
16/16/2023

SoftIOC Development for Phoebus Alarm System Testing

Detector Support Group

Aaron Brown
2022-05

In a previous memo [1], I detailed the creation of the first versions of the 
alarm system test softIOC and random number generating Python program. 
At the time, the only PVs generated were for all of the 112 crystal zone 
temperatures (56 front and 56 back). I created a new Python program (db-
test-2.py) to create all of the ~180 database records needed to simulate all 
of the NPS signals. 

This program specifies the PV names and the associated fields for each 
signal (alarm limits, scan rate, and the severity of each alarm type). Also 
built into this softIOC are four additional PVs that were created specifically 
for the test system: three input PVs for the scan rate, range, and minimum 
value of the random number and one PV to calculate and display the 
maximum value of the random number. This brings the total number of PVs 
generated by the softIOC to 444.

• Completed development of softIOC for NPS 
Phoebus Alarm System testing

• Developed Python program to randomly 
generate values for all simulated signals

• User decides the minimum and range for each 
random number

FIG.1. Screenshot of portion of randomTestScript.py Python program

https://www.jlab.org/div_dept/physics_division/dsg/weekly_reports/monthly_notes/ab_2023-03.pdf


26/16/2023

FIG.2. Screenshot of Detector Frame Alarm Testing Phoebus screen using 
random values from randomTestScript.py Python program

SoftIOC Development for Phoebus Alarm System Testing

Detector Support Group

I have haveredone the Python program randomTestScript.py, Fig. 1, used 
to provide all of the random numbers. This program creates an array of all of 
the signal PVs (called PVs) and an array of the random number control PVs 
(called rminPVs). The program then initializes the range and minimum 
values for each signal PV to 0.0; these can be changed by the user via the 
alarm testing Phoebus screen, Fig. 2. 

Next, the program sends the Channel Access command caget to retrieve 
the value for the range of the random number and a second caget command 
to retrieve the minimum value of the random number. These two values are 
used to calculate the maximum value for the random number: range + 
minimum + 1 = maximum (a one is added so that the maximum value is 
included in the possible random number values). Finally, the program 
generates a random number for the signal PV using the minimum and the 
maximum as the input parameters for the random.uniform Python 
command from the random Python package. This was done so that the 
range for the random number assigned to each signal PV can be controlled 
by the user. In the first version of this program, the random values for all 
signal PVs had the same range and minimum value.

The next step is to add in the ability for the user to change the scan rate 
for the random value. The PV exists, but at the moment changing the scan 
rate does nothing.

[1] Brown, Aaron DSG Monthly Memo 2023-03

https://www.jlab.org/div_dept/physics_division/dsg/weekly_reports/monthly_notes/ab_2023-03.pdf

