

I²C Pull-Up Resistor Values for RICH Hardware Interlocks

Tyler Lemon and the Detector Support Group April 27, 2021

Contents

- RICH-II hardware interlock system
- Inter-integrated circuit (I²C) communication
- Pull-up resistors
- Determining minimum pull-up resistor value
- Determining maximum pull-up resistor value
 Measuring cable capacitance
- Conclusion

RICH-II Hardware Interlock System

- Hardware interlock system for RICH-II will use Sensirion SHT35 sensors to monitor environment
 - Better accuracy than previous sensors
 - Allow monitoring of more locations since not limited by number of cRIO modules
 - 24 locations vs. 16 locations
 - Cost less per location than previous version
 - \$50 vs. \$140
- SHT35 sensors are read using l²C communication

	Parameter	Specification	Honeywell humidity
Humidity	Accuracy	±1.5% RH 🔸	sensors have
	Long-term drift	<0.25% RH/year	±3.5% RH accuracy
	Operating range	0–100% RH	
	Resolution	0.01% RH	
	Repeatability	0.08% RH	Omega RTDs have
Temperature	Accuracy	±0.1°C	±0.15° C accuracy
	Long-term drift	< 0.03 °C/year	
	Operating range	-40 to $125 ^{\circ}C^1$	
	Resolution	0.01°C	
	Repeatability	0.04 °C	
Communication interface		I ² C	

SHT35 specifications DSG Note 2020-28 by Peter Bonneau

I²C Communication

- I²C communication allows a controller to send commands to and read from a peripheral device using serial communication
- I²C has different modes allowing maximum data transfer speed capability
 - Standard mode will be used for RICH-II interlocks
 - For SHT35 sensors, ~100 bits of data are transmitted/received for every temperature and humidity measurement
 - Using full 100 kbit/s speed would be ~1000 times faster than slow controls systems need to read

Mode	Data Transfer Speed	
Standard-mode	100 kbit/s	
Fast-mode	400 kbit/s	
Fast-mode plus	1 Mbit/s	
High speed	3.4 Mbit/s	

Pull-up Resistors

- I²C devices are open-drain—a device can only pull a signal line to the low level
- To get signal to return to high level, line is connected to the I²C bus voltage through a "pull-up" resistor
 - Resistor limits current on the line while it is pulled high
- Minimum pull-up resistor value is determined by the output specifications of the device
- Maximum pull-up resistor value is determined by I²C bus capacitance and maximum allowable rise time t_r of I²C signal $-t_r = 1 \ \mu s (10^{-6} s)$ for standard mode

Minimum Pull-Up Resistor Value

- Minimum pull-up resistor value determined by specifications of device to prevent over-current conditions on signal line
 - Device for RICH interlocks is the PCA9600 buffer driver

$$R_{min}[\Omega] = \frac{V_{CC} - V_{OL}}{I_{OL}}$$

 $V_{CC} = I^2 C$ bus voltage = 3.3 V

 V_{OL} = Buffer driver's output low voltage level = 1.0 V

 I_{OL} = Current that buffer driver sinks at V_{OL} = 0.13 A

$$R_{min}[\Omega] = \frac{3.3 V - 1.0 V}{0.13 A} = 17.69 \Omega$$

4/27/2021

Maximum Pull-Up Resistor Value

 Maximum pull-up resistor value is determined by I²C bus capacitance and I²C standard mode's 1-μs maximum rise time t_r

$$R_{max}[\Omega] = \frac{t_r}{0.8473 \cdot C} = \frac{10^{-6}}{0.8473 \cdot C}$$

Plot of pull-up resistor values vs. I²C bus capacitance. Equations for both maximum (blue) and minimum (orange) resistor values are shown in plot.

4/27/2021

Measuring Cable Capacitance

- Capacitance of cable depends on specifications:
 - Cable length (L)
 - Radius of individual conductor in cable (r)
 - Distance between conductors in cable (d)
- For the simplest case (two parallel wires):

 $C = \frac{\pi \epsilon L}{\operatorname{arcosh}\left(\frac{d}{2r}\right)} \quad \epsilon = \text{constant; permittivity of material between conductors}$

• Since RICH-II cable will be CAT7 (four individually-shielded, twisted pairs), measuring capacitance is easier than calculating it

Simplified cross-section of flat, CAT7 cable. For conductor #1, 11 other components (seven other conductors, four twisted pair shields) must be considered for the cable's capacitance.

Detector Support Group

8

Measuring Cable Capacitance

- Resolution of Fluke 87V multimeter is too low to accurately measure capacitance of cable
 - Total capacitance of cable is low enough to be in the noise of the multimeter's measurement
- Cable capacitance can be determined using an oscilloscope to measure the *RC* time constant (τ) of a circuit with the cable in series with a known resistance
 - τ is time taken for the capacitor in the circuit to charge to 63.2% of its final voltage level or discharge to 36.8% of its initial voltage level

$$\tau = RC \rightarrow C = \frac{\tau}{R}$$

Measuring Cable Capacitance – Test Circuit

Measuring Cable Capacitance – 100-ft Cable Oscilloscope Results

Oscilloscope screen shot from test of 100-ft cable when capacitor is charging.

Detector Support Group

Measuring Cable Capacitance – 100-ft Cable Oscilloscope Results

Oscilloscope screen shot from test of 100-ft cable when capacitor is discharging.

Detector Support Group

12

Cable Length [ft]	Capacitance [nF]	Max Pull-Up Resistor [Ω]
1	0.0286	41,266
50	1.26	936
100	2.18	541

Capacitance noted is average of capacitance found during charging and discharging.

- As expected, capacitance seen is proportional to cable length
- Maximum pull-up resistor value determined by equation $R_{max}[\Omega] = \frac{10^{-6}}{0.8473 \cdot C}$

Conclusion

- For RICH-II hardware interlock's I²C communication to SHT35 sensors
 - Minimum pull-up resistor value will be 18 $\boldsymbol{\Omega}$
 - Maximum pull-up resistor depends on length of cables used
 - Cable length affects cable's capacitance
 - Capacitance of flat, CAT7 cable to be used found to be ~28 pF/ft
 - Capacitance found using cable as the capacitor in a simple RC circuit
- For SHT35 sensor readout, ~300-Ω pull-up resistor selected
 - Well above minimum value
 - Allows for length variations up to ~140 ft
 - Verified to work in SHT35 prototyping set up

