Development of High Resolution Radiotherapy Beam Characterization Technology Using Micropattern Gas Detection

Vahagn Nazaryan
(for Thia Keppel)

Hampton University Proton Therapy Institute

LDRD Proposal
July 2019

Kondo Gnanvo, Narbe Kalantarians, Nilanga Liyanage, Drew Weisenberger
Proton Therapy for Cancer Treatment

Radiotherapy with a **proton beams** allows oncologists to design three-dimensional conformal cancer treatment plans that **minimize the healthy tissue damage**.

Fundamental nuclear physics: Bragg peak determines proton energy loss = dose to patient
- Enables higher precision, localized treatment
- Has fewer side effects due to reduced radiation outside the tumor region
- Nuclear physics technology to enable this includes simulation, acceleration, beam transport, **dose monitoring**.
- The nearby Hampton University Proton Therapy Center is one of the largest centers in the world, and provides most advanced, state-of-the-art beam delivery technologies.
Modulated Scanning

- Narrow proton beam is positioned laterally by scanning magnets for each energy layer
 - Dose delivered layer by layer **only to target area**
 - Beam shaping by
 - Scanning magnets in lateral direction
 - Active energy tuning in range
Proton Therapy for Cancer Treatment

>150,000 patients have been treated with particle therapy worldwide from 1954 to 2016.

Current average ~15,000 patients treated annually.

Proton Boom
Number of proton-beam therapy rooms world-wide

<table>
<thead>
<tr>
<th>Year</th>
<th>Rooms</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>25</td>
</tr>
<tr>
<td>2005</td>
<td>50</td>
</tr>
<tr>
<td>2010</td>
<td>100</td>
</tr>
<tr>
<td>2015</td>
<td>175</td>
</tr>
</tbody>
</table>

Source: IBA
THE WALL STREET JOURNAL.

Tumor sites treated:
- **EYE & ORBIT**: Choroidal Melanoma, Retinoblastoma, Choroidal Metastases, Orbital Rhabdomyosarcoma, Localized Glied Carcinoma, Choroidal Hemangioma
- **ABDOMEN**: Pancreatic Tumors, Soft Tissue Sarcomas, Low Grade, Chordosarcoma, Chordomas
- **HEAD & NECK**: Locally Advanced Oropharynx, Locally Advanced Cervical Carcinoma, Soft Tissue Sarcomas, Recurrent or Unresectable, Misc. Unresectable or Recurrent Carcinomas
- **CHEST**: Non-Small Cell Lung Carcinoma, Early Stage, Metastatic Implantable, Breast Cancer, Soft Tissue Sarcomas
- **PELVIS**: Early Stage Prostate Carcinoma, Locally Advanced Prostate Carcinoma, Locally Advanced Cervical Carcinoma, Soft Tissue Sarcomas, Recurrent or Unresectable Pelvic Masses
Quality Assurance

✓ Most commonly done in homogeneous media
✓ Measurements
 ✓ ion chambers for absolute dose calibration
 ✓ profile measurements with film, array of chambers
Gas Electron Multiplier Detectors for Jefferson Lab Hall A Super Bigbite Spectrometer

GEM Detector:
- **UVA** & **INFN** production

GEM Electronics:
- **INFN** (Italy) production
- **UVA** testing and QA

70 micron resolution

7 mm resolution

IBA MatriXX ion chamber array, used for 2D beam characterization in proton and X-ray radiation therapy

Potentially excellent tool for (new) pencil beam scanning delivery – requires fast data acquisition
This Proposal: proton beam characterization GEM detection

• Develop 2D beam characterization detection technology based on Gas Electron Multiplier detection

• Construct prototype that
 — Bests the current industry standard spatial resolution (IBA MatriXX, for example) by ~an order of magnitude (Year 1 proposed)
 — Facilitates pencil beam delivery mapping (Year 2 proposed)
 — Can be calibrated for dosimetry

• Future applications beyond 2D beam characterization
 — Provide basis for proton CT development
 — Extend to X-ray radiation therapy (now have partnership in place for first medical linac measurements with Madison Accelerator)
Preliminary Data

• Transported small GEM detector from JLab nuclear physics experiment to HUPTI (with gas, DAQ, ….)
• Needed to establish voltage, thresholds, how to use in treatment room environment,…
• Very preliminary initial results look promising!

Beam profile measurements in 2D (left) and 1D (right) from proof-of-concept tests at HUPTI
This Proposal: Fast readout electronics (addressing review question)

- Develop fast electronic readout based on flash ADC
- Establish the proof of principle with commercial fADCs (e.g. V1742 modules)
 - Develop the interface between fast pre-amp and shaper chip interfaced with the V1742 module (Year 1 proposed)
 - Beam test with our 2D GEM beam profile prototype (~ few hundreds electronic channels) with the HUPTI proton beam (Year 1 & 2 proposed)
 - Demonstrate the viability of the system for the GEM-based 2D beam characterization detector
- Beyond the proof of concept
 - Develop a **low-cost** version of the fADC readout electronics for a multi-channel detectors application
 - Investigate options such as the DRS4 electronics for the low-cost, multi-channel fast electronics
 - Synergy with Nuclear Physics detector needs such as the development for GEM-based Transition Radiation Detector (GEM-TRD R&D) for EIC or other JLab experiments

CAEN V1742 flash ADC
This Proposal: Fast readout electronics

Characteristics of CAEN V1742 flash ADC

- 12 bit @ 5 GS/s, 1-unit wide 6U VME64 module
- Switched Capacitor technology based on the DRS4 chip (designed at Paul Scherrer Institute)
 - 1024 capacitor cells per channel (acquisition window of ~ 200 ns @ 5 GS/s)
- 5 GS/s, 2.5 GS/s, 1 GS/s, 750 MS/s software selectable sampling frequencies
- 32 analog input channels on MCX coaxial connectors
- 2 additional analog inputs (TR0 and TR1):
 - fast (low latency) trigger
 - digitizable for high resolution timing (up to 50 ps)
- 1 Vpp input dynamic range with programmable DC offset adjustment
- Dead-time due to conversion: 110 μs (analog inputs only), 181 μs (TR0, TR1 inputs)
- Trigger modes:
 - External on TRG-IN connector; common to all groups
 - Fast (Low Latency) on TR0 and TR1 connectors; common to couples of groups
 - Self-trigger, combinations of channels over-threshold in logic OR; common to couples of groups
- Memory buffer options: 128 events/ch; 1024 events/ch
- VME64 (VME64X compliant) and Optical Link communication interfaces
- Multi-board synchronization features
- 16 programmable LVDS I/Os
- Demo software tools, C and LabVIEW libraries

https://www.caen.it/products/v1742/

Pre-amplifier GAS-II as potential candidate

New interface board For GEM-TRD

- compatible with JLAB Flash-ADC 125MHz system
- Each board holds 10 preamplifiers, each preamplifier connects to 24 GEM strips resulting on a readout of 240 GEM strips per each readout board or X/Y coordinate.
- A pre-amplifier has 6AS-II ASIC chips (3 chips per each preamplifier card) and provides 2.6 mV/FC amplification. A preamplifier has a peaking time of 10 ns. It consumes 50 mWatt/channel and has a noise <0.3 fC. The dynamic range of preamplifiers (where it is linear) is about 200 fC.
- Covers up to 2.4 (32) μs of a drift time.