

<u>Hall A – ECAL</u>

Brian Eng, Mindy Leffel, and Marc McMullen

- Troubleshooting heater controls cRIO issues
 - Unable to connect via MAX; able to connect to debug session in RealTime app; rebooting cRIO via LabVIEW project fails; trying to connect via SSH works, but immediately closes connection
 - * Running commands via SSH seem to indicate hard drive failure
- Completed control GUI which can be used from any LabVIEW PC on the Hall A subnet to control and monitor the ECAL heater controls
- Fabricated one HV cable with two Fischer connectors 24 of 24 completed

Hall A - SoLID LAPPD (Large Area Picosecond Photodetector)

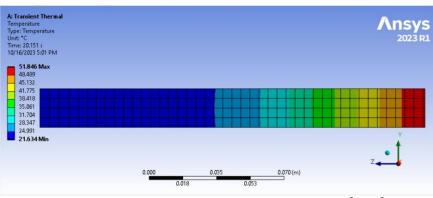
Pablo Campero

- Installed software (Kinesis) to control and monitor linear translation stage system from Thorlabs
- Installed Kinesis simulator software to simulate the incremental movement of the stage system to a desired location within the allowed distance of travel
 - ★ Simulates the incremental movement of the stage system to a desired location within the allowed distance of travel
 - ★ Outputs the coordinate position for Kinesis software

<u>Hall B – Magnets</u>

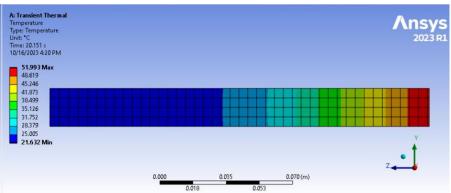
Pablo Campero and Brian Eng

- Investigating 10-10-23 fast dump
 - Received fast DAQ data from tape and submitted pull request on Github to update analyzer program to have hardware comparators as plot choices
 - ★ Working on extracting data just around the time of the dump rather than full 20 minutes to analyze using Excel or Python


<u>Hall C – NPS</u>

Mary Ann Antonioli, Peter Bonneau, Aaron Brown, Pablo Campero, Brian Eng, Mindy Leffel, and Marc McMullen

- Debugging and revising thermal readback LabVIEW program
 - * Completed code to automatically disable corresponding averaging if the interlock has been disabled
 - ★ Changed code to have the interlocks triggered using the temperature and flow directly from the chillers
 - The chiller has built-in alarms for low flow as well as for under and over temperature; these alarms will now be used to trigger interlocks for both chillers
- Creating named selections for each crystal of the 1080 crystals using Ansys SpaceClaim
 - The named selections are the portion of the crystals between the carbon fiber and mu metal dividers (along the length of the crystal) that are exposed to air
 - * Convection will be applied to these named selections and the simulation will be rerun



- Modified single crystal model
 - Divided crystal into five regions: front, back, air, mu-metal, and carbon fiber regions – regions allow setting convection only on air region
 - ★ Kept thin slice volume attached to the rear face of the crystal to enable the setup of internal heat generation
- Ran simulation with different thermal conditions
 - * Set up model with internal heat generation of 7.5×10^5 W/m³ and then with heat flow of 0.3 W
 - For both cases, applied convection on six faces: front, back, and air region (four faces)

* Noted a maximum temperature of ~52°C for both cases

Right side view; temperature contour plot of crystal with internal heat generation of 7.5×10^5 W/m³ and convection on six faces. Max. temp. was 51.8° C

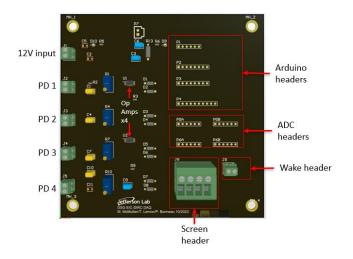
Right side view, temperature contour plot of crystal with heat flow of 0.3 W and convection on six faces. Max. temp. was 51.9°C

<u>Hall D – FCAL2</u>

<u>Mindy Leffel</u>

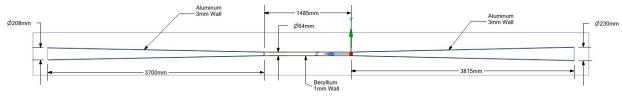
• Populated 20 PMT bases – 665 of 1750 completed

EIC - DIRC


Peter Bonneau, Mindy Leffel, George Jacobs, Tyler Lemon, and Marc McMullen

• Verified the fit of the large wood bracket in new crate

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2023-10-18


• Continued component placement for the data acquisition PCB with photodiodes (PD 1-4), wake header (used to activate the screen), and an Arduino microcontroller used to read the photodiodes from the ADC

EIC - Thermal Test Stand

Pablo Campero, Brian Eng, George Jacobs, and Marc McMullen

• Created simplified model with the Aluminum and Beryllium sections of the beampipe – dimensions are based on the EIC design drawings and CAD model

Beampipe simplified model with Beryllium and Aluminum sections

EIC – Tracking

<u>Brian Eng</u>

• Presented talk on day 2 of CD-3A director's review

DSG R&D – Phoebus

Peter Bonneau

- Phoebus alarm test for EIC-DIRC interlock
 - ★ Developed and implemented an EPICS softIOC laser interlock signal simulator to test the code written for the EIC-DIRC test
 - ★ Developed a user interface for the EIC-DIRC alarm system and softIOC simulator

DSG

<u>Peter Bonneau</u>

• Developed and implemented a navigation bar for all DSG web pages