Preparations for RICH II

Dr. Patrizia Rossi & Tyler Lemon and the Detector Support Group
January 26, 2021
Contents

• RICH detector for CLAS12
• Tentative timeline
• RICH aerogel
• Super Dry MSD Series dry cabinet
• Plan to Protect Aerogel During Power Outages
• Space requirements
• Conclusion
The RICH detector replaces 2 sectors of the LTCC to improve the π-k separation in the momentum range 3-8 GeV/c

- 1$^{\text{st}}$ sector installed in January 2018
- 2$^{\text{nd}}$ sector installation foreseen by the end of 2021

Hybrid solution: **proximity gap and mirror focusing to reduce the instrumented area**

![Diagram of RICH detector](image)
RICH for CLAS12

The RICH detector replaces 2 sectors of the LTCC to improve the π-k separation in the momentum range 3-8 GeV/c

- 1st sector installed in January 2018
- 2nd sector installation foreseen by the end of 2021

Hybrid solution: proximity gap and mirror focusing to reduce the instrumented area

DSG involved in many tasks:
• Tests of spherical mirrors
• Develop temperature interlocks
• Develop EPICS Monitoring systems
• Tests of electronics
• Installation

The detector’s electronics is air-cooled. Humidity and Temperature inside the electronics panel are monitored. When any of the monitored items goes out of the set limits, the high voltage and low voltage systems are turned off.

Aerogel must be kept dry. Nitrogen is used to control the humidity. The nitrogen flow, humidity and temperature are monitored.
RICH Sector 4 Assembly Photos

Mindy Leffel and Pablo Campero constructing RICH’s assembly structure

DSG and INFN Collaborators in front of assembled RICH I

Brian Eng and Marc McMullen installing RICH electronic panel

Tyler Lemon performing acceptance tests on spherical mirrors
Tentative Timeline

- Timeline discussed in meeting on November 23, 2020
 - [DSG Meeting Minutes](#)

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Tentative Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planar mirrors shipped from Italy</td>
<td>February 2021</td>
</tr>
<tr>
<td>Detector shell shipped from Italy</td>
<td>Early 2021</td>
</tr>
<tr>
<td>Next aerogel shipment arrives at JLab</td>
<td>Early 2021</td>
</tr>
<tr>
<td>Detector shell received at JLab</td>
<td>Spring 2021</td>
</tr>
<tr>
<td>Spherical mirrors received at JLab</td>
<td>Spring 2021</td>
</tr>
<tr>
<td>Start assembly</td>
<td>May 2021</td>
</tr>
<tr>
<td>Spherical mirror support received at JLab</td>
<td>Summer 2021</td>
</tr>
<tr>
<td>Installation in Hall B</td>
<td>Fall 2021</td>
</tr>
</tbody>
</table>

- Upon shipments’ reception, adequate space will be needed to temporarily store two large crates
 - Size of crates to be determined
 - Crates contain:
 - Detector shell
 - Front panels
 - Electronics panel
RICH Aerogel – Front Panel

- Silica-based aerogel tiles
 - Must be kept in sub-5% RH environment to prevent tiles from absorbing moisture
 - Moisture absorption lowers tiles’ effectiveness as a Cherenkov radiator

 Double 3-cm layer of tiles
 - 48 tiles per layer
 - **96 total 3-cm tiles**

 Lower section of 2-cm tiles
 - 16 tiles

 Upper section of 2-cm tiles
 - 22 tiles

DISREGARDING ANY DIFFERENT TILE GEOMETRIES:
- 96 total 3-cm tiles + 38 total 2-cm tiles
- = **134 total tiles**
Aerogel for RICH

• To ensure that the tiles are always in a humidity environment less than 5% RH, they are stored in dry boxes.

• Located in the EEL, the boxes use a desiccant to maintain the selected humidity level, in the range of 1–50% RH.

• An EPICS client has been added to the cRIO monitoring the environment in the three dry boxes and two GUIs have been developed, one CSS and one WEDM, both of which enable remote monitoring of the dry boxes.
Super Dry MSD Series Dry Cabinet

• One main unit plus one expansion unit
 – 2400 L total
 – Main unit’s dryer unit can dry up to three additional expansion units
• 0.5% RH level capability
• 120 V power
• Eight shelves are standard
 – Two “short” shelves in lower section of main unit
 ▪ Shelves are shorter because drying unit extends into storage space
 ▪ Shelf dimensions: 735 mm x 580 mm
 – Six “long” shelves in upper section of main unit and in entirety of expansion unit
 ▪ Shelf dimensions: 735 mm x 740 mm
Super Dry MSD Series Dry Cabinet

Shelves Needed

- Propose buying 20 shelves
 - Five short shelves
 - Store six tiles each
 - 15 long shelves
 - Store nine tiles each

- Total storage capability: 165 tiles
 - ~10 cm between shelves is more than adequate for 3-cm tiles
Super Dry MSD Series Dry Cabinet

Additional Features

• Standard through-hole penetrations
 – Allows connection of Honeywell **humidity** sensors and Omega RTDs (Resistance **Temperature** Detector) to cRIO

• All shelves are retractable

• Optional nitrogen connection
 – Connections for two flow modes
 ▪ Continuous purge
 ▪ Temporary make-up purge
 – For quickly decreasing humidity
Plan to Protect Aerogel During Power Outages

- **Planned power outages**
 - Set up dry cabinet with rotameters in continuous purge mode

- **Unplanned power outages**
 - Use dry cabinet in supplementary make-up purge mode
 - Internal components of nitrogen connection are normally open, allowing flow when there is no power

- **One standard gas bottle would last ~2.5 days if flow is set to one volume exchange per day**
 - ~7000 L (255 cubic feet) per bottle
 - Goal of one volume exchange per day

<table>
<thead>
<tr>
<th>Volume Exchanges per Day</th>
<th>Approximate Flow Rate (slm)</th>
<th>Flow Duration (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>~1</td>
<td>~4.5</td>
</tr>
<tr>
<td>1</td>
<td>~2</td>
<td>~2.4</td>
</tr>
<tr>
<td>2</td>
<td>~4</td>
<td>~1.2</td>
</tr>
</tbody>
</table>
Space Requirements

- **EEL 124 Clean Room**
 - Main assembly area with structure
 - Structure already assembled in room
 - Electronics assembly area
 - Electronic panel assembly support
 - Electronics rack
 - New Super Dry cabinet

- **EEL 125 Semi-Clean (or “Shower Curtain”) Room**
 - Air-cooling compressor
 - Bertha unit for powering compressor
 - Gas panel with air tank
 - Nitrogen dewars for humidity control
Space Requirements

- **EEL 121 small cleanroom**
 - Mirror storage
 - Reflectivity test area
 - Test table
 - Additional table for PCs
 - D0 test area
 - 2 m long, unobstructed stretch with optical tables at both ends

- Not To Scale
- Three Small Dry Boxes
- Reflectivity Test Station
- D0 Test Area
- Environmental Test Chamber
- Cleanroom backup humidity control

✓ = Already in Clean Room
Conclusion

• The installation of the 2nd RICH module in CLAS12 is foreseen by the end of 2021
• RICH II needs to store 134 aerogel tiles in low humidity environment before installation into detector
• A Super Dry MSD Series dry cabinet with one main unit, one expansion unit, and 20 shelves will allow storage of 165 tiles
 – Contingency plan for aerogel during power outage will use dry cabinet’s nitrogen rotameters
• Tentative timeline and space requirements determined for assembly