

## EIC Beamline R & D Status

## Detector Support Group February 22, 2023



## February 22, 2023

## EIC

Brian Eng and Pablo Campero

- Presented to BNL/JLab engineers the initial Fluent simulation results of of ~5°C drop when adding a 1-mm aerogel layer around beampipe
- Ran thermal simulation with 5 mm of separation between the beampipe and silicon layer 1, with different thermal properties for the aerogel

|                                                       |                                            | Aerogel Properties  |                             |           |                                    |                                    |
|-------------------------------------------------------|--------------------------------------------|---------------------|-----------------------------|-----------|------------------------------------|------------------------------------|
| Air<br>Velocity at<br>Annulus &<br>Enclosure<br>[m/s] | Temp. at<br>Annulus &<br>Enclosure<br>[°C] | Density<br>[Kg/m^3] | Thermal<br>Cond.<br>[W/m*K] | Mass [Kg] | Max. Si<br>Sensor<br>Temp.<br>[°C] | Min. Si<br>Sensor<br>Temp.<br>[°C] |
| 1.00E-07                                              | 20                                         | 50                  | 0.0156                      | 0.001613  | 99.7735                            | 69.7811                            |
|                                                       |                                            | 100                 |                             | 0.003227  |                                    |                                    |
|                                                       |                                            | 150                 |                             | 0.004846  |                                    |                                    |
|                                                       |                                            | 250                 |                             | 0.008067  |                                    |                                    |
|                                                       |                                            | 50                  | 0.014                       | 0.001613  | 99.7648                            | 69.5366                            |
|                                                       |                                            | 100                 |                             | 0.003227  |                                    |                                    |
|                                                       |                                            | 150                 |                             | 0.004846  |                                    |                                    |
|                                                       |                                            | 250                 |                             | 0.008067  |                                    |                                    |

• Calculated mass flow rates and heat transfer rates for different air flow velocities, using Ansys Fluent Flux

|               | Mass flow rate | Heat transfer [W] |               |  |
|---------------|----------------|-------------------|---------------|--|
| Airflow [m/s] | Annulus space  | Enclosure         | From beampipe |  |
| 1             | 0.001195       | 0.033272          | 26.5557       |  |
| 5             | 0.005976       | 0.166363          | 46.4342       |  |



