Particle identification and tracking in real time using
Machine Learning on FPGA

F. Barbosa,?, L. Belfore,”, C. Dickover,?, C. Fanelli,®¢, S. Furletov, ®, Y.
Furletova,®, L. Jokhovets,, D. Lawrence,?, and D. Romanov®

2 Jefferson Lab, U.S.A.
>Old Dominion University, U.S.A.
“William & Mary, U.S.A.
4Juelich Research Centre, Germany

July 25, 2022

Project ID:

Project Name Particle identification and tracking in real time using Machine Learning on
FPGA

Contact Person: Sergey Furletov (furletov@jlab.org), D. Romanov (romanov@jlab.org)

Abstract

This project is a multi-disciplinary endeavour between Physics, Electrical Engineering, and
Computer Engineering. The purpose is to develop and implement an FPGA (*) based Machine
Learning algorithm for real-time particle identification, filtering, and data reduction. This is
important research that can be applied to streaming readout systems being developed now at
JLab and other facilities. Real-time data processing is a frontier field in experimental physics,
especially in HEP. The application of FPGAs at the trigger level is used by many current and
planned experiments (CMS, LHCb, Belle2, PANDA). Usually they use conventional processing
algorithms. LHCb has implemented ML elements for real-time data processing with a triggered
readout system that runs most of the ML algorithms on a computer farm and is using the Allen
system which does much of the work on GPUs. The project described in this proposal aims to
test the ML-FPGA algorithms for streaming data acquisition. There are many experiments
working in this area and they have a lot in common, but there are many specific solutions for
detector and accelerator parameters that are worth exploring further. We propose evaluating
the ML-FPGA application for a full streaming readout and the first target is EIC experiment.
The first goal is particle identification (e,, ) using multiple detectors (CAL, GEMTRD,
GEM Trackers) in real time using neural networks on FPGA. The results of this project
would be useful for other experiments worldwide, especially in nuclear physics, such as EIC,
SoLID, PANDA (FAIR), etc.

(*) Field Programmable Gate Array



1 Introduction

With the increased luminosity of accelerator colliders, alongside an increased granularity of detec-
tors for particle physics, more challenges fall on the readout system to transfer data from front-end
detectors to the computer farm and long term storage. Modern data acquisition systems (LHC,
KEK, Fair) employ several stages for data reduction. The CMS experiment at LHC has a Level
1 trigger that makes a decision in ~ 4us and rejects 99.75% of events. Their High Level Trigger
(software), makes a decision in 100 ms, and rejects 99% of the data from Level 1. Modern concepts
of trigger-less readout and data streaming will produce a very large data volume to be read from
the detectors. Most of this will be uninteresting and ultimately discarded. Handling this large
volume using traditional means would require either a huge farm for real time processing, or a very
large volume of data stored on tapes. From a resource standpoint, it makes much more sense to
perform both the pre-processing of data and data reduction at earlier stages of acquisition.

The growing computational power of modern FPGA boards allows us to add more sophisticated
algorithms for real-time data processing. Some tasks, such as clustering and particle identification,
could be solved using modern Machine Learning (ML) algorithms which are naturally suited for
FPGA architectures.

While the large numerical processing capability of GPUs is attractive, these technologies are
optimized for high throughput, not low latency. FPGA-based filters and data acquisition systems
have extremely low, sub-microsecond, latency requirements that are unique to particle physics.
Machine learning methods are widely used and have proven to be very powerful in particle physics.
However, the exploration of such techniques in low-latency FPGA hardware has only just recently
begun.

ML particle identification (PID) methods can be applied individually for various subdetectors
such as: RICH, DIRC, calorimeters, dE/dx in tracking detectors, transition radiation detectors
(TRD), etc. By combining data from all subdetectors it is possible to provide global particle
identification. This takes into account the responses of all subdetectors and provides better particle
information for physics analysis in real time. It also allows for the filtering of data based on the
topology of physics events and to control data traffic based on physics.

Real-time reconstruction and identification of particle tracks can help suppress background and
single photon noise in RICH detectors, especially in the case of SiPM readout. EIC data traffic
estimation shows RICH detector dominance by 2-3 orders of magnitude ( 1.8 Tb/s) compared to
other detectors due to single photon noise.

2 Expected Results

This is an interdisciplinary R&D project that requires efforts from physicists, computer engineers,
and electrical engineers who have expertise with FPGAs. The goal is to develop and build a
functional demonstrator for FPGA Machine Learning applications, described here as the ML-
FPGA. The ML-FPGA project will be used to identify and optimize artificial neural network
algorithms and topologies suitable for real time FPGA applications.

It will also be used to perform beam tests in Hall-D with the GEM-TRD and calorimeter
prototypes. They will be used as PID detectors to estimate the performance of ML on an FPGA
in a real-time environment. Test results will be used to calculate resource scaling for planned
large scale experiments (EIC, SOLID, etc). The performance results and price will also serve as a
feasibility study for building a larger scale ML-FPGA selector/filter for current experiments such
as CLAS12 and/or GlueX.

Project Goals:

1. design and build a functional demonstrator ML-FPGA in which the particle identification
and tracking ML algorithm runs on FPGA, for testing various ML algorithms.

2. evaluate the performance, efficiency, and resources used by ML-FPGA compared to other
solutions.

3. evaluate scalability of the ML-FPGA to the future experiments (EIC,SOLID,PANDA, e.t.c.)

4. use the results in decision of building the ML-FPGA with higher performance for some
running experiment (GlueX,CLAS12)



5. EIC SRO/DAQ has options for multiple stages of data aggregation and reduction based
heterogeneous hardware solutions that also includes FPGAs, so the system can be used to
optimize and evaluate the performance of various hardware solutions.
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Figure 1: Data processing chain.

3 Proposal Narrative

To demonstrate the operating principle of the ML FPGA, and estimate the performance of the ML-
FPGA, we propose using the input data from existing detectors. The detectors used for ongoing
EIC R&D projects are the ”GEM based Transition radiation detector (TRD) and tracker” ([2]), a
prototype calorimeter ([3]) and GEM tracker. Currently, a small 10x10 cm GEM-TRD prototype is
being readout with several fADC125s [4] and can generate up to 18 GB/s of raw data traffic. This
detector, in addition to a track coordinate (T’ PC mode), is capable of electron identification or
electron/hadron separation. This is highly important for EIC physics. The size of the calorimeter
prototype is 3x3 cells and is read out by an FADC250. For the GEM-TRD project we already
use offline Machine Learning tools (JETNET, ROOT-based TMVA) [5] ,[6]. The results of which
can be used for validating the proposed implementation of FPGA-based neural networks and to
discover potential FPGA-based Machine Learning algorithms for real-time systems. A FPGA-
based Neural Network application would offer real-time, low latency, particle identification. It
would also allow for data reduction based on physical quantities during the early stages of data
processing. This will allow us to control data traffic and offers the possibility of including detectors
with PID information for online high-level trigger decisions, or online physics event reconstruction.

To start this project we plan on using a standard Xilinx evaluation board to test the ML
algorithms, rather than develop a custom FPGA board. These boards have the functionality
and interfaces sufficient to provide proof of principle for the ML-FPGA. This will significantly
speed up the work and gives us the freedom to choose the type of FPGA that we find best suited
for ML applications while we work on optimization. FPGA platforms are a good solution for
achieving online real-time processing for several key reasons. First, current FPGA technology offers
massive raw computational performance. The proposed Xilinx evaluation board includes the Xilinx
XCVU9P which has 6,840 DSP slices. Each slice includes a hardwired optimized multiplication
unit and collectively offers a peak theoretical performance in excess of 1 Tera multiplications per
second. Second, the internal layout can be optimized for a specific computational problem and
can remove any irrelevant elements in the chain during compilation. The internal data processing
architecture can support deep computational pipelines offering high throughputs. Furthermore,
many ML algorithms can be mapped to make very effective use of FPGA resources. Third, the
FPGA supports high speed I/0 interfaces including Ethernet and 180 high speed transceivers that
can operate in excess of 30 Gbps.

Another important part of the project is evaluating the advantages of a ”global PID” compared
to the standalone PID from each detector. To test the global PID performance, we propose using
a setup with two detectors: the EIC calorimeter prototype (3x3 modules) and a prototype of the



GEMTRD. Preprocessed data from both detectors, including a decision on the particle type, will
be transferred to another ML-FPGA board with a neural network for global PID decision.

Initial beam testing is planned in Hall D, where there is already a test beam site that can be
used for testing the prototype GEM-TRD, ECAL, and Modular RICH detectors. This part of the
work depends on the availability of the beam, but can be done parasitically while GlueX is running.
In order to test the performance of the system as a PID, we plan to test it on an external facility
that provides an electron and hadron beam (FermiLab/CERN). Depending on the performance
of the ML-FPGA demonstrator, one might consider building a full scale filter /selector for current
and planned experiments.

4 Methods

The anticipated hardware platform will use high performance Xilinx devices. The candidate prod-
ucts include the new Xilinx VersalTM series adaptive compute acceleration platform (ACAP)
platform along with the XCVU9P. In addition to providing FPGA programmability, the Versal
platform includes ”intelligent engines” that are very long instruction word (VLIW) single instruc-
tion multiple data (SIMD) processors that can be programmed to accelerate ML/AI computations.

The system will be able to receive data from any front-end board with a fiber interface. But, for
the GEM/TRD use case we will be using the prototype SRO125 (currently being manufactured).
The VME version of this board, the fADC125, currently provides processed data for the offline ML
system described previously. The streaming version (SRO125) will allow for an apt comparison of
online and offline results. The SRO125 runs a 16 bit bus at 125 MHz with a 2.5 GB/s transceiver.
The interface between the SRO125 and the development board will utilize a custom serial protocol
with a fixed latency (described in attachment 1). The fixed latency protocol will allow for a
synchronized clock to be recovered and used on all front end boards and for embedded control
signals to arrive deterministically. This interface model has been used for both the Hall B RICH
detector and the Hall D DIRC. For this project the event building portion will be modified to
provide data to the ML block efficiently and will be organized in a manner useful for the algorithm
(noted in figure 1 as high speed interface logic).

For the initial hardware implementation we will use a triggered system. A trigger can be
received on the SRO125 from either an input connector or from the fiber interface itself. A self-
triggering mode has also been developed, but will require additional logic for trigger supervision
that is currently handled by a separate trigger module. In order to support validation of the data
processing hardware and other types of analysis, a passthrough mode is implemented where the
readout from downstream input are combined with the inferences. A separate FPGA application
will be implemented for each detector. Aggregate detection decisions will be made with a global
ANN which will receive data and their respective inferences. In addition, results from the global
ANN can be used to control the data volume of passthrough data.

Considering the FPGA architecture, after receiving the data and unpacking it, the event trig-
ger identifies events of interest and passes the information to the data clustering module. After
clustering, the data is passed to the neural network which generates the inference. To the right,
the embedded processor sets the configuration for processing the data and monitors progress the
data processing. The embedded processor is otherwise not directly involved with the data process-
ing. The embedded microcontroller coordinates a separate diagnostic mode where results can be
sampled and validated separately.

Because of the required high data rates, the modules will be implemented at the register
transfer language (RTL) level so that state machine operation controlling the data processing for
each module can be optimized. In addition, pipelining will be used extensively so that throughput
can be maintained because of inference latencies. Furthermore, FIFOs will be deployed where
elasticity is necessary due to the occurrence of burst data or as required to cross clock domains.
Figure 2 shows data flow in the experiment. Green arrows represent data streams from detectors.

The data from the detectors after pre-processing and pre-selection at the ML-FPGA are sent
to the farm running the online physics event reconstruction software - JANA2 [8]. It is a modern
C++ multi-threaded framework for offline and online applications, which is being used in a number
of projects (GlueX, EIC (eJANA), BDX, Indra Astra and other streaming readout test stands) at
Jefferson Lab and is backed by LDRD FY18-20. The data prepared by the ML-FPGA is accessed
through its high-performance IO and sent to nodes via TPC, utilizing a messaging middleware.
JANA will be used to disentangle the input stream. Event boundaries are determined and put



into parallel processing, where raw data is reconstructed, filtered, and recorded; incorporating a
software L3 trigger functionality. One of the important possibilities made available by using JANA
is subevent parallelism, which allows us to effectively run batch calculations on a GPU or TPU.
In the future this will allow us to bring emerged low latency FPGAs and traditional GPU or TPU
based ML algorithms together, providing an ultimate ML solution for data processing.

4.1 ML development tools

The Xilinx Vivado HLS (High-Level Synthesis) tool provides a higher level of abstraction for the
user by synthesizing functions written in C,C++ into IP blocks, by generating the appropriate
Jow-level, VHDL and Verilog code. Then those blocks can be integrated into a real hardware
system. High-level synthesis bridges hardware and software domains and significantly decreases
development time. A neural network trained in Root/TMVA can be exported to C/C++ code.
The C/C++ code of the trained network, including weights, is used as input for Vivado HLS.

An offline trained neural network is usually far from optimal for an FPGA application, with
its limited resources in terms of network size and computational accuracy. Neural network weights
often have many zeros and double precision is often unnecessary. Thus, it is possible to reduce
the size of the network by removing weights close to zero. Also, lowering the precision of floating
point calculations will save resources in the FPGA.

Now there is a software package HLS4ML that helps in the design and optimization of a neural
network for FPGA ([11]). HLS4ML supports common layer architectures and model software,
highly customizable output for different latency and size needs, simple workflow to allow quick
translation to HLS.

A typical workflow for developing a neural network in HLS4ML is shown in Figure 2.
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Figure 2: A typical workflow to translate a model into a FPGA implementation using hlsdml [11].

5 Resources

Project work involves conceptual development, computer simulations (Geant4, code development,
testing, analysis, documentation) and will take place at JLab’s CEBAF Center. The detector setup
building will take a place at Hall D. The work will be carried out by JLab staff at a fractional
effort (F. Barbosa, (5% FTE, electronics) C. Dickover (10% FTE, FPGA expert), S. Furletov (20%
FTE, physics, ML,FPGA), Y. Furletova (5% FTE, physics), D. Lawrence (0% FTE, consulting),
D. Romanov (10% FTE, software). Office space and administrative support will be provided by
JLab’s Physics and Fast Electronic divisions. FPGA algorithms implementation will be supported
by a graduate student (ODU) at 50% FTE, supervised by the ODU Prof. L.Belfore. The graduate
student will be enrolled in the graduate program at his/her university and participate in project
work as part of the thesis research. Certain identified tasks will be carried out by consultants



D. Lawrence (JLAB) and C. Fanelli (W&M,JLAB, DIRC ML algorithm). The FPGA tracking
algorithms consultant (L.Jokhovets) will perform her work remotely.

6 Anticipated Outcomes/Results

Outcomes/Results of this project
1. Software and hardware system to test various ML algorithms on FPGA.
2. Implemented ML FPGA PID core for GEMTRD prototype
Implemented ML, FPGA TRACKING for GEM prototype
Implemented MLL FPGA PID core for EmCAL prototype
Latency and real time performance test results of ML FPGA PID/Tracking

Implemented ML FPGA “global” PID using GEMTRD, EmCAL and GEM.

A S o

Estimation of scalability the system to the full size experiment (EIC)

7 Budget

Table 1 below summarizes the Jefferson Lab budget request for FY23.

Table 1: JLAB: FY23 request.

Request | -20% -40%
2 FPGA boards $20,000 $20,000 $20,000
Xilinx Software License $3,000 $3,000 $3,000
Optical cables, transceivers $1,000 $1,000 $1,000
Development computer/workstation | $3,000 $3,000 $0
Beam Test Travel $10,000 $0 $0
conferences/workshops $5,000 $5,000 $0
Sub Total $42,000 | $32,000 | $24,000
Overhead 36,802 | $3.822 | $2,064
Total $48,822 | $35,822 | $26,064
Table 2 summarizes the ODU budget request for FY23.
Table 2: ODU: FY23 request.
Request | -20% -40%
PhD student $23,250 $18,800 | $14,100
Travel $5.,000 30 30
Xilinx Software $4,295 $4,295 | $4,295
Overhead (60%) | $19,677 | $13,857 | $11,037
Total $52,222 | $36,952 | $29,432
Table 3: A total FY23 request.
Request -20% -40%
JLAB $48,822 $35,822 $26,064
ODU | $52,222 | $36,952 | $29,432
Total | $101,044 | $72,774 | $55,496
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Manpower /Personnel

Jefferson Lab (JLAB):

F

C. Dickover | Electronics Engineer | 10% FPGA expert
S. Furletov Research Scientist | 20% | physics, ML, FPGA

Y.
D.
D.

. Barbosa | Electronics Engineer | 5% electronics

Furletova Research Scientist 5% physics
Romanov | Research Scientist 10% software, ML
Lawrence | Research Scientist 0% consulting

William & Mary,JLab:

C. Fanelli , Research Scientist, 0% FTE, consulting

LB

Old Dominion University (ODU):
elfore Professor 0% FTE

PhD student % 50% FTE

Forschungszentrum Jilich, Germany:
L. Jokhovets , 0% FTE, consulting
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