

Detector Support Group

We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2022-09-21

<u>Summary</u>

<u>Hall A – ECal</u>

Brian Eng, Mindy Leffel, Marc McMullen

- Started developing single supermodule heating test
- Working on Visio drawing of supermodules

<u>Hall A – GEM</u>

Brian Eng, Marc McMullen

- Replaced I2C extender node in the hall and restarted full system
 - ★ Binary gas analyzer on-line for SBS
 - * 73% argon measured over the weekend
- Updated DSG I²C extender circuit to include additional filtering on circuit output

Hall A - Gen-II

Mindy Leffel

• Replaced broken sensor on RTD cable

<u>Hall A – Moller</u>

<u> Aaron Brown, Brian Eng</u>

- Coil 3 prototype test
 - Unable to locate any of Nick's previous work (code—except copy of the coil test PLC code—documentation, hardware) Assisted with testing of prototype magnet coil #3
 - ★ The plan is to ramp the magnet coil to 700 A and monitor the temperature, pressure, and flow
- Debugged readout of pressure and flow transmitters
 - ★ Connected wiring of two pressure sensors and one flow meter to PLC
 - ★ The pressure sensors needed an additional wire (input) connected to the PLC channels
 - ★ Need to fix scaling formulas; all channels are configured to read as raw instead of engineering units
- Researched specifications for Automation Direct flow transmitter (fsa75-42-6h) and pressure transmitter (spt25-20-150D)

<u>Hall A – SoLID</u>

Mary Ann Antonioli, Pablo Campero

- Completed modifications to *Solenoid Valve Setup* HMI screen
 - * Added input controls for integral and proportional gain set points
 - * Added input control and indicator for set temperature in heat exchanger
 - * Added buttons to access Position Proportional screen

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2022-09-21

SoLID_Solenoid_Valve Setup	
9/20/2022 4:19:40 PM Solenoid Valve Setup	
Valve Settings Valve Timeout Time: 5 s LVDT Max. 101.0 Deadband Max 300.0 % LVDT Min: 6.2 Deadband Max 3.0 % Max. Setting: 101.0 Min: 5.2 % Max. Setting: 101.0	Hall A 4 K Flow Limit Control 56 EPICS 4 K Flow Limit: 60.00 g/s 56 PIC 4 K Flow Limit: 60.00 g/s 56 Override Flow Limit: 60.00 g/s 4 K 56 Override Flow Limit: 60.00 g/s 4 K
Cryo Control Reservoir Valves	
JTV4 - Liquid Helium Top Fill Ltie Level Level Set Point: 2000 Integral Gain: 2000 Proportional Gain: 2000	JTV2 - Cooldown Supply He Delta Temp Posp Integral Gain: 2000 Proportional Gain: 2000
JTV6 - Liquid Helium Bottom Fill LHe Level Flow POSP Integral Gain: 1000 Proportional Gain: 1000	EBV8 - Helium Warm Return Open if He Pressure is > 1.90 Atm Open if Magnet Temp, is > 9.00 K
JTV1 - Liquid Helium Cold Return Close if Warm Return is > [44:30] % [POSP] Pressure Set Point(120) Integral Gain: [1000] Proportional Gain: [1000]	JTV7 - Liquid Helium Lead Pot Supply He Pressure PosP Integral Gain: 2000 Integral Gain: 2000 Proportional Gain: 2000 Proportional Gain: 2000
JTV5 - Liquid Nitrogen Top Fill LN2 Level POSP Level Set Point: 10000 % Integral Gain: 120001 Proportional Gain: 120001	JTV3 - Liquid Nitrogen Bottom Fill This valve is either open fully or closed. POSP No PID needed
Heat Exchanger Valves	
JTV9 - Heat Exchanger LN2 Supply Posel Temperature Set Point: 2200 K Proportional Gain: 1650	JTV10 - Heat Exchanger GHe Mix Temperature [POSP] Set Point: -2125 K Integral Gain: [0.330] Proportional Gain: [0.440]
He Level Status N2 Level Status Valve Operation Mode : Local	Click to Load to PLC Print

- Modified PLC code to control through PLC automatic mode the aperture of the nitrogen and helium mix heat exchanger valves
 - * Added code to determine if heat exchanger is enabled
 - * Configured one PID controller instruction per valve
 - * Programmed the correct process variable, set point, and limits for PID controller
- Revised, reviewed, and reposted electrical drawings with cabling and connector changes

<u>Hall B – RICH</u>

<u>Tyler Lemon</u>

• Writing instructions on how to remotely access hardware interlock system for debugging and rebooting

Hall C – NPS

<u>Mary Ann Antonioli, Aaron Brown, Brian Eng, Tyler Lemon</u>

- Developing LabVIEW code for configuration file management
 - * Completed code to read in default configuration file
 - ★ Working on code to generate the updated configuration file if input parameters have been changed
- Continued writing manual for Phoebus screens

<u>Hall D – JEF</u>

<u>Mindy Leffel</u>

• Wrapped ten crystals

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2022-09-21

<u>EIC</u>

Pablo Campero, Brian Eng, George Jacobs, Marc McMullen

- Beampipe test stand
 - * Pressure system parts can be ordered
 - ★ Located self-adhesive surface thermocouples
 - ★ Updated heater design using mineral oil as the medium with screw-in immersion heater and thermostat; mineral oil is stable up to 300°C (572°F)

EIC Thermal Test Stand Concept 2

EIC - DIRC

Tyler Lemon, Marc McMullen

- Compiling parts list for laser interlock chassis
- Used Multisim to design a circuit for laser interlock
 - ★ Uses logic gates to monitor for interlock conditions, such as door open or emergency stop button pressed
 - ★ If no interlock conditions exist, relay to laser is closed, allowing laser to be powered
 - * Relays control a yellow beacon light to indicate that laser is powered
 - * Contains a set-reset latch that will keep laser interlocked until system is reset via a push button
 - Includes a keyed switch to allow manual, local lock-out of laser with interlock system; prevents interlocks from being reset while one is working in laser controlled area
 - ★ Investigating how to have a 10-second delay between beacon turning on and laser being enabled; possibly use a 555 timer IC to implement delay

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2022-09-21

- Started Laser Specific Lesson Plan for the DIRC He-Cd laser
 - Determined minimal optical density value for eye protection to be 5+, on a scale of 1 to 9; value refers to the amount of light transmitted through the optical lens, with less light as the number increases

DSG R&D - CS-Studio Phoebus

- Rebuilding Phoebus development system
 - ★ System drive for Phoebus development became corrupted
 - ★ Linux operating system reinstalled
 - * EPICS, CS-Studio Phoebus, and support programs being reinstalled and compiled
 - ★ Backup of Phoebus configuration files, EPICS SoftIOC, and Kafka configuration files being used in the rebuild