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Motivation.

LHC - high energy hadronic collisions interesting correlations are observed
in particle production (i.e. ”ridge” correlations) in p-p, p-Pb and Pb-Pb
collisions.

Do they arise due to strong final state interactions?

Do they arise due to nontrivial initial state structure?

The question is not quite settled yet, partly because we do not have a
robust understanding of the hadronic wave function.

In particular - there must be correlation between density fluctuations and
transverse momentum fluctuations in the wave function.

Main motivation - initiate approach which can give us a handle on
understanding this type of initial state correlations.
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Color Glass Condensate - hadronic scattering at high
energy.

At high energy hadronic scattering is relatively simple.
CGC ”paradigm”:
A “projectile” hadron |P〉 and a ”target” hadron |T 〉 at high energy
scatter eikonally

<T|| P>

|P〉 - a distribution of (possibly large) color charge density ja(x).
|T 〉- an ensemble of (possibly strong) color fields αa(x).
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Not all is relevant

The scattering matrix is eikonal:

Ŝ = exp{i
∫

d2x⊥j
a
P(x⊥)αa

T (x⊥)}

In the extreme high energy limit the color field looks like a shock wave -
has infinitesimal with in the longitudinal direction.

Longitudinal structure becomes irrelevant.

Projectile color charge density and target color charge fields effectively
depend only on transverse coordinates.

jaP(x⊥) =

∫
x−

jaP(x⊥, x
−), αa

T (x⊥) =

∫
dx+αT (x⊥, x

+)
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CGC as EFT

At high energy most degrees of freedom become irrelevant.

The scattering matrix knows only about the total (transverse) color charge
density in the projectile
In the CGC setup one ”integrates out” all gluonic DoF save total color
charge density ja(x⊥).

Any observable that depends only on ja(x⊥) is calculated as

〈O(j)〉 =

∫
DjW [j ]O(j)

Strictly ja(x⊥) are not mutually commuting, so some modifications are
necessary. But when ja ∼ 1/αs , this is irrelevant.
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Energy dependence.

The ”probability density” W [j ] depends on energy.

Why?

Boost the projectile - new gluons are emitted into the wave function.
These gluons contribute additional color charge density - so the
distribution changes with energy.

The leading order in QCD coupling (but to all orders in the charge
density!) the energy evolution with energy has been known for a while.

Gribov-Levin-Ryskin (GLR 1983); Balitsky hierarchy (1996); Kovchegov
equation (1999); JIMWLK Hamiltonian(1997-2001)
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JIMWLK evolution.

The ”probability density” W [j ] depends on energy (rapidity) via the JIMWLK
equation:

d

dη
W [j ] = HJIMWLKW [j ]

Define a unitary matrix S(x) = P exp{i
∫
x− T

aA+a(x−, x)} (single gluon scattering
amplitude)
It is related to the color charge by classical Yang-Mills equations:

i

g
∂i [S

†∂iS ] = j

Then

HJIMWLK =
αs

2π2

∫
d2z Qa

i (z)Qa
i (z)

the Hermitian amplitude Qa
i (z) is the “single inclusive gluon emission amplitude”

Qa
i (z) =

∫
d2x

(x − z)i
(x − z)2

[Sab(z)− Sab(x)]JbR(x) .

the generators of color rotation JR

JaR(x) = −tr
{
S(x)T a δ

δS†(x)

}
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But is that all there is?

Not all interesting operators depend only on j!

Simple example: scattering matrix on a dense target.

Ŝ† ĵ(x⊥)Ŝ = V (x⊥)ĵ(x⊥) ,

For dense target V is a unitary matrix which is far away from unity.
Clearly S does not commute with j!

Another type of observables which are not diagonal in the j basis - see
later.
To accommodate such observables one needs to consider a nondiagonal
density matrix

ρ̂ : 〈j |ρ̂|j ′〉 6= δ(j − j ′)

The averages are now calculated as

〈O〉 = Tr[Oρ̂] =

∫
DjDj ′〈j |O|j ′〉〈j ′|ρ̂|j〉
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How does ρ̂ evolve?

No proper derivation - so treat it as ”intelligent guess” (but work in
progress with Ming Li)

d

dy
ρ[j , j ′] =

∫
d2z⊥

2π

[
Qa

i [z⊥, j ] + Qa
i [z⊥, j

′]
]2
ρ[j , j ′] ,

This can be rewritten in the operator form

d

dy
ρ̂ =

∫
d2z⊥

2π

[
Q̂a

i [z⊥],
[
Q̂a

i [z⊥], ρ̂
]]
,

Where is JIMWLK?
Interesting property: for any function F [j , j ′]∫

d2z⊥
2π

[
Qa

i [z⊥, j ] + Qa
i [z⊥, j

′]
]2
F [j , j ′]|j=j ′ =

∫
d2z⊥

2π

[
Qa

i [z⊥, j ]
]2
F [j , j ]

Diagonal matrix elements of ρ̂ : W [j ] = 〈j |ρ̂|j〉 evolve autonomously
according to JIMWLK!
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Kossakowski-Lindblad evolution

(Almost) General form consistent with Markovian evolution (no memory)

d

dt
ρ̂ = i [H, ρ̂] + [Qi , [Qi , ρ̂]]

Preserves:
1. Positivity of eigenvalues of ρ̂,
2. Trace of ρ̂.
Thus preserves properties of ρ̂ as a density matrix.
Qi - Lindblad or ”jump operator” - related with the jump of the ”bath”
into a different quantum state. In our case indeed Q - the soft gluon
production amplitude, so the soft gluon ”bath” changes state.
Process is Markovian if the ”integrated” degrees of freedom are very fast -
then the memory of their state is lost within one time step of the evolution.
Note: our evolution is not in time, but it still turns out to be Lindblad.
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Exploring properties of ρ̂.

What do we expect from ρ̂ at high energy?

Basically we expect it to become more and more diagonal, since the
rapidity evolution has to lead to more and more decoherence.

Does the (ever decreasing) nondiagonality matter?

Will study this in a simple Gaussian approximation.
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Gaussian density matrix.

Let us take a simple ansatz:

ρ[α, α′] = N exp

{∫
d2x⊥d

2y⊥trc[
− (α(x⊥) + α′(x⊥))µ−2y (x⊥, y⊥)(α(y⊥) + α′(y⊥))

− (α(x⊥)− α′(x⊥))λ−2y (x⊥, y⊥)(α(y⊥)− α′(y⊥))

]}
.

With ∂2αa(x) = ja(x)

Large λ−2 - strongly mixed ρ̂

Can include one more term, but it does not play any role in the following -
so drop it.

Will first study ”dilute” or BFKL regime.
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Gaussian evolution in dilute regime 1

Approximate ρ̂ by a Gaussian at any stage of evolution.
Take the set of operators:

Ôi =

{
αa(x1⊥)αa(x2⊥) ,

δ

δαa(x1⊥)

δ

δαa(x2⊥)

}
.

For each Oi we calculate the expectation value

〈Ôi 〉(µy ,λy ) ≡ Tr[Ôi ρ̂]

and then take its derivative with respect to rapidity

d

dy
〈Ôi 〉 =

∂〈Ôi 〉
∂µy

dµy
dy

+
∂〈Ôi 〉
∂λy

dλy
dy

.

Then calculate:

Tr [Ôi
d

dy
ρ̂] =

∫
d2z⊥

2π
Tr
{
ρ̂[Q̂a

i (z⊥), [Q̂a
i (z⊥), Ôi ]]

}
And equate:

∂〈Ôi 〉
∂µy

dµy
dy

+
∂〈Ôi 〉
∂λy

dλy
dy

=

∫
DαDα′

{
Oi (α

′, α)

∫
d2z⊥

2π

[
Qa

k (z⊥, α) + Qa
k (z⊥, α

′)
]2
ρ(α, α′)

}
.
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Gaussian evolution in dilute regime 2

In dilute regime:

Qa
i [z⊥, α] ≈ −g2

2π

∫
d2x⊥

(x⊥ − z⊥)i
(x⊥ − z⊥)2

T d
ab

(
αd(z⊥)− αd(x⊥)

) δ

δαb(x⊥)
,

When all said and done:

∂

∂y
µ̄2y (x1⊥, x2⊥) =

Nc

2π

(
g2

2π

)2 ∫
d2z⊥

{
− (x1⊥ − x2⊥)2

(x1⊥ − z⊥)2(x2⊥ − z⊥)2

×
[
µ̄2y (x1⊥, x2⊥) + µ̄2y (z⊥, z⊥)− µ̄2y (z⊥, x2⊥)− µ̄2y (x1⊥, z⊥)

]}
.

∂

∂y
λ−2y (x1⊥, x2⊥) =

Nc

2π

(
g2

2π

)2
{
−δ(2)(x1⊥−x2⊥)

∫
d2x⊥d

2y⊥
(x⊥ − y⊥)2

(x⊥ − x1⊥)2(y − x1⊥)2
λ−2y (x⊥, y⊥)

+

∫
d2z⊥

[
(z⊥ − x1⊥)2

(z⊥ − x2⊥)2(x1⊥ − x2⊥)2
λ−2y (z⊥, x1⊥)+

(z⊥ − x2⊥)2

(z⊥ − x1⊥)2(x2⊥ − x1⊥)2
λ−2y (z⊥, x2⊥)

− (x2⊥ − x1⊥)2

(x2⊥ − z⊥)2(x1⊥ − z⊥)2
λ−2y (x1⊥, x2⊥)

]}
Both eqs. for µ2 and λ−2 are forms of BFKL equation!
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Gaussian evolution in dilute regime 3

Both grow with leading BFKL exponent:

γ =
4αsNc

π
ln 2 .

µ2 ∼ eγη grows: the charge density in the wave function grows.

λ−2 ∼ eγη grows: the density matrix becomes more and more mixed!

ρ[α, α′]→ δ(α− α′)
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Gaussian evolution in dilute regime: entropy

Entanglement entropy - generally calculable for a Gaussian density
matrix:

Se =
1

2
tr

[
ln

(
µ2yλ

−2
y − 1

4

)
+
√
µ2yλ

−2
y acosh

(
µ2yλ

−2
y + 1

µ2yλ
−2
y − 1

)]
Assuming µ2λ−2 � 1:

dSe
dy
≈ 1

2
tr

[
µ−2y

∂µ2y
∂y

+ λ2y
∂λ−2y

∂y

]
In the BFKL regime for large enough energy

dSe
dy
≈ γ

Half of the entropy growth is contributed by the growth of the number of
particles (µ2) and half by continued decoherence as the energy grows
(λ−2).
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Close to saturation: the Levin-Tuchin regime 1

Close to saturation we consider the evolution of the ”dipole” and the
”Pomeron”

d(x1⊥, x2⊥) ≡ 1

Nc
trc [S†(x1⊥)S(x2⊥)]

P†(x1⊥, x2⊥) = JaR(x1⊥)JaR(x2⊥).

Quite generally we can calculate the evolution of these two operators
without reference to the exact form of the density matrix.

d

dy
Ô =

∫
d2z⊥

2π
[Q̂a

i (z⊥), [Q̂a
i (z⊥), Ô]
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Close to saturation: the Levin-Tuchin regime 2

And we obtain
d

dy
d(x1⊥, x2⊥) =

αsNc

π∫
d2z⊥

2π

(x1⊥ − z⊥) · (x2⊥ − z⊥)

(x1⊥ − z⊥)2(x2⊥ − z⊥)2
[d(x1⊥, z⊥)d(z⊥, x2⊥)− d(x1⊥, x2⊥)]

No surprises - the Balitsky - Kovchegov equation.

But also
d

dy
P†(x1⊥, x2⊥) = − g2Nc

(2π)3

[
δ(x1⊥ − x2⊥)

∫
d2x⊥d

2y⊥
(x⊥ − x1⊥) · (y − x2⊥)

(x⊥ − x1⊥)2(y − x2⊥)2
P†(x⊥, y⊥)

+

∫
d2x⊥

[
(x⊥ − x1⊥) · (x2⊥ − x1⊥)

(x⊥ − x1⊥)2(x2⊥ − x1⊥)2
− 1

(x⊥ − x1⊥)2

]
P†(x , x2⊥)

−
∫

d2z⊥
(x1⊥ − z⊥) · (x2⊥ − z⊥)

(x1⊥ − z⊥)2(x2⊥ − z⊥)2
− 1

(x1⊥ − z⊥)2

]
P†(x1⊥, x2⊥)

−
∫

d2x⊥
(x1⊥ − x2⊥) · (x⊥ − x2⊥)

(x1⊥ − x2⊥)2(x⊥ − x2⊥)2
P†(x1⊥, x⊥)

]
+ (x1⊥ ↔ x2⊥)

This is again the BFKL equation (even in the dense regime!)
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Close to saturation: the Levin-Tuchin regime 3

Is the BFKL in dense regime surprising?

May seem so, but not really. P† has the meaning of charge density
correlator in the target.

JIMLWK regime: dense target, but dilute projectile. So it should be
BFKL.

But you will never get it if you use naive JIMWLK and not
Kossakowski-Linblad evolution!
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Close to saturation: the Levin-Tuchin regime 4

The ansatz for density matrix:

ρ(S , S̄) = N exp

{
− trc

∫
d2x⊥d

2y⊥

[ µ̄−2y (x⊥, y⊥)

4
[S†(x⊥) + S̄†(x⊥)][S(y⊥) + S̄(y⊥)]

+λ̄−2y (x⊥, y⊥)[S†(x⊥)− S̄†(x⊥)][S(y⊥)− S̄(y⊥)]
]}
,

In dilute limit reduces to a Gaussian matrix.
Would like to follow the evolution of averages like in the Gaussian case.
Don’t know quite how to calculate averages. Will use the factorizable
ansatz

〈SSSS ...〉 = Σ〈SS〉color singlet〈SS〉color singlet ...

Good for extracting terms leading in the projectile area.
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Close to saturation: the Levin-Tuchin regime 5

The Levin-Tuchin scaling:

µ̄2y (x1⊥, x2⊥) = exp{−ξ ln2[(x1⊥ − x2⊥)2Q2
s ]}

And we find:

λ̄−2y (x1⊥, x2⊥)µ̄2y (x1⊥, x2⊥) ≈ λ̄0 exp(γy)

And for the entropy we find

dSe
dy
≈ 1

2
γ

Makes sense: the density almost does not grow anymore, but the
decoherence still increases. All the leading contribution to entropy is from
the growth of decoherence.
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Wigner functional

Our real motivation: are there correlations between density and current in
the hadronic state?

Should be there - and especially important for rare configurations.

In QM - Wigner function gives (approximately) joint probability
distribution for momentum and coordinate.

W(x , p) =

∫
dye iyp

〈
x +

y

2

∣∣∣ρ̂∣∣∣x − y

2

〉
We define:

W[j ,Φ] =

∫
Dj ′ exp

[
i

∫
d2x⊥Φa(x⊥)j

′a(x⊥)

]
ρ

[
j +

j ′

2
, j − j ′

2

]
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Current density.

Current density?

Start from the commutation relation:

[ja(y⊥), jbi (x⊥)] = if abc jci (x⊥)δ(2)(x⊥ − y⊥) + if abc jc(x⊥)∂yi δ
(2)(x⊥ − y⊥)

In the effective theory?

Φ = −i δ
δj

And
jai (x⊥) = f abc jb(x⊥)∂iΦ

c(x⊥)
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Current density

Take Gaussian density matrix

〈jai (x⊥)jbj (y⊥)〉 ≡
∫

DjDΦWG [j ,Φ]jai (x⊥)jbj (y⊥)

= Ncδa,b µ
2(x⊥, y⊥)∂x⊥i ∂y⊥j λ−2(x⊥, y⊥)

〈ja(x⊥)ja(y⊥)jbi (z⊥)jbi (w⊥)〉−〈ja(x⊥)ja(y⊥)〉〈jbi (z⊥)jbi (w⊥)〉 =
Nc(N2

c − 1)

4

×
[
µ2(x⊥, z⊥)µ2(y⊥,w⊥) + µ2(x⊥,w⊥)µ2(y⊥, z⊥)

]
∂z⊥i ∂w⊥i λ−2(z⊥,w⊥)

Interesting:
〈ji jj〉 grows with twice the BFKL exponent, like diffractive cross section.
〈jjji jj〉 - connected part has the same energy dependence as disconnected.

Current correlations grow fast, charge-current correlations does not
factorize even at high energy.

Alex Kovner (UConn) Color Glass Condensate Density Matrix: Lindblad evolution, entanglement entropy, Wigner functional and all thatOctober 7, 2019 24 / 25



CONCLUSIONS

It’s the beginning.

It will hopefully have continuation.

Need to think...
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