APPENDIX 0000000

SBS Meeting

Freddy Obrecht University of Connecticut

April 19, 2017

GMN SIMULATION INTRO.

ELECTRONICS HUT ANALYSIS

Appendix

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q (~ 2 / 16

G_M^n SIMULATION INTRO.

$Q^2(GeV^2)$	$\theta_{BB}(deg)$	$d_{BB}(m)$	$E_{beam}(GeV)$	$I_{beam}(\mu A)$
13.5	33.0	1.55	11.0	44.0

- ► 10 cm LD₂ target
- Looked at dose rates within Preshower as a cross-check with Eric's results (details are in the Appendix)
- Looked at the dose rate and particle fluxes within the electronics shielding hut

GEOMETRY

Figure: The hut face is located roughly 7.2 m from the target in the xz plane at a central angle of 45 degrees. All hut materials are steel.

Geometry II

Figure: Hut sits on the floor, or roughly -3 m in the y direction. The red box represents the sensitive region for the purposes of this simulation.

G_M^n Electronics Hut

$Q^2(GeV^2)$	$\theta_{BB}(deg)$	$d_{BB}(m)$	$E_{beam}(GeV)$	$I_{beam}(\mu A)$
13.5	33.0	1.55	11.0	44.0

- Ran 15×10^9 events with the beam generator
- ► Silicon sensitive region is 101.6 x 101.6 x 2.54 cm³
- Density of Silicon used = 2.33 g/cm^3
- ► Total energy deposited = 910 MeV
- Results:

Dose rate = 0.016 rad/hr

ENERGY DEPOSITION BY PARTICLE

- 1. e^{\pm} account for ~96% of the total energy deposited
- 2. Nucleons account for around 3%
- 3. The average energy deposited by photons is \sim 1.8 keV

つくで 7/16

Electrons

Figure: Integral of particle flux to bin i (E^{*i*}) normalized by the total particle flux as a function of particle energy deposition.

Appendix

4 ロ ト 4 部 ト 4 注 ト 4 注 ト 注 の Q ()
9/16

BIGBITE PACKAGE

Figure: Side angle of 5 GeV electron traveling through BigBite.

4 ロ ト 4 部 ト 4 注 ト 4 注 ト 注 の Q (~
10 / 16

PS DOSE RATE

Figure: Comparison between Eric's simulation (top) and this work (bottom). Note that row 0, col 0 corresponds to the top-left module of the PS if one looks downstream.

PRESHOWER DOSE RATE

$Q^2(GeV^2)$	$\theta_{BB}(deg)$	$d_{BB}(m)$	$E_{beam}(GeV)$	$I_{beam}(\mu A)$
13.5	33.0	1.55	11.0	44.0

- Ran 15×10^9 events using the beam generator
- Density of TF1 used = 3.86 g/cm^3
- ▶ PS blocks are 37.0 x 8.5 by 8.5 cm³

	This work	Eric
Preshower Sum (rad/hr)	832	833
Block Avg (rad/hr)	15.4	15.4
Column 1 Avg (rad/hr)	12.3	12.7
Column 2 Avg (rad/hr)	18.4	18.1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

GAMMAS

Figure: Energy deposition of gammas within the G_M^n electronics hut.

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 9 4 で
13 / 16

PARTICLE ORIGINS

Figure: Vertex v is to be interpreted as the vertex position of the particle that deposited energy within the sensitive region of the hut.

PARTICLE ORIGINS

4 ロ ト 4 部 ト 4 注 ト 4 注 ト 注 少 4 で
15 / 16

PARTICLE ORIGINS

4 ロ ト 4 部 ト 4 注 ト 4 注 ト 2 の 4 で
16 / 16