Hall A High Voltage EPICS Screens CS-Studio Phoebus

Brian Eng DSG 2021/09/09

Why Phoebus?

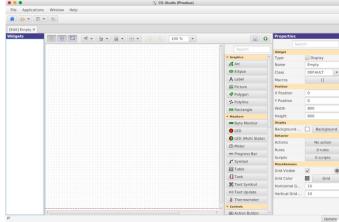
- No longer dependent on Eclipse
 - Standard Widget Toolkit (SWT) is one of the toolkits to create
 GUIs in Java
 - More than just SWT, Eclipse is an Integrated Development Environment (IDE)
 - Heavyweight (30+ min vs ~3 min compile time)
 - More code, e.g. 11.2 kloc vs 4.5 kloc for Channel Finder
- Since ~2016, various parts of CS-Studio have been migrating to using JavaFX as the GUI toolkit
 - Included with the Java Development Kit (JDK) since Java 11
 - also available separately for older JDKs
 - Phoebus has all components in JavaFX

Why not stay with CSS-BOY?

- Phoebus is more performant: less CPU % and less memory use
 - Varies based on screen, Heater Demo: ~ ¼ CPU (~40% vs ~10%) and ~ ½ memory usage (~9 MB vs ~4 MB)
- Phoebus can import and run BOY screens with no changes
 - Major exception are scripts
 - Generally, just need to change import path
 - Highly dependent on the script (one reason to avoid script use)
- Most BOY developers have moved to Phoebus

 New widgets and features not in BOY

Hall A EPICS Screens


- Hall C recently upgraded from some Tcl/Tk screens to CSS-BOY
 - Scripts to generate CSS-BOY done by DSG (Lemon & Bonneau)
 - Upgrading screens and creating new scripts for Hall A
- Initial focus will be on detector high voltage

Creating Screens

- Phoebus screens are XML files with an extension of .bob (BOY is the same, but with .opi)
- One method of creating screens is with the built-in Display Builder editor
 - The default choice
 - Good when layout won't change

- Some Hall A screens need to be easily customizable (Example #1) or use external parameter files (Example #2)
 - Using Python to generate .bob files

Python Example #1

- Hall A will have experiments that use a suite of detectors in slightly different configurations
- For the main menu, easier to generate the screen dynamically from a dictionary

	CS-Studio (Phoebus)
	ne/aslow/EPICS/HV/CSS/main-menu.bob ×
	Hall A High Voltage
🖲 😑 💼 Desktop — aslow@adaqsc:~/EPICS/HV/CSS — ssh -Y hallgw.jlab.or	Controls & Monitoring
#!/usr/bin/env python3	ГВВ
import sys	Hodoscope Left
if len(sys.argv)>1:	Hodoscope Right 👻
OUTFILE=sys.argv[1]	Hodoscope Primary Channels
else: OUTFILE = "main-menu.bob"	Preshower
	Shower To all of
ALL_PATHS=["/bb_all","/sbs_all"]	Grinch Each of
WIDTH = 300	
# Width of the button groups BWIDTH = 236	these groups
BGCOLOR = 'red="77" green="77" blue="77"'	HCAL Right
FGCOLOR = 'red="255" green="255" blue="255"'	HCAL Left is a separate
# Text Labels	GEM 👻
TITLE = "Hall A High Voltage" SUBTITLE = "Controls & Monitoring"	dictionary
SUBILILE = "Controls & amp; Monitoring"	Scintillators
<pre>def makebuttonlist(spec,detlist):</pre>	VDCs -
blist = [] for det in detlist:	Gas Cherenkov 👻
1,1 Top	Aerogel
	Pion Rejector 👻
	Backup / Restore 👻

Python Example #2 (1/4)

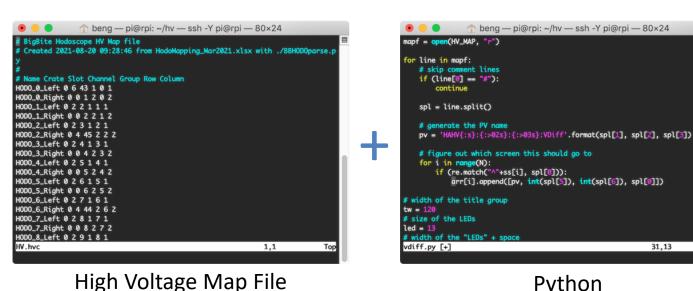
- Some high voltage supplies have separate set and read process variable (PVs)
- Each high voltage channel has a calculated PV (Vdiff) that indicates difference between set and read
 - |Vset Vread|
 - PV alarm limits
 - 25 V for LOW and HIGH
 - 50 V for LOLO and HIHI

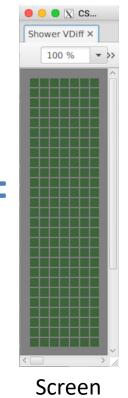
Python Example #2 (2/4)

- When using the monitor widget and its alarm status, default changes only widget border, based on alarm; request was for entire widget to change color
- vdiff.bob uses a rule to change widget background color based on severity level of the PV passed via macro

Rule Color	🕂 Add		Property ID: background_color, [background_color=Off]					• V	Value as Expressio	
	🗙 Remove	#	PV Na	Name Trigger	Trigger	🕂 Add	Boolean Expression	Value	🖶 Add	
	😯 Up	0	\$(PVm)		\checkmark	🔀 Remove	pvSev0 == 0	ОК	X Remove	
	🕀 Down					🔓 Up	pvSev0 == 1	MINOR	🗘 Up	
	Duplicate					🕂 Down	pvSev0 == 2	MAJOR	🕹 Down	
	Show Script									

Python Example #2 (3/4)


- A mapping file (high voltage name, PV, row, column, etc.) can be used to generate a grid of indicators to show Vdiff status, using Python
- To make the grid, multiple copies of vdiff.bob are embedded into the new detector screen and macros are used to define the individual PV for each monitor widget



Python Example #2 (4/4)

Read the high voltage mapping file with Python to generate a grid of embedded displays to create the detector screen

Python

15%

31.13

Conclusion

- Phoebus will be used for generating local displays going forward
- Current scripts will be modified and new scripts and screens will be created
 - Next step will be embedding detector Vdiff screens into an overall screen

