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    are scale invariant :  
             describe the same physics at scale µ and sµ 

- QCD is not scale invariant 
- 3D φ4 (Ising) model at criticality is conformal : 
        correlation length ξ = ∞, all length scales are identical

Conformal systems

ξ = ∞ λ

m2

Wilson Fisher FP

Gaussian FP

In mathematical physics, the conformal symmetry of spacetime is expressed by an extension 
of the Poincaré group. The extension includes special conformal transformations and dilations.

https://en.wikipedia.org/wiki/Mathematical_physics
https://en.wikipedia.org/wiki/Spacetime
https://en.wikipedia.org/wiki/Poincar%C3%A9_group
https://en.wikipedia.org/wiki/Special_conformal_transformation
https://en.wikipedia.org/wiki/Dilation_(affine_geometry)


- 4D SU(Nc) gauge with Nf massless fermions (in some rep) 

Conformal systems - 4D
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At fixed Nc :  
– small Nf : chirally broken, QCD-like 
– Nf* < Nf  < Nf(IF)  : conformal at a new FP (IRFP) 
–  Nf(IF) < Nf : IR free 

β = μ
dg2

dμ



- 4D SU(Nc) gauge with Nf massless fermions (in some rep) 

Conformal systems - 4D

Ncolor

N
fla

v

or

Chira
lly 

broken phaseConform
al phase

IR fre
edom

At fixed Nc :  
– small Nf : chirally broken, QCD-like 
– Nf* < Nf  < Nf(IF)  : conformal at a new FP (IRFP) 
–  Nf(IF) < Nf : IR free 

β = μ
dg2

dμ



RG analysis predicts the running coupling:

Running coupling  

μΛUΛIR Λa

g

g*

β = μ
dg2

dμ

QCD-like

conformal

walking



RG analysis predicts the running coupling:

Running coupling  

μΛUΛIR Λa

g

g*

β = μ
dg2

dμ

QCD-like

conformal

walking Walking systems are  
conformal - like at high energies 
but chirally broken in the IR 
“near conformal” 

Walking systems exhibit 
-  large scale separation 
-  governed by the IRFP in the UV



Beyond SM: Composite Higgs models

LUV → LSD +LSM 0 +Lint → LSM + ...

Start with Higgsless, massless SM Full SM



Beyond SM: Composite Higgs models

LUV → LSD +LSM 0 +Lint → LSM + ...

Full SM + additional 
states from  
strong dynamics LSD

Start with Higgsless, massless SM Full SM



Beyond SM: Composite Higgs models

LUV → LSD +LSM 0 +Lint → LSM + ...

Full SM + additional 
states from  
strong dynamics LSD

Start with Higgsless, massless SM Full SM

The construction ideally will   
- predict the 125GeV Higgs 
- give mass to the SM gauge fields 
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Beyond SM: Composite Higgs models

LUV → LSD +LSM 0 +Lint → LSM + ...

Full SM + additional 
states from  
strong dynamics LSD

This could be a UV  
complete theory

Start with Higgsless, massless SM Full SM

The construction ideally will   
- predict the 125GeV Higgs 
- give mass to the SM gauge fields 
- give mass to the SM fermions : 

(4-fermion interaction or partial compositness?) 
- give mass to        fermions:          sectorLSD LUV

} LSD

Large scale separation



Conformal, near-conformal, walking systems are important 
•  Interesting QFTs on their own right 
•  Naturally exhibit walking — large scale separation  
•  UV is governed by the conformal FP — non-QCD properties 

• both scale separation and large anomalous dimensions are needed 
for viable BSM models

Near the conformal window  



• zero of the β function 
• RG/ step scaling studies can predict it 
• harder than it sounds but doable 

• anomalous dimensions of composite operators 
• scalar and baryon operators drive SM fermion mass generation 

typically large anomalous dimensions are required 
• bound state spectrum 

• masses of new states - how predictive is the model? 
• is there any light state? (0++ ?) 

Walking (accidental or tunable) makes these simulations hard

Characterization of (near-) conformal systems               
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Requires renormalization group study



GF is a continuous smoothing that removes short distance fluctuations 
For scalar model : 

free flow : 

Gauge flow: 
Fermions evolve on the gauge background: 

(The flow action does not have to match the system’s ) 

Gradient flow : a new approach

Φ(p)= N e−p
2/tφ(p)

Luscher  Comm.Math Phys 293, 899 (2010)

∂tVt = −(∂SW[Vt ])Vt , V0 =U
∂t χt = Δ[Vt ]χt , χ0 =ψ

Luscher JHEP 04 123 (2013) 

∂tφt = −(∂φ S(φt ))φt , φt=0 =φ
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∂tφt = −(∂φ S(φt ))φt , φt=0 =φ
Wilson-Kogut 1974



Is gradient flow an RG transformation ?

It is not. 

GF misses two important attributes of an RG transformation: 
– there is no rescaling Λcut  → Λcut /b or coarse graining 
– linear transformation does not have the correct normalization 

 (wave function renormalization or η exponent                  ) 

Both issues can be solved  
Real-space GF-RG: 

- GF defines the blocked variables
- coarse graining is done during measurement
- wave function renormalization (η exponent) calculated from an  

operator that does not have anomalous dimension (vector)
-   
      

Zφ = b
−η/2

• A. Carosso, A.H, E. Neil, PRL 121 (2018)
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RG flow

action parameter space

RT trajectory 

g1

g2

bare action

IRFP

GPT

continuum physics

Only GF-RG has fixed points, not GF

works the same way



GF as RG

〈O(0)O(x0)〉g ,m = b
−2ΔO 〈O(0)O(xb = x0 /b)〉 ′g , ′m

〈O(0)O(xb)〉 ′g , ′m = 〈Ob(0)Ob(xb)〉g ,m

〈Ob(Φb(0))Ob(Φb(xb))〉g ,m = b−η 〈O(φt(0))O(φt(xb))〉g ,m

RG

MCRG

GF

Along the RT all cut-off effects are removed. 
RG with scale change b predicts  S(g,m) → S(g’,m’)
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〈O(0)O(xb)〉 ′g , ′m = 〈Ob(0)Ob(xb)〉g ,m

〈Ob(Φb(0))Ob(Φb(xb))〉g ,m = b−η 〈O(φt(0))O(φt(xb))〉g ,m

RG

MCRG

GF

〈Ot(0)Ot(x0)〉
〈O(0)O(x0)〉

= b2ΔO−2nOΔφ

Ratio of flowed & unflowed correlators predict the anomalous dimension

ΔO = dO +γ O
Δφ = dφ +η /2

x0≫b

Along the RT all cut-off effects are removed. 
RG with scale change b predicts  S(g,m) → S(g’,m’)



 Anomalous dimensions 

Calculate η by an operator that does not have an anomalous dimension: 
  — vector or axial charge (A(x))  

The super-ratio

R(t ,x0)=
〈Ot(0)Ot(x0)〉
〈O(0)O(x0)〉

( 〈A(0)A(x0)〉
〈At(0)At(x0)〉

)nO/nA = bγ O

independent of x0 >> b and predicts 𝛾
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  — vector or axial charge (A(x))  

The super-ratio

R(t ,x0)=
〈Ot(0)Ot(x0)〉
〈O(0)O(x0)〉

( 〈A(0)A(x0)〉
〈At(0)At(x0)〉

)nO/nA = bγ O

- t and b are still independent!
• Natural choice (required asymptotically) : b2 ~ t 

- it is advantageous to flow only the source, not the sink
- 𝛾 is universal at the FP only : set fermion mass to zero
- t has to be large enough, and  

∝t γ O

independent of x0 >> b and predicts 𝛾

x0≫ 8t

/2



β function and running coupling

– RG of single operator :
– operators with no scaling dimension (            ) define a  

running coupling
–                         has no anomalous dimension (            )
– Luscher defined gradient flow running coupling  

βc,s(g2
c ; L) =

g2
c (sL; a) − g2

c (L; a)
log(s2)

g2
c (L) =

128π2

3(N2 − 1)
1

C(c, L)
⟨t2E(t)⟩

𝒪 = b4E ∝ t2E

⟨𝒪⟩S = b−ΔO⟨𝒪⟩S′�
ΔO = 0

ΔO = 0

RG β function: 
– Finite volume step scaling function β2

– Continuous  β function

β(g2) = 2t
dg2

dt



                          Some recent results



The β function

Shows the opening of the conformal window 

• Numerically difficult in near-conformal systems 
• Some results are controversial 
• I believe a better fermion action (domain wall) will resolve the 

issues 
• Recent results: Nf=12 fundamental fermions is conformal  

                      Nf=10 appears conformal  
                      (Nf=8 is expected too be chirally broken )



Nf=12 fundamental

AH,Rebbi, Witzel
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Step scaling function (~ - β function ) with domain wall fermions
Detailed study of systematics with flow, operator, fits, etc

Data points: raw data

shaded band: continuum
 extrapolation



Nf=12 fundamental - systematics

AH,Rebbi, Witzel

(c=0.25 GF scheme)

0 0.05 0.1 0.15 0.2
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0 0.05 0.1 0.15
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3 different flows, 3 different operators, optional tree-level improvement, 
2 continuum extrapolations 
Do the 36 predictions agree? → measure of systematical errors



Nf=12 fundamental

Continuum extrapolated result implies IRFP at g2 = 5.5 
(the value is scheme dependent, the existence universal) 

AH,Rebbi, Witzel

Staggered

(c=0.25 GF scheme)
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Nf=10 fundamental

AH,Rebbi, Witzel

Step scaling function, domain wall fermions
Needs more data but indication for IRFP around g2  ~ 10
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Nf=10 fundamental

Compare to Chiu, DW results

0 2 4 6 8 10
gc
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-0.40

-0.20

0.00

0.20

0.40

0.60

c,
s(g

c2 )

PRELIMINARY

Nf=10, c=0.3

Chiu 2016
Chiu 2018
2-loop
3-loop
4-loop
5-loop
nZS linear

If Nf=10 is conformal, it is perfect for 2+8 or 4+6 mass-split  system



Nf=2 continuous β function

PRELIMINARY

The continuous beta function  is predicted by chaining together
several bare gauge coupling runs
In the GF scheme the β function follows the 1-loop perturbative prediction 
(Consistent with observation of Alpha collaboration with 3 flavors) 
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PRELIMINARY

The continuous beta function  is predicted by chaining together
several bare gauge coupling runs

• AH, Witzel - in prep

In the GF scheme the β function follows the 1-loop perturbative prediction 
(Consistent with observation of Alpha collaboration with 3 flavors) 

g

G



Anomalous dimensions

Anomalous dimension of conformal operators characterize the IRFP
Most pheno models require large anomalous dimensions to be consistent 
with measurements 

Real-space GF-RG can predict any operator anomalous dimension
Works in QCD as well
 



Nf=2 running anomalous dimension

In the GF scheme both the β function and anomalous dimensions  
follow the 1-loop perturbative prediction 



Nf=2 running anomalous dimension

PRELIMINARY

• AH, Witzel - in prep

S

T

Proton is straightforward 

Isosinglet tensor is more
difficult but doable

In the GF scheme both the β function and anomalous dimensions  
follow the 1-loop perturbative prediction 



Nf=12 anomalous dimension

Rt
O(x0)=

〈O(0)Ot(x0)〉
〈O(0)O(x0)〉

( 〈A(0)A(x0)〉
〈A(0)At(x0)〉

)nO/nA = t γ O

flow time dependence of 
the plateau gives 
anomalous dimension

Super-ratio 

has no x0 dependence if x0 >> b

Domain wall

pseudoscalar

PRELIMINARY



Thank them profusely and early on

Nf=12  anomalous dimension, pseudo scalar:

,   t→∞

γ m(β ,t)= γ 0 + cβt
α1 +dβt

α2

extrapolate to t → ∞ :

Domain wall

γ m =0.31(3)
PRELIMINARY

(needs finite volume
 extrapolation)

γ m =0.24(3)
Staggered result



Nf=12 tensor:

,   t→∞

γ m(β ,t)= γ 0 + cβt
α1 +dβt

α2

extrapolate to t → ∞ :

Domain wall
PRELIMINARY

γ T = −0.11(1)

First non-perturbative
determination of γT
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Walking systems



Classic realization: dilaton-like Higgs 
Take Nf  just below the conformal window 

• Numerical results suggest light 0++ 
ex: SU(3) with 8 fundamental flavors (LSD) ; 
      SU(3) with 2 sextet flavors (LatHC); 

Mass-split systems: both dilation and pNGB Higgs 
 Take Nf  above the conformal window  

• Split the masses: Nf = Nℓ + Nℎ 
Nℎ flavors are massive,  mℓ ≪ mℎ ≪ Λcut-off  → decouple in the IR 

        Nℓ ( = 2 - 4) flavors are massless,  mℓ = 0 →  chirally broken 
                                                       (Brower, AH,Rebbi, Witzel and LSD Coll) 
  
Emerging light 0++  is a property of near-conformal systems that is not 
seen in QCD.  

Walking systems



Nf=8 fundamental flavors - dilation Higgs candidate

(PhysRevD.99.014509 ) 

Expected to be below the conformal window - close enough ?
The 0++ is light - still degenerate with the pion
                       — good technicolor candidate

LSD collaboration

https://doi.org/10.1103/PhysRevD.99.014509


“Foolproof” realization: mass-split models 
 Take Nf  above the conformal window  

Split the masses: Nf = Nℓ + Nℎ 
        Nℎ flavors are massive,  mℓ ≪ mℎ ≪ Λcut-off  → decouple in the IR 

        Nℓ ( = 2 - 4) flavors are massless,  mℓ = 0 → spont. chirally broken 
      

‣ large scale separation controlled by mℎ 
‣chirally broken in the IR 
‣conformal in the UV  → hyperscaling :  

dimensionless ratios are universal functions of  mℓ/mh 

Mass-split systems

MH1
/Fπ = !ΦH (mℓ /mh)

MH1
/MH2

=ΦH (mℓ /mh),

In the mℓ=0 chiral limit the spectrum is fully predictable in terms of Fπ 

spectrum



Nf=10 is conformal and close to the conformal window  

Nf=4+6 mass split system

anomalous dimensionβ function walking systems                              spectrum
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amh = 0.200, β = 4.03 - Mv/Mps ratio is independent 
  of mh 

  - system is chirally broken



Even more interesting: heavy-light and heavy-heavy masses  
are also independent of mh  — very much NOT QCD-like 

Nf=4+6 mass split system

anomalous dimensionβ function walking systems                              spectrum
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Fun model: 
• Tunable walking 
• Anomalous dimensions from IRFP 
• Hyper scaling —  

in the chiral limit the spectrum has no free parameters  
(besides the scale) 

• Indications for light 0++  

Nf=4+6 mass split system

anomalous dimension walking systemsβ function                              spectrum



Fun model: 
• Tunable walking 
• Anomalous dimensions from IRFP 
• Hyper scaling —  

in the chiral limit the spectrum has no free parameters  
(besides the scale) 

• Indications for light 0++  

Nf=4+6 mass split system

anomalous dimension walking systemsβ function                              spectrum

Embedding the SM to 4 flavors: 
• Caccapaglia, Ma : possible with natural DM candidate 
• Vecchi: partial composite fermion mass generation is possible 

What if the BSM is composite, but not 4-flavors? 
• General properties still apply!



Near-conformal systems: the worlds unknown…

- They are not QCD-like :  new properties, new applications
  - Composite BSM candidates 

- Lattice methods can determine many properties:
• spectrum, scattering, decay, etc : just like in QCD
• RG beta function
• anomalous dimensions of composite operators

- These systems especially benefit from domain wall simulations, 
the cost is compensated by improved scaling properties



EXTRA SLIDES



EXTRAS


