms of its QCD constituents.

Scalar FF:
- Encodes the response of the nucleon under scalar probes.
- Essential input in EFT of DM detection. [Bishara, et al., JCAP 1702 (2017)]
• Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
• Provide information about the nucleon internal structure.
• Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) —Moment of the GPD.
• A deeper knowledge of the FFs is needed in order to understand the properties of the nucleon in terms of its QCD constituents.
• Scalar FF:
 • Encodes the response of the nucleon under scalar probes.
 • Essential input in EFT of DM detection. [Bishara, et al., JCAP 1702 (2017)]
• Electromagnetic FF:
Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.
- Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) — Moment of the GPD.
- A deeper knowledge of the FFs is needed in order to understand the properties of the nucleon in terms of its QCD constituents.

Scalar FF:
- Encodes the response of the nucleon under scalar probes.
- Essential input in EFT of DM detection. [Bishara, et al., JCAP 1702 (2017)]

Electromagnetic FF:
- Encodes the response of the nucleon under electromagnetic probes.
- Important to understand and solve the “Proton Radius Puzzle”.
• ChEFT shows important limitations in calculating some interesting quantities like Form Factors.
Form Factors with ChEFT

- ChEFT shows important limitations in calculating some interesting quantities like Form Factors.
- Non-perturbative pion dynamics play an essential role in the Q^2 dependence of the Form Factors.
Form Factors with ChEFT

- ChEFT shows important limitations in calculating some interesting quantities like Form Factors.
- Non-perturbative pion dynamics play an essential role in the Q^2 dependence of the Form Factors.
Form Factors with ChEFT

- ChEFT shows important limitations in calculating some interesting quantities like Form Factors.
- Non-perturbative pion dynamics play an essential role in the Q^2 dependence of the Form Factors.

![Diagram showing Feynman diagrams for pion transitions](image)

![Graph showing imaginary part of electromagnetic form factor](image)
Form Factors with ChEFT

• ChEFT shows important limitations in calculating some interesting quantities like Form Factors.
• Non-perturbative pion dynamics play an essential role in the Q^2 dependence of the Form Factors.

Higher order calculations become necessary Unpractical
\begin{align*}
\langle N(p', s')|J_\mu(0)|N(p, s)\rangle &= \bar{u}(p', s')[\gamma_\mu F_1(t) + \frac{i\sigma_{\mu\nu} q^\nu}{2m_N} F_2(t)] u(p, s) \\
J_\mu(x) &= \sum_{q=u,d,\ldots} e_q \bar{q}(x) \gamma_\mu q(x)
\end{align*}
Form factors and their analytic structure

\[\langle N(p',s')|J_\mu(0)|N(p,s)\rangle = \bar{u}(p',s')[\gamma_\mu F_1(t) + \frac{i\sigma_{\mu\nu}q^\nu}{2m_N}F_2(t)]u(p,s) \]

\[J_\mu(x) = \sum_{q=u,d,...} e_q \bar{q}(x)\gamma_\mu q(x) \]

\[G_E(t) = F_1(t) + \frac{t}{4m_N^2} F_2(t) \]

\[G_M(t) = F_1(t) + F_2(t) \]

\[G_{E,M}^{V,S} = \frac{1}{2}(G_{E,M}^p \mp G_{E,M}^n) \]
Form factors and their analytic structure

\[
\langle N(p', s')|J_\mu(0)|N(p, s)\rangle = \bar{u}(p', s') \left[\gamma_\mu F_1(t) + \frac{i\sigma^{\mu\nu}q^\nu}{2m_N} F_2(t) \right] u(p, s)
\]

\[G_E(t) = F_1(t) + \frac{t}{4m_N^2} F_2(t) \]

\[G_M(t) = F_1(t) + F_2(t) \]

\[G_{E,M}^{V,S} = \frac{1}{2} (G_{E,M}^p \mp G_{E,M}^n) \]

\[J_\mu(x) = \sum_{q=u,d,...} e_q \bar{q}(x) \gamma_\mu q(x) \]
Form factors and their analytic structure

\[\langle N(p', s')|J_\mu(0)|N(p, s)\rangle = \bar{u}(p', s') \left[\gamma_\mu F_1(t) + \frac{i\sigma_{\mu\nu}q^\nu}{2m_N} F_2(t) \right] u(p, s) \]

\[J_\mu(x) = \sum_{q=u,d,...} e_q \bar{q}(x) \gamma_\mu q(x) \]

\[G_E(t) = F_1(t) + \frac{t}{4m_N^2} F_2(t) \]
\[G_M(t) = F_1(t) + F_2(t) \]
\[G_{E,M}^{V,S} = \frac{1}{2} (G_{E,M}^p \mp G_{E,M}^n) \]

Space-like region (\(t < 0 \))
Form factors and their analytic structure

\[\langle N(p', s')|J_\mu(0)|N(p, s)\rangle = \bar{u}(p', s')[\gamma_\mu F_1(t) + \frac{i\sigma_{\mu\nu}q^\nu}{2m_N} F_2(t)] u(p, s) \]

\[J_\mu(x) = \sum_{q=u,d,...} e_q \bar{q}(x) \gamma_\mu q(x) \]

\[G_E(t) = F_1(t) + \frac{t}{4m_N^2} F_2(t) \]

\[G_M(t) = F_1(t) + F_2(t) \]

\[G_{E,M}^{V,S} = \frac{1}{2}(G_{E,M}^p \mp G_{E,M}^n) \]

Space-like region (\(t < 0 \))

Time-like region (\(t > 0 \))

\[t = -Q^2 \]
From unitarity + analyticity

$$\text{Im} G_{E,M} \propto \sum_h \int d\Pi_h \ M(\gamma^* \rightarrow h) M(h \rightarrow \bar{N}N)$$
Form factors and their analytic structure

- From unitarity + analyticity

\[\text{Im} G_{E,M} \propto \sum_h \int d\Pi_h \, M(\gamma^* \to h)M(h \to \bar{N}N) \]
From unitarity + analyticity

$$\text{Im}G_{E,M} \propto \sum_h \int d\Pi_h \ M(\gamma^* \to h)M(h \to \bar{N}NN)$$
Form factors and their analytic structure

- From unitarity + analyticity

$$\text{Im} G_{E,M} \propto \sum_h \int d\Pi_h \, M(\gamma^* \rightarrow h) M(h \rightarrow \tilde{N}N)$$

 Isovector

 Isoscalar

 Isovector

 Isovector

 ...
From unitarity + analyticity

\[\text{Im} G_{E,M} \propto \sum \int d\Pi_h \ M(\gamma^* \to h)M(h \to \bar{N}N) \]

Diagram:
- Isovector
- Isoscalar
- Isovector
From unitarity + analyticity

\[\text{Im} G_{E,M} \propto \sum_h \int d\Pi_h \, M(\gamma^* \to h)M(h \to \bar{N}N) \]

\[\text{Im} G_{V}^{E}(t) = \frac{k_{cm}^{3}}{m_{N}\sqrt{t}} F_{\pi}^{*}(t)f_{+}^{1}(t) \]

\[\text{Im} G_{V}^{M}(t) = \frac{k_{cm}^{3}}{\sqrt{2t}} F_{\pi}^{*}(t)f_{-}^{1}(t) \]
Form factors and their analytic structure

• From unitarity + analyticity

\[\text{Im} G_{E,M} \propto \sum_h \int d\Pi_h \, M(\gamma^* \rightarrow h) M(h \rightarrow \bar{N}N) \]

\[\text{Im} G^V_E(t) = \frac{k^3_{cm}}{m_N \sqrt{t}} F^*_\pi(t) f^1_+(t) \]

\[\text{Im} G^V_M(t) = \frac{k^3_{cm}}{\sqrt{2t}} F^*_\pi(t) f^1_-(t) \]

\[\text{Im} G^V_{E,M}(t) = \frac{k^3_{cm}}{\{m_N, \sqrt{2}\} \sqrt{t}} F^*_\pi(t) f^1_\pm(t) \]
Form factors and their analytic structure

- From unitarity + analyticity

\[\text{Im} G_{E,M} \propto \sum_h \int d\Pi_h \; M(\gamma^* \rightarrow h) M(h \rightarrow \bar{N}N) \]

\[\text{Im} G_V^E(t) = \frac{k_\text{cm}^3}{m_N \sqrt{t}} F_\pi^*(t) f_+^1(t) \]

\[\text{Im} G_V^M(t) = \frac{k_\text{cm}^3}{\sqrt{2t}} F_\pi^*(t) f_-^1(t) \]

Non-Perturbative
Form factors and their analytic structure

- From unitarity + analyticity

$$\text{Im} G_{E,M} \propto \sum_h \int d\Pi_h \ M(\gamma^* \rightarrow h) M(h \rightarrow \bar{N}N)$$

\[\gamma^* \rightarrow \pi N \rightarrow \pi N \]

\[\gamma^* \rightarrow F_\pi \rightarrow f_\pm \]

\[\gamma^* \rightarrow \pi \rightarrow \pi \]

\[\gamma^* \rightarrow \pi \rightarrow \pi \]

\[\gamma^* \rightarrow \pi \rightarrow \pi \]

Isovector

Isoscalar

Isoscalar

Non-Perturbative

$$\text{Im} G_{E,M}^V(t) = \frac{k_{cm}^3}{m_N \sqrt{2} \sqrt{t}} F_\pi^*(t) f_\pm^1(t)$$

$$\text{Im} G_{E,M}^V(t) = \frac{k_{cm}^3}{\sqrt{2}t} F_\pi^*(t) f_\pm^1(t)$$
Form factors and their analytic structure

• From unitarity + analyticity

\[
\text{Im} G_{E,M} \propto \sum_h \int d\Pi_h \, M(\gamma^* \to h) M(h \to \bar{N}N)
\]

\[
\text{Im} G_V(t) = \frac{k_{\text{cm}}^3}{m_N \sqrt{t}} F_{\pi}^*(t) f_+^1(t)
\]

\[
\text{Im} G_M(t) = \frac{k_{\text{cm}}^3}{\sqrt{2t}} F_{\pi}^*(t) f_-^1(t)
\]

Non-Perturbative

[Frazer and Fulco, Phys. Rev. 117, 1609 (1960)]
From unitarity + analyticity

\[
\text{Im} G_{E,M} \propto \sum_h \int d\Pi_h \, M(\gamma^* \to h) M(h \to \bar{N}N)
\]

\[
\text{Im} G^V_{E,M}(t) = \frac{k_{cm}^3}{m_N \sqrt{t}} F^*_\pi(t) f_\pm(t)
\]

\[
\text{Im} G^V_{E,M}(t) = \frac{k_{cm}^3}{\sqrt{2}t} F^*_\pi(t) f_\pm(t)
\]

[Frazer and Fulco, Phys. Rev. 117, 1609 (1960)]
Form factors and their analytic structure

- From unitarity + analyticity

\[
\text{Im} G_{E,M} \propto \sum_h \int d\Pi_h \, M(\gamma^* \to h) M(h \to \bar{N}N)
\]

\[
\text{Im} G_V(t) = \frac{k_{cm}^3}{m_N \sqrt{t}} F_\pi^*(t) f_\pm^1(t)
\]

\[
\text{Im} G_M(t) = \frac{k_{cm}^3}{\sqrt{2t}} F_\pi^*(t) f_\mp^1(t)
\]

\[
\text{Im} G_{E,M}^V(t) = \frac{k_{cm}^3}{\{m_N, \sqrt{2}\} \sqrt{t}} F_\pi^*(t) f_\pm^1(t)
\]

\[
\text{Im} G_{E,M}^M(t) = \frac{k_{cm}^3}{\{m_N, \sqrt{2}\} \sqrt{t}} |F_\pi(t)|^2 \frac{f_\pm^1(t)}{F_\pi(t)} J_\pm^1
\]
$$\text{Im}G_E^V(t) = \frac{k_{cm}^3}{m_N \sqrt{t}} |F_\pi(t)|^2 J_+^1(t)$$

$$\text{Im}G_M^V(t) = \frac{k_{cm}^3}{\sqrt{2t}} |F_\pi(t)|^2 J_-^1(t)$$
\[
\text{Im} G^V_E(t) = \frac{\kappa^3_{cm}}{m_N \sqrt{t}} |F_\pi(t)|^2 J^1_+(t) \quad \text{ChEFT}
\]
\[
\text{Im} G^V_M(t) = \frac{\kappa^3_{cm}}{\sqrt{2t}} |F_\pi(t)|^2 J^1_-(t) \quad \text{ChEFT}
\]
$$\text{Im} G^V_E(t) = \frac{k^3_{cm}}{m_N \sqrt{t}} |F_\pi(t)|^2 J^1_+(t)$$

Experiment

ChEFT

$$\text{Im} G^V_M(t) = \frac{k^3_{cm}}{\sqrt{2t}} |F_\pi(t)|^2 J^1_-(t)$$

Experiment

ChEFT
\[\text{Im} G_V^E(t) = \frac{k^3_{cm}}{m_N \sqrt{t}} |F_\pi(t)|^2 J_+^1(t) \]
ChEFT

\[\text{Im} G_V^M(t) = \frac{k^3_{cm}}{\sqrt{2t}} |F_\pi(t)|^2 J_1^1(t) \]
ChEFT

\[\text{Im} G_V^E(t) = \frac{k^3_{cm}}{m_N \sqrt{t}} |F_\pi(t)|^2 J_+^1(t) \]
ChEFT

\[\text{Im} G_V^M(t) = \frac{k^3_{cm}}{\sqrt{2t}} |F_\pi(t)|^2 J_1^1(t) \]
ChEFT

J. M. Alarcón (UCM)
The role of Chiral EFT in the precision era
26/33
To compute the EM form factors of proton and neutron, we need the isoscalar component as well.
To compute the EM form factors of proton and neutron, we need the isoscalar component as well.

One cannot apply the same approach as in the isovector case.
To compute the EM form factors of proton and neutron, we need the isoscalar component as well.

One cannot apply the same approach as in the isovector case.

We parametrize the isoscalar spectral function through the ω exchange in the narrow with approximation $+ \text{higher mass pole } P_s$.

DIxEFT
To compute the EM form factors of proton and neutron, we need the isoscalar component as well.

One cannot apply the same approach as in the isovector case.

We parametrize the isoscalar spectral function through the ω exchange in the narrow with approximation + higher mass pole P_S.

\[
\text{Im} G^{S, E,M}_{E,M} = -\pi \sum_{V=\omega, P_S} a^{E,M}_i \delta(t - M_i^2)
\]
To compute the EM form factors of proton and neutron, we need the isoscalar component as well.

One cannot apply the same approach as in the isovector case.

We parametrize the isoscalar spectral function through the ω exchange in the narrow with approximation + higher mass pole P_S.

We fix the couplings by imposing the charge and radii sum rules:

$$\text{Im} G_{E,M}^S(t) = -\pi \sum_{V=\omega,P_S} \alpha_{i,E,M}^S \delta(t - M_i^2)$$

$$G_{E,M}^S(0) = \frac{1}{\pi} \int_{4M_i^2}^{\infty} dt' \frac{\text{Im} G_{E,M}^S(t')}{t'}$$

$$\langle r_{E,M}^2 \rangle^S = \frac{6}{\pi} \int_{4M_i^2}^{\infty} dt' \frac{\text{Im} G_{E,M}^S(t')}{t'^2}$$
Reconstructing the form factors with

\[G_{E,M}^{p,n}(t) = \frac{1}{\pi} \int_{4M^2}^{\infty} dt' \frac{\text{Im} G_{E,M}^{p,n}(t')}{t' - t - i0^+} \]
Reconstructing the form factors with

\[G_{E,M}^{p,n}(t) = \frac{1}{\pi} \int_{4M^2}^{\infty} dt' \frac{\text{Im} G_{E,M}^{p,n}(t')}{t' - t - i0^+} \]
\[\chi^2(r_E^p) \equiv N^{-1} \sum_{\text{bins}} \frac{(\text{thy}_i - \text{fit}_i)^2}{(\Delta \text{thy}_i)^2 + (\Delta \text{fit}_i)^2} \]

\{ \text{thy}_i \equiv G_E^p(Q_i^2) \ [\text{DIxEFT, given } r_E^p], \\
\text{fit}_i \equiv G_E^p(Q_i^2) \ [\text{global fit, given } r_E^p] \}

Figure: Reduced \(\chi^2 \) as a function of the proton radius \(r_E^p \) for different \(Q_{\text{max}} \) values.

\[r_E^p = 0.844(7) \text{ fm} \]

Summary and Conclusions
Summary and Conclusions

• Chiral EFT is a useful tool to investigate hadronic processes at low energies from first principles.
• It provided important hadronic input for searches of physics beyond the standard model:
 • Dark Matter searches: $\sigma_{\pi N}$, t-dependence of the scalar FF ($D\chi$EFT).
 • Proton Radius Puzzle: ΔE_{2P-2S}, moments of the EM FF ($D\chi$EFT), Proton radius from $e^- p$ agrees with $\mu H \rightarrow r_E^p = 0.844(7)$ fm
• Insights into the origin of mass:

<table>
<thead>
<tr>
<th>m_p</th>
<th>$59(7)$ MeV</th>
<th>$16(80)$ MeV</th>
<th>$860(87)$ MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>$6.3(7)$%</td>
<td>$1.7(8.5)$%</td>
<td>$92.0(9.3)$%</td>
</tr>
</tbody>
</table>

• Prominent role in the solution of current and future challenges in hadron and nuclear physics.
FIN
Spares
Fits to PWAs
Fits to PWAs

Fits to KA85

\[S_{31} \]

\[S_{11} \]

\[P_{31} \]

\[P_{11} \]

\[P_{33} \]

\[P_{13} \]

\[\Delta \text{-less ChPT} \]

\[\Delta \text{-ChPT} \]

[Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]

J. M. Alarcón (JLab)

The role of Chiral EFT in the precision era
Fits to PWAs

Fits to EM06

\[S_{31} \quad S_{11} \]
\[P_{31} \quad P_{11} \]
\[P_{33} \quad P_{13} \]

Δ-less ChPT

Δ-ChPT

[Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]
Consequences of $\sigma_{\pi N}$ for nuclear matter
Consequences of $\sigma_{\pi N}$ for nuclear matter

\[
\langle \Omega | \bar{q}q | \Omega \rangle = \langle 0 | \bar{q}q | 0 \rangle \left(1 - \frac{\sigma_{\pi N}}{M_\pi^2 f_\pi^2} \rho + \ldots \right)
\]

- Restoration of chiral symmetry requires a zero temporal component of f

\[
f_t = f_\pi \left\{ 1 + \frac{2\rho}{f^2} \left(c_2 + c_3 - \frac{g_A^2}{8m_N} \right) \right\}
\]
- This plot is for $m_0 = 750$ MeV, which is equivalent to fix b_0.
- Gasser points out that the natural choice is $\Lambda = 1$ GeV because corresponds to the axial vector form factor fit given by Sehgal [Sehgal, “Proceedings of the International Conference on High Energy Physics”].
- He finally takes $\Lambda = 700$ MeV because for $\Lambda = 1$ GeV the mass shift of the nucleon due to massless pions is -200 MeV while for $\Lambda = 700$ MeV is -90 MeV.

Comparison with HB

<table>
<thead>
<tr>
<th></th>
<th>Octet</th>
<th>$\mathcal{O}(p^3)$</th>
<th>Octet + Decuplet</th>
<th>$\mathcal{O}(p^3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HB</td>
<td>Cov.</td>
<td>HB</td>
<td>Cov.</td>
</tr>
<tr>
<td>σ_0 (MeV)</td>
<td>58(23)</td>
<td>46(8)</td>
<td>89(23)</td>
<td>58(8)</td>
</tr>
</tbody>
</table>
Subthreshold region
Subthreshold region

- The disagreement found in [Becher and Leutwyler, JHEP (2001)] is related to the disagreement in the subthreshold expansion.

\[T(\nu, t) = \bar{u} \left(D(\nu, t) - \frac{1}{4m_N} B(\nu, t)[q, q'] \right) u \]

\[\bar{D}^+(\nu, t) = d_{00}^+ + d_{01}^+ t + d_{10}^+ \nu^2 + d_{02}^+ t^2 + \ldots \]

\[\bar{D}^- (\nu, t) = d_{00}^- \nu + d_{01}^- \nu t + d_{10}^- \nu^3 + \ldots \]

\[\bar{B}^+(\nu, t) = b_{00}^+ \nu + \ldots \]

\[\bar{B}^- (\nu, t) = b_{00}^- + \ldots \]

<table>
<thead>
<tr>
<th>KA85</th>
<th>WI08</th>
<th>EM06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ-ChPT</td>
<td>Δ-ChPT</td>
<td>Δ-ChPT</td>
</tr>
<tr>
<td>(d_{00}^+ (M_{\pi}))</td>
<td>-2.02(41)</td>
<td>-1.65(28)</td>
</tr>
<tr>
<td>(d_{01}^+ (M_{\pi}))</td>
<td>1.73(19)</td>
<td>1.70(18)</td>
</tr>
<tr>
<td>(d_{10}^+ (M_{\pi}))</td>
<td>1.81(16)</td>
<td>1.60(18)</td>
</tr>
<tr>
<td>(d_{00}^- (M_{\pi}))</td>
<td>0.02(16)</td>
<td>0.021(6)</td>
</tr>
<tr>
<td>(b_{00}^+ (M_{\pi}))</td>
<td>-6.5(2.4)</td>
<td>-7.4(2.3)</td>
</tr>
<tr>
<td>(b_{00}^- (M_{\pi}))</td>
<td>1.81(24)</td>
<td>1.68(16)</td>
</tr>
<tr>
<td>(d_{00}^- (M_{\pi}))</td>
<td>-0.17(6)</td>
<td>-0.20(5)</td>
</tr>
<tr>
<td>(d_{10}^- (M_{\pi}))</td>
<td>-0.35(10)</td>
<td>-0.33(10)</td>
</tr>
<tr>
<td>(b_{00}^+ (M_{\pi}))</td>
<td>17(7)</td>
<td>17(7)</td>
</tr>
</tbody>
</table>

\[\Sigma = f_\pi^2 (d_{00}^+ + 2M_{\pi}^2 d_{01}^+ + \ldots) \]

\[\Sigma_d = \frac{f_\pi^2 (4M_{\pi}^4 d_{02}^+ + \ldots)}{\Delta_d} \]

\[\Delta_d - \Delta_{\sigma} = -3.3(2) \text{ MeV (disp.)} \]

\[\Delta^{(3)}_d - \Delta^{(3)}_{\sigma} = -3.5(2.0) \text{ MeV (O(p^3) ChEFT)} \]

[Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]

Agreement with the dispersive results!

- CD theorem: \(\Sigma \equiv \int f_\pi^2 \tilde{D}^+(0, 2M_{\pi}^2) = \sigma(t = 2M_{\pi}^2) + \Delta_R = \sigma_{\pi N} + \Delta_{\sigma} + \Delta_R \)

\[\Delta_{\sigma} = \sigma_{\pi N} = \Sigma_d + \Delta_D - \Delta_{\sigma} - \Delta_R \]

\[\Delta_D - \Delta_{\sigma} = -3.3(2) \text{ MeV (disp.)} \]

\[\Delta^{(3)}_D - \Delta^{(3)}_{\sigma} = -3.5(2.0) \text{ MeV (O(p^3) ChEFT)} \]

\[(\text{Underestimated in } \sim 10 \text{ MeV}) \]

\[(\text{Remains small}) \]

Underestimated in \(\sim 10 \) MeV as well!
The sigma-term puzzle
The sigma-term puzzle

- Phenomenological extractions rely on two different sources:
 - \(\pi N \)-scattering data
 - Inconsistent data base \((\pi^\pm N \rightarrow \pi^\pm N \text{ vs CEX reactions})\)
 - Coulomb [Tromborg, Waldenstrom and Overbo, PRD 15 (1977)].
 - \(\pi \)-atom spectroscopy
 - Experimental uncertainties negligible compared to theoretical error relating \((\epsilon, \Gamma)\) to \(a^\pm\).
 - \(\pi D\) scattering, isospin violation, Coulomb…

What can be done?

- Analysis of the \(\pi N\) world data base.
- Reanalysis of Coulomb corrections.
- Reanalysis of extraction of SL through \(\epsilon\) and \(\Gamma\).