

GEM Gas Distribution Prototype Progress

Marc McMullen and the Detector Support Group

02/08/2021

Contents

- Prototype GEM gas distribution system installation
- Distribution panels and chassis
- Single channel flow diagram
- Data flow diagram
- Flow data
- Issues
- Software development
- Conclusion

Prototype GEM Gas Distribution System

Rack Front: Regulator and Flow Meter Valve Panels

Standard flow (max 500 sccm) High flow (max 1000 sccm)

Rack Back: Gas Flow Sensor Chassis with Panel Parts

Gas flow sensor chassis (output)

Detector Support Group

Rack Gas Line Connections

C

2/9/2021

Detector Support Group

6

Rack Gas Line Connection: GFS Chassis Inputs

Rack Back: Gas Flow Sensor Chassis

- Output to detector shown
- Input on rear panel

2/9/2021

Single Channel Diagram

Schematic shows a single channel of gas supply/exhaust to a GEM detector

Data Flow Diagram

Remote Flow Monitoring

 DSG monitored flow transition from 235 sccm down to 80 sccm; channel 3 was set to 67 sccm

Detector Support Group

Issues

- During initial testing, the gas bottle depleted faster than expected
 - Determined that the leak was at the regulator panel
 - After troubleshooting the regulator, DSG determined that all three regulators leaked at the internal relief circuit
 - DSG replaced with a regulator without an internal relief circuit and tested
 - Fittings are listed as compatible with nylon and polyethylene tubing, however, during initial test, it was noted that polyethylene had better retention and did not leak
 - DSG changed all gas lines to polyethylene

Software Development

DSG developed WEDM web-based monitoring

		BB GEM Flow Readout							
	Std Flow Ch01	Std Flow Ch02	Std Flow Ch03	Std Flow Ch04	Hi Flow Ch05	Hi Flow Ch06	Hi Flow Ch07	Hi Flow Ch08	
Flow	81 sccm	81 sccm	83 sccm	78 sccm	0 sccm	0 sccm	0 sccm	-0 sccm	
Sensor status	Status: good	Status: good	Status: good	Status: good	Status: good	Status: good	Status: good	Status: good	

 DSG is developing regulator input and output pressure signals to add to remote monitoring capabilities

Conclusion

- Both issues of defective regulators and manufacturer misrepresentation of compatibility of gas line materials have been resolved by DSG and the prototype distribution system is performing as expected
- A WEDM webpage was developed and is being used to monitor the system by multiple users
- Advancements in remote monitoring of the regulator pressures and development of the exhaust readout system is moving forward

End

Thank You

