Introduction to Quantum Chromodynamics (QCD)

Lecture 2

Carlota Andrés Theory center, Jefferson Lab carlota@jlab.org May 28, 2019

Outlook

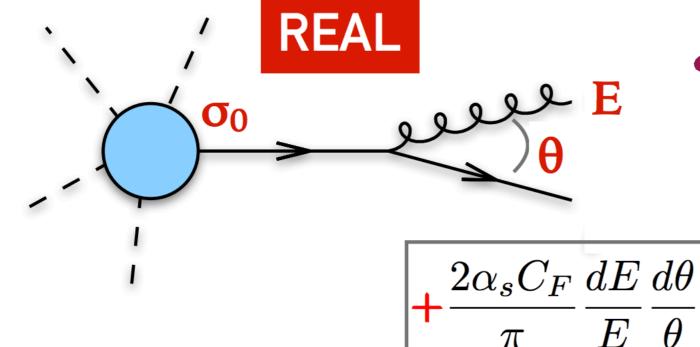
• IR and CO divergences (reminder)

Fully IRC observables

• Deep inelastic scattering (DIS)

• Polarized DIS and the proton spin crisis

IR and CO divergences



 σ_0

Divergences appear in real and virtual diagrams

• If you are <u>inclusive</u>, you don't care about emissions of soft/ collinear gluons real and virtual $\frac{2\alpha_s C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\theta}$

IR and CO divergences

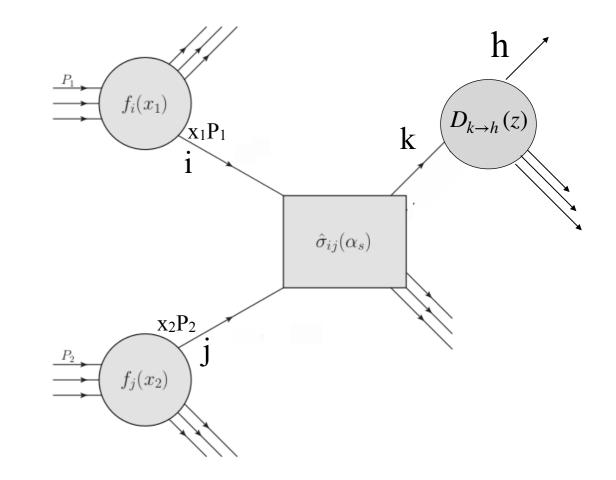
Being inclusive = Observables with NO identified hadrons

Purely IRC safe observables

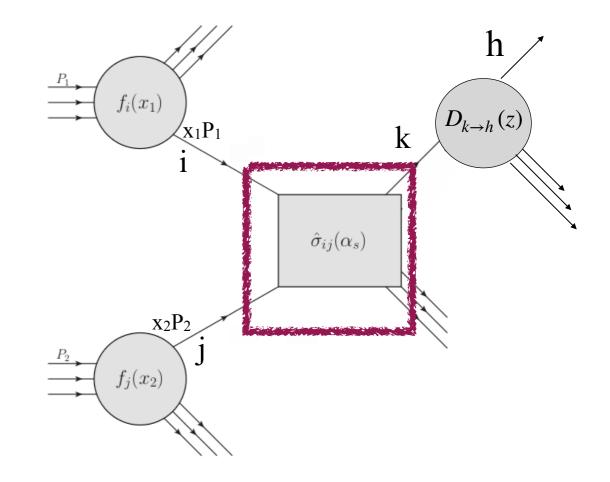
Cross sections with identified hadrons are non-perturbative

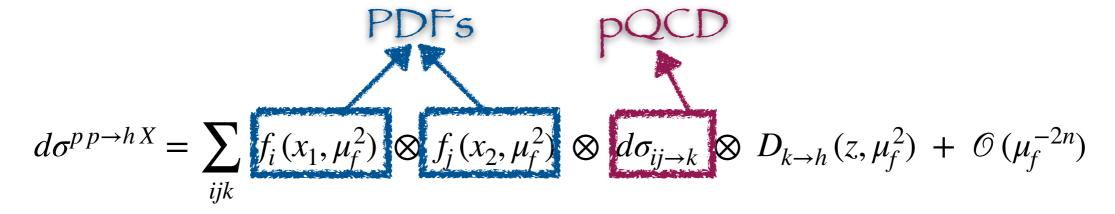
Factorization, Effective field theory, Lattice...

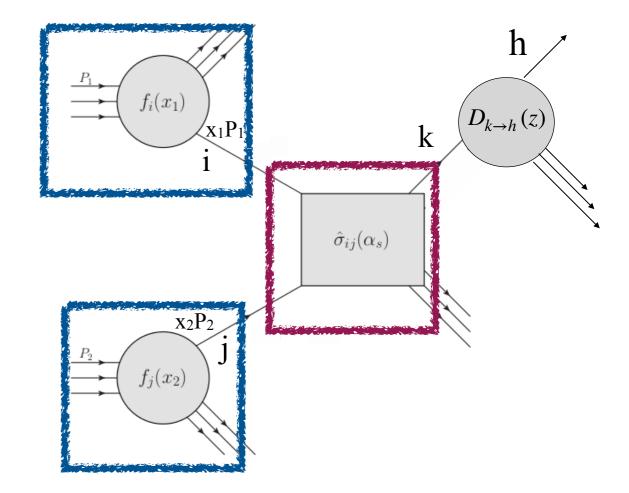
$d\sigma^{p\,p \to h\,X} = \sum_{ijk} f_i(x_1, \mu_f^2) \otimes f_j(x_2, \mu_f^2) \otimes d\sigma_{ij \to k} \otimes D_{k \to h}(z, \mu_f^2) + \mathcal{O}(\mu_f^{-2n})$

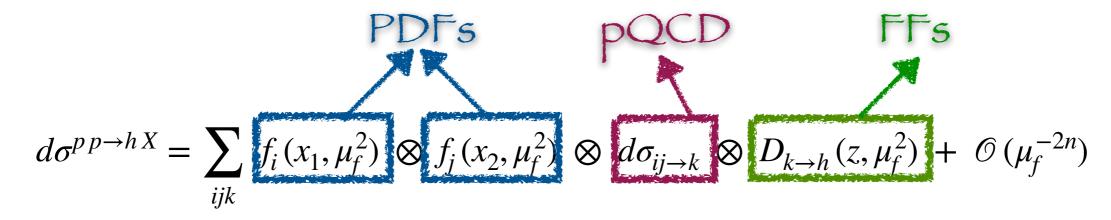


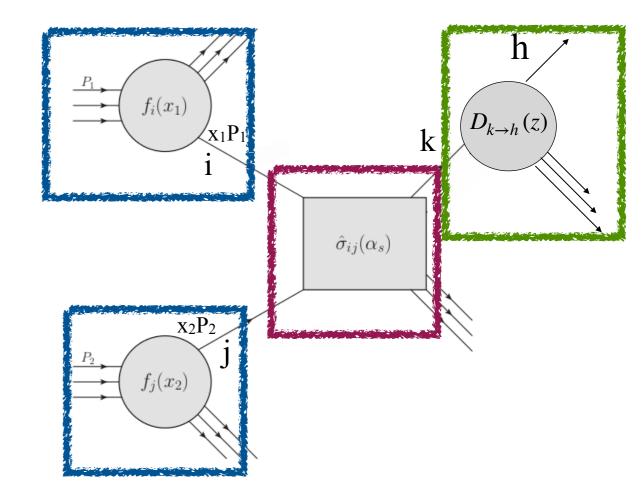
How? Collinear Factorization $d\sigma^{pp \to hX} = \sum_{ijk} f_i(x_1, \mu_f^2) \otimes f_j(x_2, \mu_f^2) \otimes d\sigma_{ij \to k} \otimes D_{k \to h}(z, \mu_f^2) + \mathcal{O}(\mu_f^{-2n})$

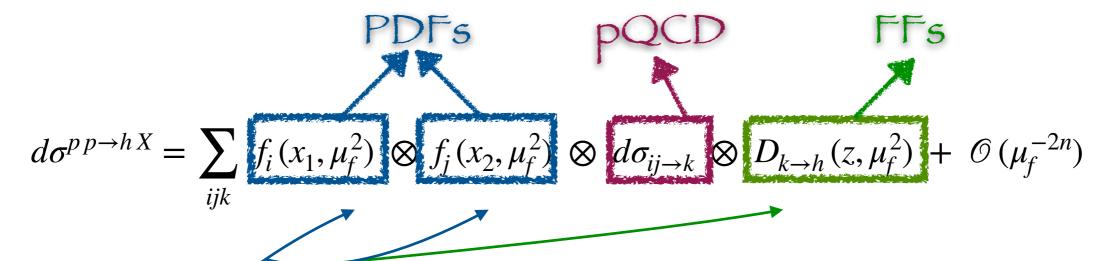




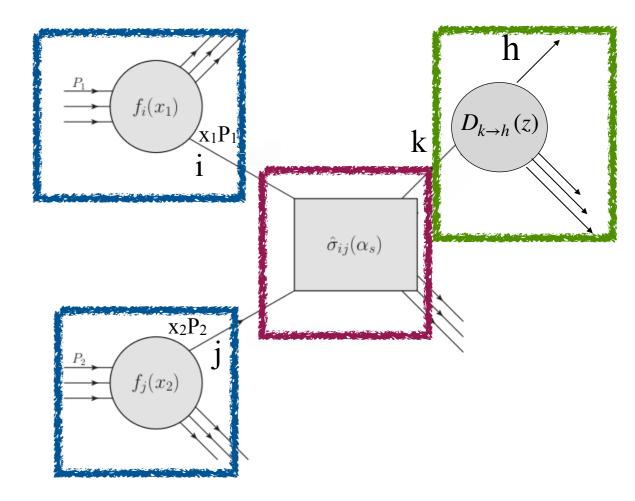


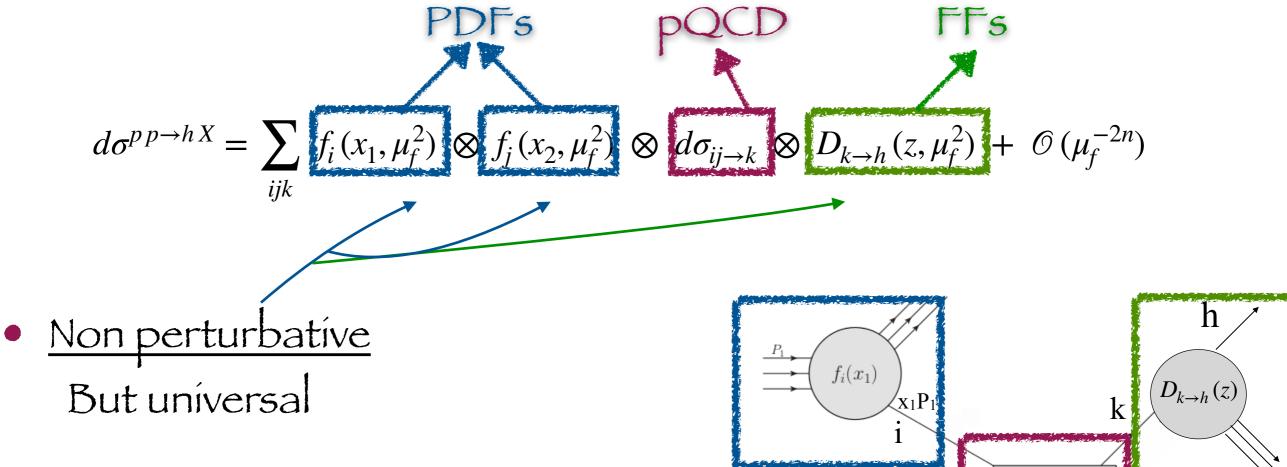






- <u>Non perturbative</u> But universal
- Their evolution is perturbative





 $\hat{\sigma}_{ij}(\alpha_s)$

 x_2P_2

 $f_j(x_2)$

• Their evolution is perturbative \longrightarrow DGLAP $Q^2 \frac{\partial f_i(x,Q^2)}{\partial Q^2} = \sum_j P_{ij} \otimes f_j(x,Q^2)$ Splitting functions (pQCD) Fully Infrared observables

Fully Infrared observables: e⁺e⁻ hadrons

ete- hadrons

• Total cross section. Not a specific hadron

$$\sigma_{e^+e^- \to \text{hadrons}}^{\text{tot}} = \sigma_{e^+e^- \to \text{partons}}^{\text{tot}}$$

$$\sigma_{e^+e^- \to \text{hadrons}}^{\text{tot}} = \sum_n P_{e^+e^- \to n} = \sum_n \sum_m P_{e^+e^- \to m} P_{m \to n} = \sum_m P_{e^+e^- \to m} \sum_n P_{m \to n} = \sum_m P_{e^+e^- \to m}$$
$$\sigma_{e^+e^- \to \text{partons}}^{\text{tot}} = \sum_m P_{e^+e^- \to m}$$

$$\sigma_{e^+e^- \to \text{partons}}^{\text{tot}} \left(Q^2 \right) = \sum_n \left(\frac{\alpha_s \left(\mu^2 \right)}{2\pi} \right)^n \sigma^n \left(Q^2, \mu^2 \right)$$

ete- hadrons

• Total cross section. Not a specific hadron

$$\sigma_{e^+e^- \to \text{hadrons}}^{\text{tot}} = \sigma_{e^+e^- \to \text{partons}}^{\text{tot}}$$

$$\sigma_{e^+e^- \to \text{hadrons}}^{\text{tot}} = \sum_n P_{e^+e^- \to n} = \sum_n \sum_m P_{e^+e^- \to m} P_{m \to n} = \sum_m P_{e^+e^- \to m} \sum_n P_{m \to n} = \sum_m P_{e^+e^- \to m}$$
$$\sigma_{e^+e^- \to \text{partons}}^{\text{tot}} = \sum_m P_{e^+e^- \to m}$$

• Partonic cross section computable in pQCD

$$\sigma_{e^+e^- \to \text{partons}}^{\text{tot}} \left(Q^2 \right) = \sum_n \left(\frac{\alpha_s \left(\mu^2 \right)}{2\pi} \right)^n \sigma^n \left(Q^2, \mu^2 \right)$$

ete- hadrons: LO

• Square amplitude (invariant):

$$M_{e^+e^- \to q\bar{q}} \Big|^2 = 2 e^4 e_Q^2 \frac{N_c}{s^2} \left[(m_q - t)^2 + (m_q - u)^2 + 2m_q^2 s \right]$$

• Cross section at the lowest order:

$$\frac{d\sigma_{e^+e^- \to q\bar{q}}}{dt} = \frac{1}{16\pi Q^2} \left| M_{e^+e^- \to q\bar{q}} \right|^2$$

$$\sigma^0 = \sum_q d\sigma_{e^+e^- \to q\bar{q}} = \sum_q e_q^2 N_c \frac{4\pi\alpha_{em}}{3s} \left(1 + \frac{2m_q^2}{s} \right) \sqrt{1 - \frac{4m_q^2}{s}}$$
Threshold Sensitive to the number of colors constraint

ete- hadrons: NLO

• Energy fractions of the final state partons

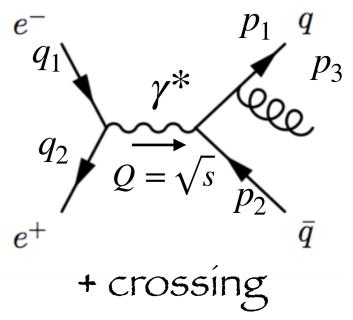
$$x_i = \frac{2E_i}{\sqrt{s}} = \frac{2p_i \cdot Q}{s} \quad \text{with} \quad i = 1, 2, 3$$

 $2(1 - x_1) = x_2 x_3 (1 - \cos \theta_{23}), \quad \text{cycl}$

• Contribution to the cross section

$$\frac{1}{\sigma^0} \frac{d\sigma^{q\bar{q}g}}{dx_1 dx_2} = \frac{\alpha_s}{2\pi} C_F \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)} \qquad \begin{aligned} x_2 &= 1 \to \theta_{13} = 0 \quad \text{or} \quad E_3 = E_g = 0 \\ x_1 &= 1 \to \theta_{23} = 0 \quad \text{or} \quad E_3 = E_g = 0 \end{aligned}$$

Divergent when the gluon is <u>collinear</u> to the quark or antiquark or it is <u>soft</u> Question: How much is $\sum_{i} x_i$?



• Dimensional regularization: $\varepsilon = \frac{1}{2}(4 - n)$

Real
$$\sigma^{q\bar{q}g} = \sigma^0 \frac{\alpha_s}{2\pi} H(\varepsilon) \left[\frac{2}{\varepsilon^2} + \frac{3}{\varepsilon} + \frac{19}{2} \right]$$

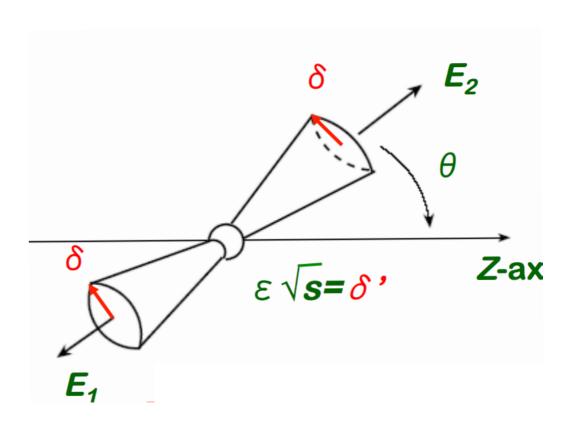
 $H(\varepsilon) = \frac{3(1-\varepsilon)^2}{(3-2\varepsilon)\Gamma(2-2\varepsilon)} = 1 + \mathcal{O}(\varepsilon)$
Virtual $\sigma^{q\bar{q}(g)} = \sigma^0 \frac{\alpha_s}{2\pi} H(\varepsilon) \left[-\frac{2}{\varepsilon^2} - \frac{3}{\varepsilon} - 8 \right]$

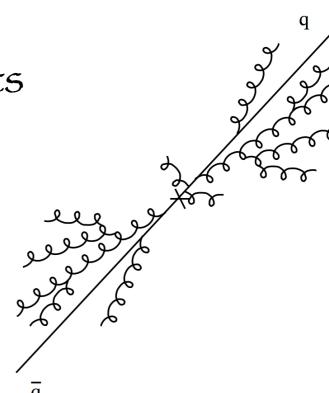
NLO
$$\sigma^{\text{NLO}} = \sigma^{q\bar{q}g} + \sigma^{q\bar{q}(g)} = \sigma^0 \left[\frac{\alpha_s}{\pi} + \mathcal{O}(\varepsilon) \right]$$
 NO \mathcal{E} dependence!

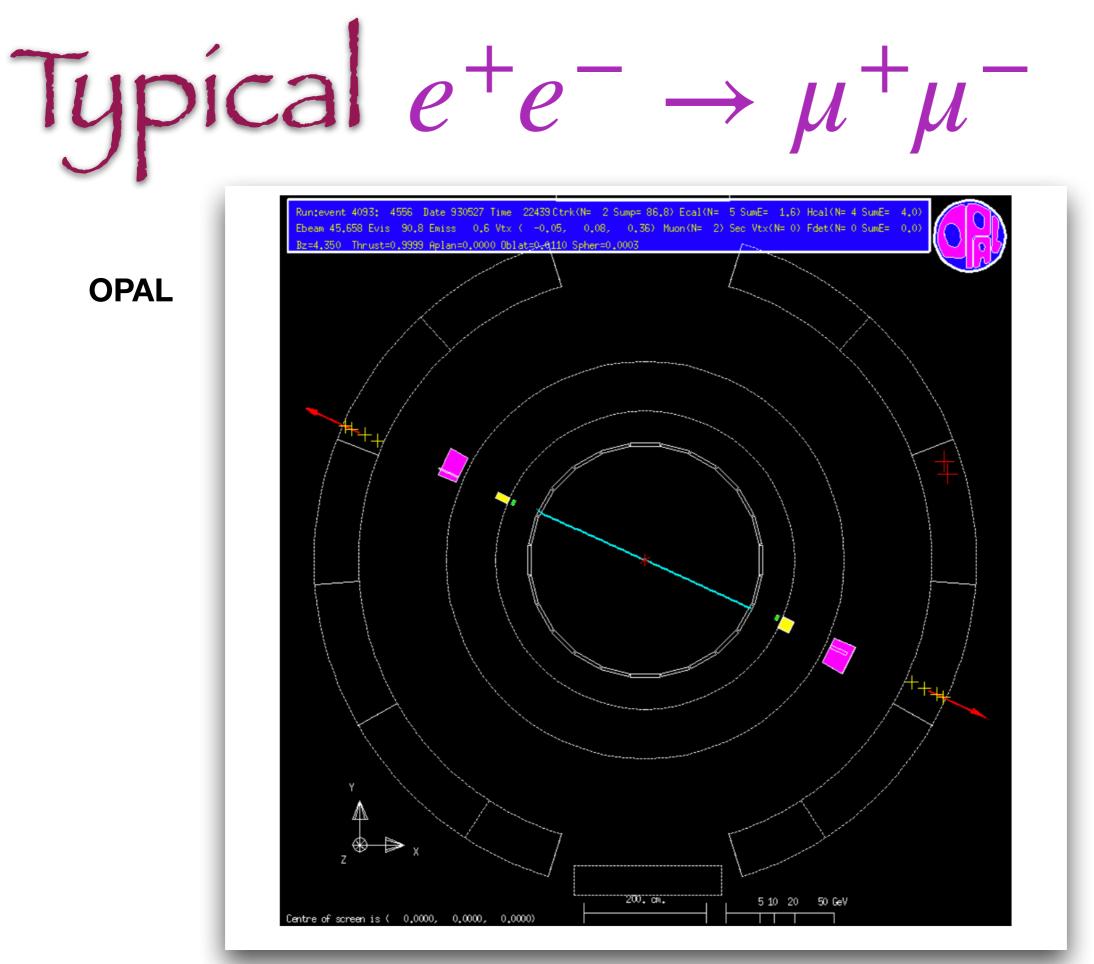
$$\sigma^{\text{tot}} = \sigma^0 \left[1 + \frac{\alpha_s}{\pi} + \mathcal{O}\left(\alpha_s^2\right) \right]$$

IRC safe. Independent of the choice of the IRC regularization

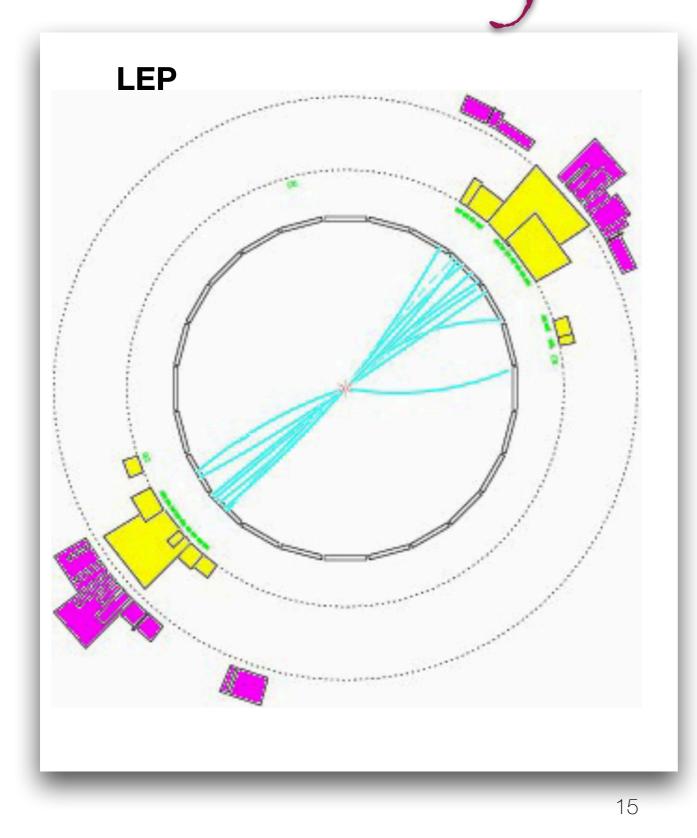
- Jets: same invariant amplitud + phase constraints
- Soft/collinear gluon emissions do not change the direction of the leading parton (IRC safe)
- Insensitive to hadronization
- Many jet algorithms
- Sterman-Weinberg jets An event has 2 jets if at least $(1 - \varepsilon)$ of the event energy is contained into two cones of half-angle δ

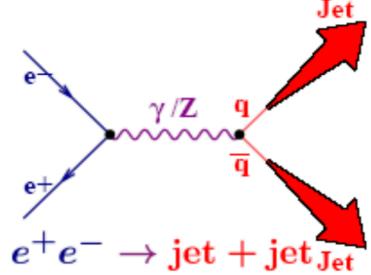






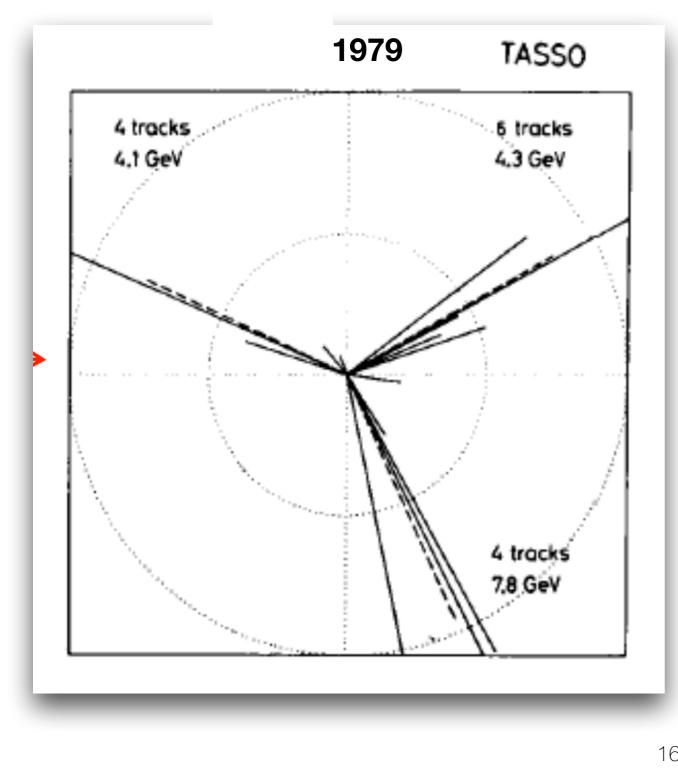
A clean 2-jet event



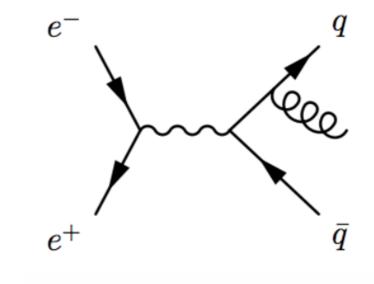


- 2 well-collimated jets
- Almost all the energy contained in two cones

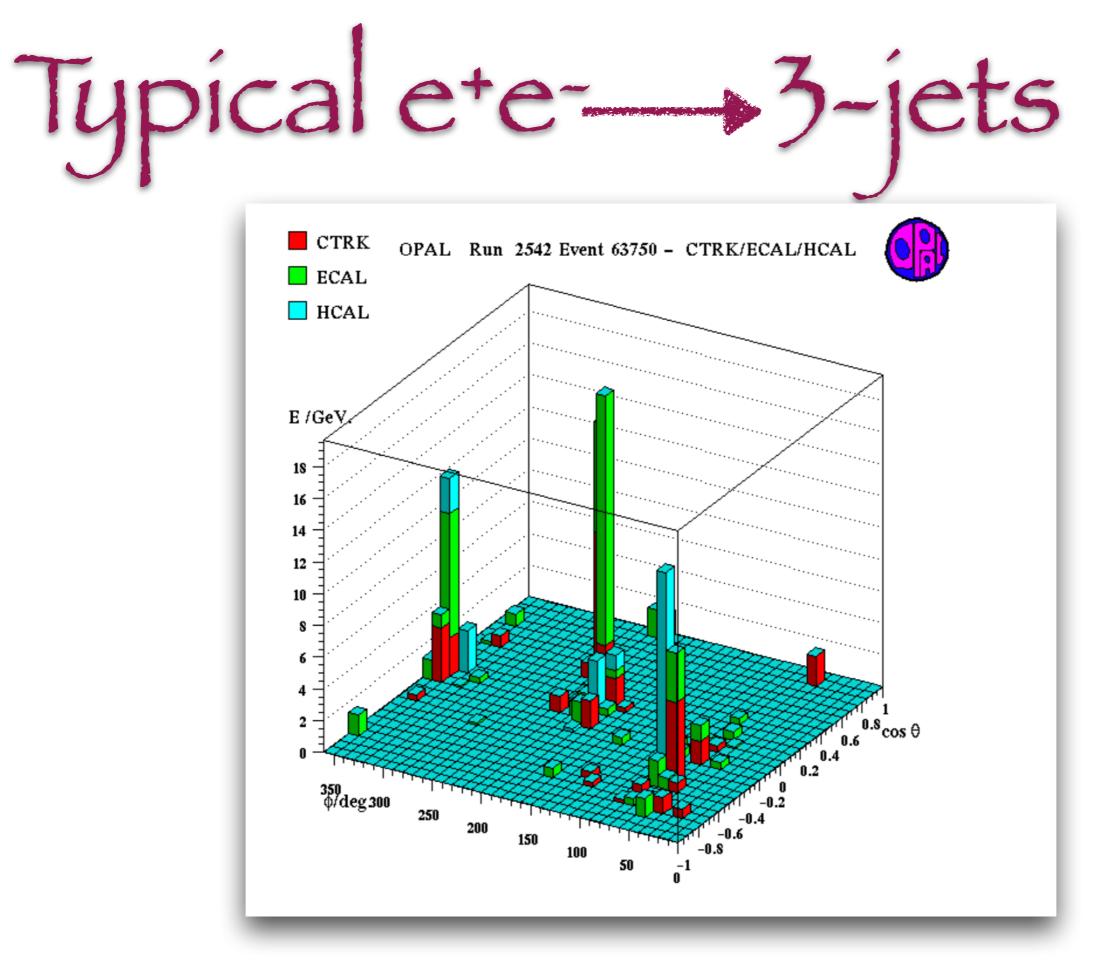
Discovery of a gluon jet



• Fírst 3-jet event



Sterman-Weinberg procedure becomes complicated for multi-jet events

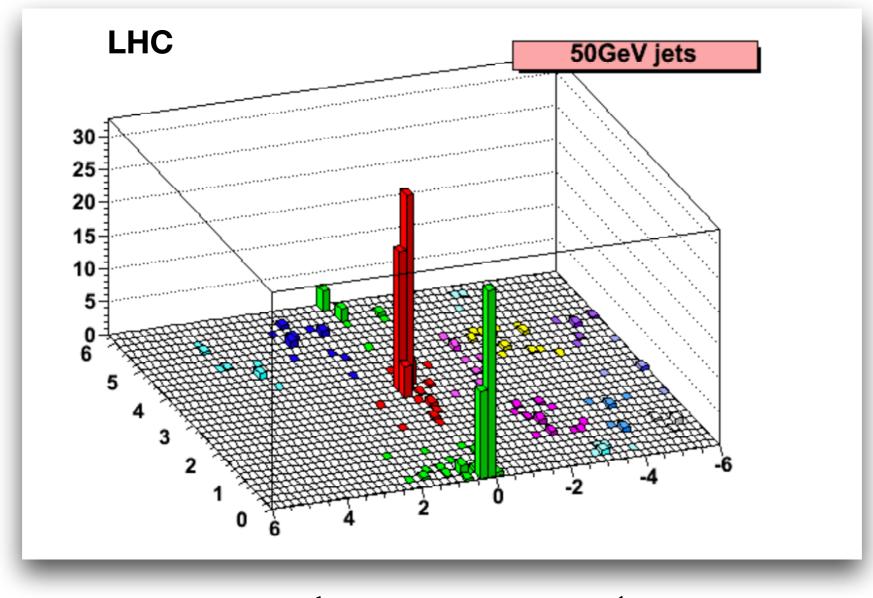


2-jet cross section in ete-

• 2-jet in QCD $\sigma_{2-jet} = \sigma_{q\bar{q}}(1 + c_1\alpha_s + c_2\alpha_s^2) \quad \text{with } c_{1,c_2} \sim 1$

Jets nowadays

pp-jets at the LHC



Around 300-400 particles

Some jet algorithms

SEQUENTIAL RECOMBINATION ALGORITHMS

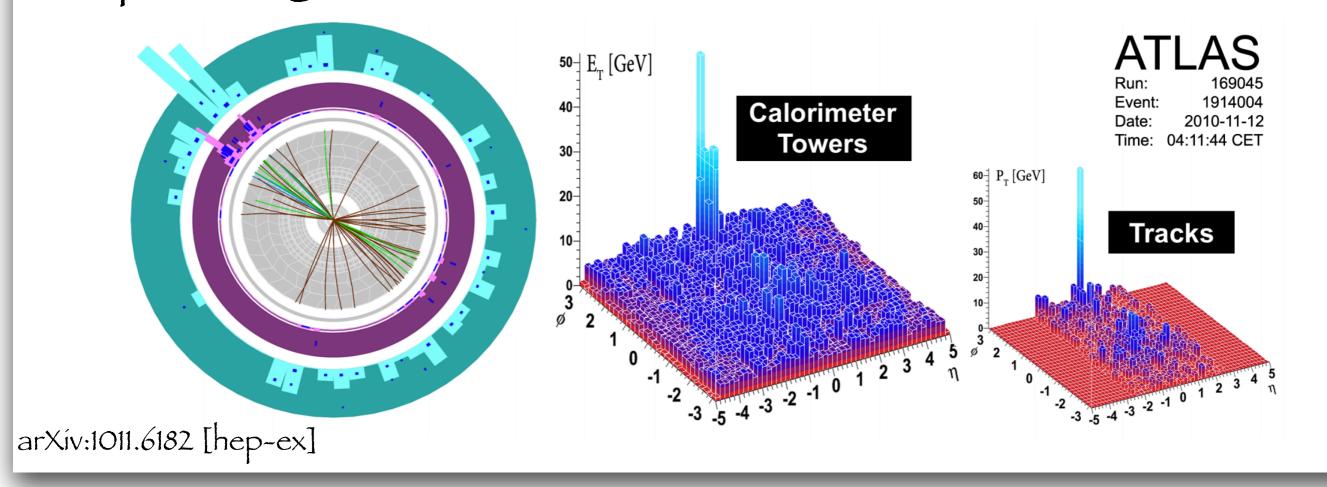
• Define:
$$d_{ij} = \min\left(p_{T_i^{2n}}, p_{T_j^{2n}}\right) \frac{\Delta_{ij}^2}{R} \quad \Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

 $d_{iB} = p_{T_i^{2n}}$

- Find: $\min(d_{ij}, d_{iB})$
 - If d_{iB} , remove i
 - If d_{ij}, combine i and j
- Go on until exhausting the list
- $n=1k_T$, n=-1 ant $i-k_T$, n=0 C/A

Jets in Heavy lon collisions

Jet quenching



Highly asymmetric díjet event

See Abhijit Majumder lectures

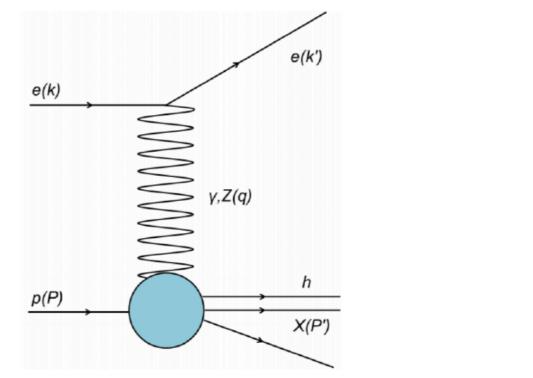
What happens if we are NOT inclusive?

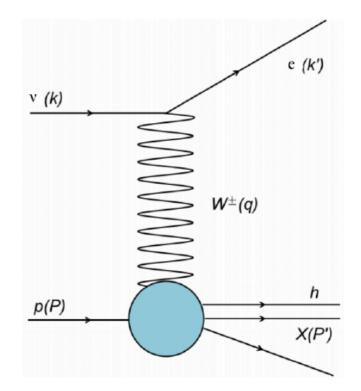
Exclusive processes

- How to test QCD in a reaction with identified hadrons?
- Hadronic scale is <u>NON-perturbative</u>
- Solution: Factorization
 - Isolate the calculable dynamics in terms of q and g (partonic cross sections
 - Quark and gluons are connect to hadrons vía universal collinear distributions

Provide information about the partonic structure of hadrons

Deep Inelastic Scattering (DIS)





• DIS kinematic variables

$$Q^2 \equiv -q^2$$
 $x \equiv \frac{Q^2}{2p \cdot q}$ $y \equiv \frac{p \cdot q}{p \cdot k}$

- Q²: gauge boson <u>virtuality</u>. Transverse resolution at which the proton structure is probed
- x: <u>fraction of longitudinal momentum</u> from the proton carried by the interacting quark
- y: momentum fraction lost by the electron (in proton rest frame)

DIS at LO

At LO, considering only the photon exchange

- Scattering amplitude: $M = -\bar{u}(k')ie_{q}\gamma_{\mu}u(k)\frac{i}{q^{2}}g^{\mu\nu}\langle X|j_{\nu}(0)|P\rangle$ $\frac{d\sigma}{dxdQ^{2}} \propto |M|^{2} \propto L_{\mu\nu}W^{\mu\nu}$ Leptonic tensor (QED) $L_{\mu\nu} = 4e^{2}\left(k_{\mu}k_{\nu}' + k_{\nu}k_{\mu}' g_{\mu\nu}k \cdot k'\right)$
- Hadroníc tensor:

$$W_{\mu\nu} = F_1 \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2} \right) + \frac{F_2}{p \cdot q} \left(p_{\mu} - \frac{p \cdot q \ q_{\mu}}{q^2} \right) \left(p_{\nu} - \frac{p \cdot q \ q_{\nu}}{q^2} \right) \frac{Structure}{q^2} + \frac{g_1}{p \cdot q} \epsilon_{\mu\nu\lambda\sigma} q^{\lambda} s^{\sigma} + \frac{g_2}{(p \cdot q)^2} \epsilon_{\mu\nu\lambda\sigma} q^{\lambda} (p \cdot q \ s^{\sigma} - s \cdot q \ p^{\sigma})$$
Polarized lepton and target

k'

k

DIS at LO

At LO, considering only the photon exchange

• EM Cross section at LO:

$$\frac{d^2\sigma}{dxdQ^2} = \frac{4\pi\alpha_{em}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2^{em}(x,Q^2) - \frac{y^2}{2} F_L^{em}(x,Q^2) \right]$$

k

$$F_L^{em}(x,Q^2) = F_2^{em}(x,Q^2) \left(1 + \frac{4x^2 M^2}{Q^2}\right) - 2x F_1^{em}(x,Q^2)$$

• In the Bjorken limit: $Q^2 \to \infty, x$ finite $F_2(x) = 2xF_1(x)$ Callan-Gross relation Bjorken scaling Quarks: spin 1/2

DIS and PDFs

- Beyond LO, the structure functions are not IRC safe
- Divergences (except collinear ones) cancel when performing dimensional regularization $F_2^{em}(x,Q^2) = \sum_i xe_i^2 \left[f_i(x) + \frac{\alpha_s}{2\pi} \int_0^1 \frac{d\xi}{\xi} \sum_j \left(P_{ij}\left(\frac{x}{\xi}\right) \log \frac{Q^2}{\kappa^2} + W_{ij}(x) \right) f_j(\xi) + \mathcal{O}(\alpha_s^2) \right] .$
- Collinear divergences are absorbed into the parton distribution functions (PDFs) at the factorization scale μ_F
- PDFs are <u>non-perturbative</u>. But their <u>evolution</u> with respect to The factorization scale is <u>perturbative</u> (DGLAP)

DGLAP equation

• PDFs are <u>non-perturbative</u>. But universal

• Their evolution is perturbative: DGLAP evolution equation

 $\mu_F^2 \frac{\partial F_2(x_B, \mu^2)}{\partial \mu_F^2} = 0 \implies \mu_F^2 \frac{\partial f_i(x, \mu_F^2)}{\partial \mu_F^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z}\right) f_j\left(z, \mu_F^2\right)$

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

DGLAP equation

• DGLAP

$$\mu_F^2 \frac{\partial f_i(x, \mu_F^2)}{\partial \mu_F^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z}\right) f_j\left(z, \mu_F^2\right)$$

• Splitting functions at LO:

$$\begin{split} P_{\rm qq} &= C_F \frac{1+x^2}{(1-x)_+} + 2\delta \left(1-x\right) \ , \\ P_{\rm qg} &= \frac{1}{2} \left[x^2 + (1-x)^2 \right] \ , \\ P_{\rm gq} &= C_F \left[\frac{1+(1-x)^2}{x} \right] \ , \\ P_{\rm gg} &= 2N_c \left[\frac{1+(1-x)^2}{x} \right] \ , \\ P_{\rm gg} &= 2N_c \left[\frac{x}{(1-x)_+} + \frac{1-x}{x} + x \left(1-x\right) \right] + \left(\frac{11N_c - 2n_f}{6} \right) \delta \left(1-x\right) \end{split}$$

Known up to NNLO, NNNLO some límíts known (work in progress)

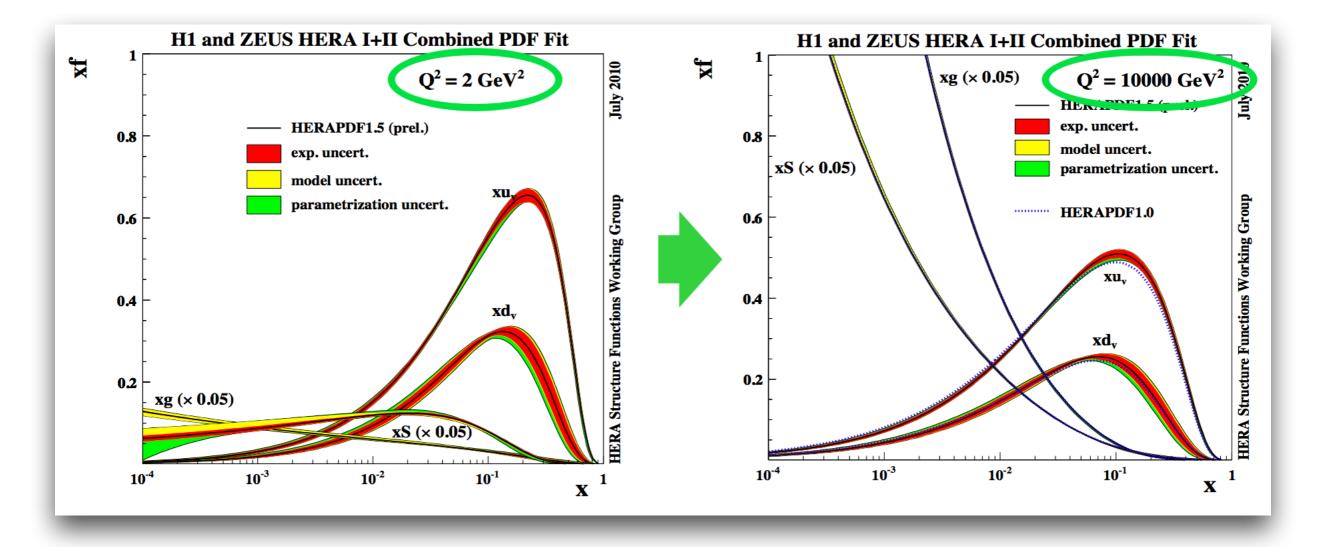
Global analyses

- PDFs are non perturbative. But universal
- They can be <u>extracted from experiments</u>:
 DIS, DY, SIDIS, jets, W/Z...
 - How? Global analysis

See Pavel Nadolsky lectures

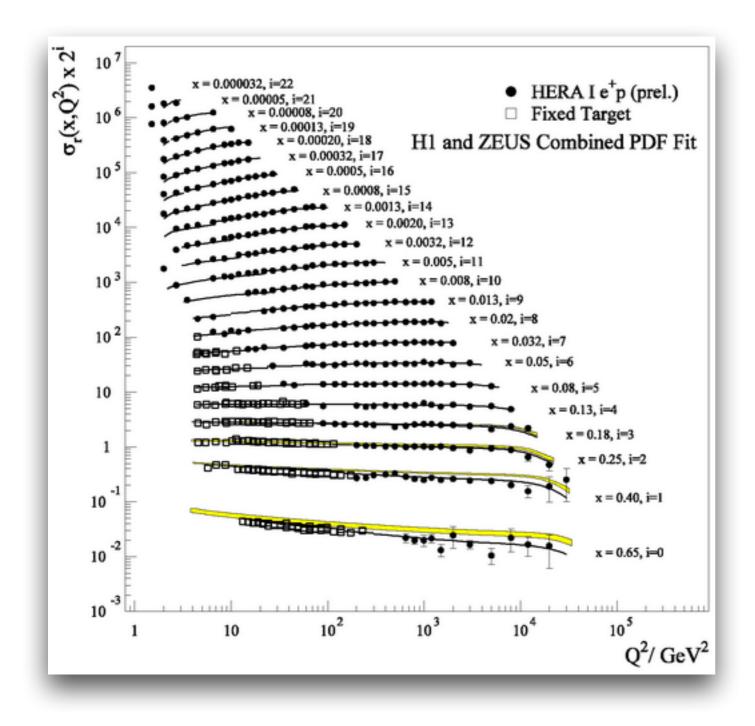
- Parametrize your PDFs at the initial scale
- Evolve to the scale of the experiments with DGLAP
- Fit to the data

PDFs from DIS



 Q^2 dependence is pQCD

Scaling violations



Lines: predicted scale dependence from pQCD

Polarízed DIS and the proton spín crísís

The proton spin crisis

- Originally all the proton spin was thought to be carried by its valence quarks
 - 2 valence quarks with spin parallel to proton spin and 1 valence quark with spin anti-parallel
 - Sea quarks and gluons arranged to have spin 0
 - Angular momentum assumed to be zero
- 1987 EMC experiment at CERN: PLB 206, 364 (1988)

Overall spin coming from quarks compatible with O (large uncertainties)

How do we obtain info on the spin content of the proton?

Polarized DIS

Lepton beam and target nucleon polarized in the longitudinal direction

 Asymmetries $A_{||} = \frac{d\sigma^{\Rightarrow} - d\sigma^{\Rightarrow}}{d\sigma^{\Rightarrow} + d\sigma^{\Rightarrow}} \qquad 2 \text{ times the spin averaged}$ cross section $\frac{d^2\sigma^{\dagger\downarrow}}{dxdy} - \frac{d^2\sigma^{\dagger\uparrow}}{dxdy} = \frac{8\pi\alpha^2 ME}{Q^4} \Big[\Big(2y - y^2 - \frac{Mxy^2}{E}\Big) 2xg_1(x,Q^2) \Big]$ $-\frac{4M}{E}x^2 y g_2(x,Q^2) \rightarrow Suppressed$ • Polarízed structure function: $A_{||}(x,Q^2) \sim \frac{g_1(x,Q^2)}{F_1(x,Q^2)}$ 38

Polarized DIS

• The polarized structure function g_1 :

$$g_{1}(x,Q^{2}) = \frac{1}{2} \sum_{q} e_{q}^{2} \int_{x}^{1} \frac{d\xi}{\xi} \left[\Delta q(x/\xi,Q^{2}) + \Delta \bar{q}(x/\xi,Q^{2}) \right] \\ \times \left\{ \delta(1-\xi) + \frac{\alpha_{S}(Q^{2})}{2\pi} \Delta C_{q}(\xi) + \ldots \right\} \qquad PQCD \\ + \left(\sum_{q} e_{q}^{2}\right) \int_{x}^{1} \frac{d\xi}{\xi} \Delta g(x/\xi,Q^{2}) \left\{ \frac{\alpha_{S}(Q^{2})}{2\pi} \Delta C_{g}(\xi) + \ldots \right\}$$

• Helicity distributions ($\Delta PDFs$): $\Delta q(x, Q^2) = q^{\uparrow}(x, Q^2) - q^{\downarrow}(x, Q^2)$ Spin parallel

to the proton's one $q=q^{\uparrow}+q^{\downarrow}$ (Jsual (spin averages) PDFs $_{39}$

to the proton's one

Spin anti-parallel

See Barbara Pasquíní lectures

 The first moment of a polarized PDF gives the net spin carried by that helicity distribution

SU(3) singlet:
$$\Delta \Sigma = \int dx \left(\Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s} \right) (x, Q^2)$$

Gluon spin
$$\Delta G = \int dx \, \Delta g \, (x, Q^2)$$

• Proton spín

Spin

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$

Orbítal angular

momentum

Determination of Δq

 Polarízed DIS in only sensitive to the sum of quark and antiquark helicíties. How do we separate quarks from antiquarks?

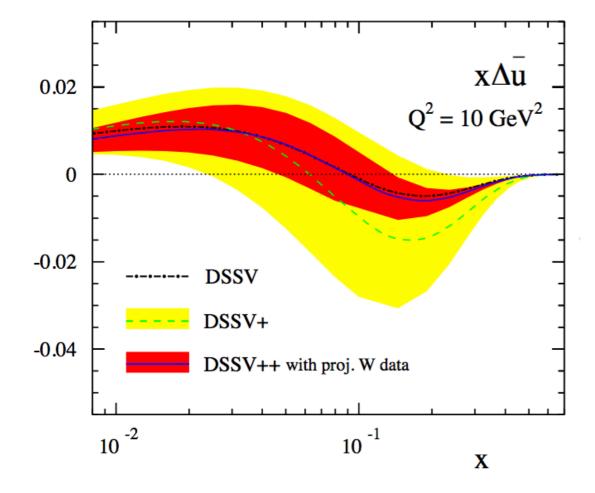
W production at polarized pp collisions at RHIC

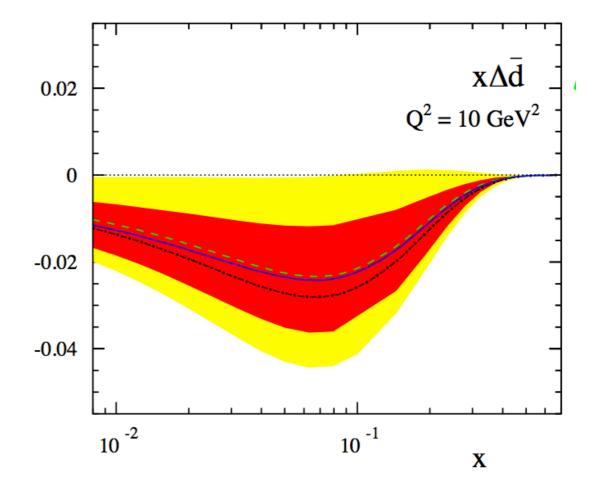
• W's are left-handed. They select left-handed quarks and righthanded antiquarks

Forward W+
(backward e+)
$$A_L^{W^+} \approx -\frac{\Delta u(x_1)}{u(x_1)} < 0$$
 $\overline{d^+(x_1)}$ Backward W+
(forward e+) $A_L^{W^+} \approx -\frac{\Delta \overline{d}(x_2)}{\overline{d}(x_2)} < 0$ $\overline{\nu_e}$

$$\begin{array}{c} \overrightarrow{A} = & \overrightarrow{A} \\ \overrightarrow{A}^{+}(x_{1}) & u^{-}(x_{2}) \\ \overrightarrow{A}^{+}(x_{1}) & u^{-}(x_{2}) \\ \overrightarrow{A}^{+}(x_{2}) \\ \overrightarrow{A}^{+}(x_{1}) & \overrightarrow{A}^{+}(x_{2}) \\ \overrightarrow{A}^{+}(x_{2}) \\ \overrightarrow{A}^{+}(x_{2}) & \overrightarrow{A}^{+}(x_{2}) & \overrightarrow{A}^{+}(x_{2}) & \overrightarrow{A}^{+}(x_{2}) \\ \overrightarrow{A}^{+}(x_{2}) & \overrightarrow{A}^{+}(x_{2}) & \overrightarrow{A}^{+}(x_{2}) & \overrightarrow{A}^{+}(x_{2}) \\ \overrightarrow{A}^{+}(x_{2}) & \overrightarrow{A}^{+}(x_{2}) & \overrightarrow{A}^{+}(x_{2}) & \overrightarrow{A}^{+}(x_{$$

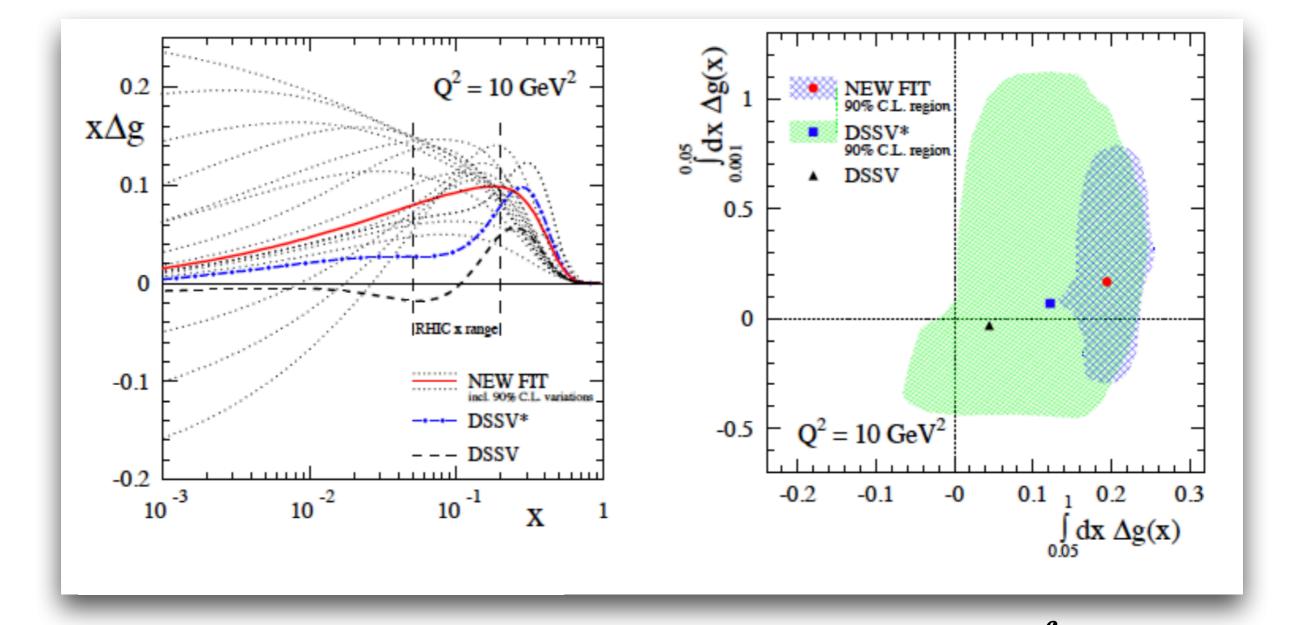
Sea quark polarization





DSSV global analysis

De Florían, Sassot, Stratmann and Vogelsang, Phys. Rev. Lett. 113, 012001 (2014)



Red líne: RHIC data on píon and jets production from 2009 $\Delta G = dx \Delta g \sim 0.20$

The proton spin crisis

Nowadays

• Proton spín:

See Barbara Pasquíní lectures

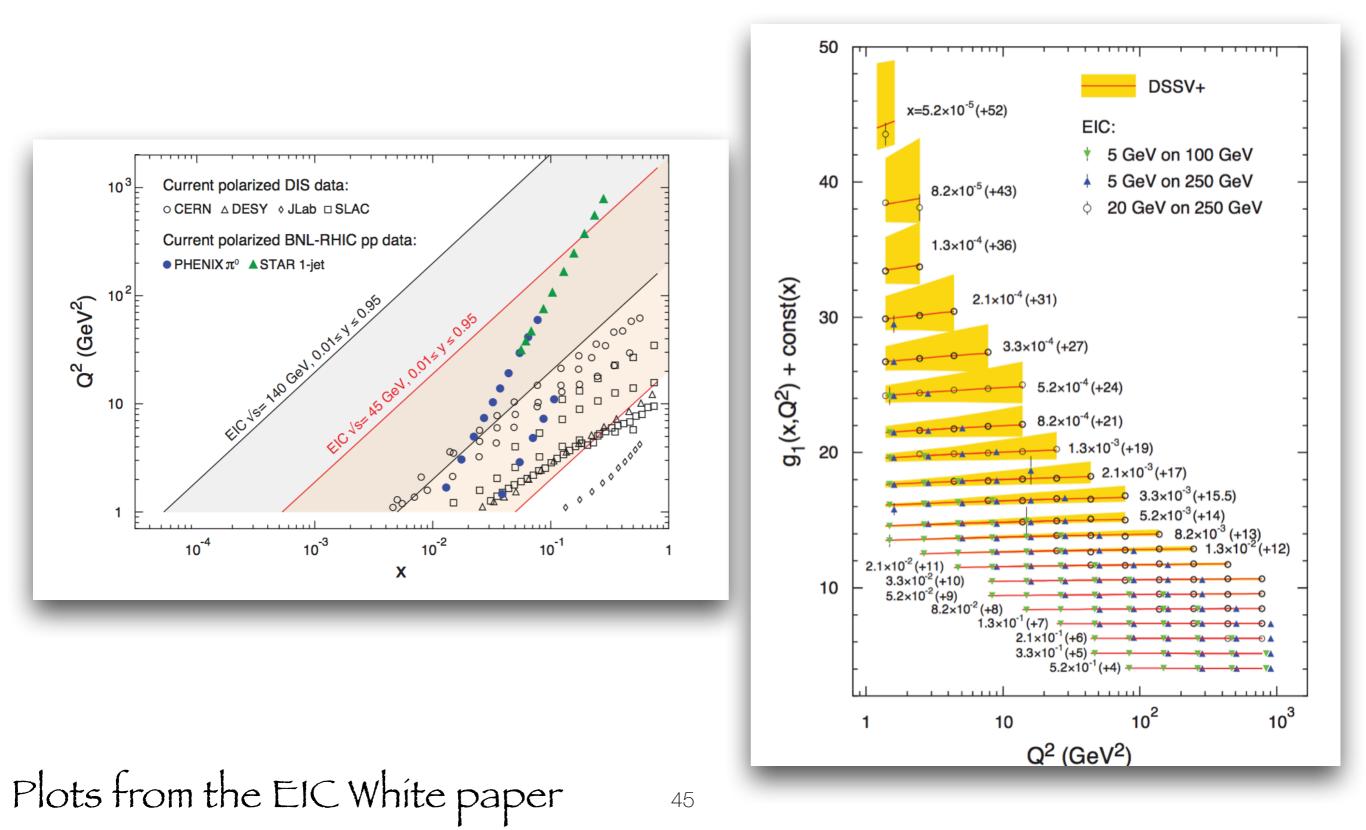
$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

• Quark helicity:

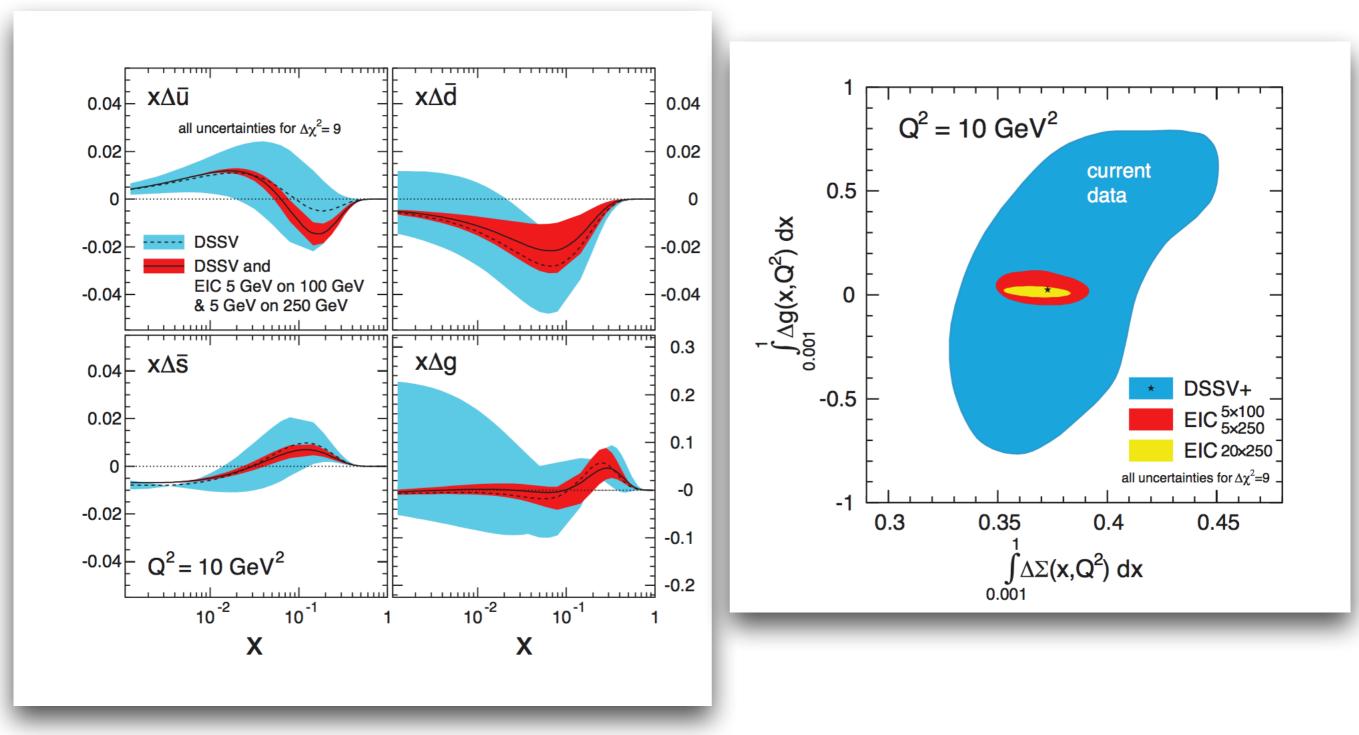
$$\Delta \Sigma = \int dx \left(\Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s} \right) \sim 0.30$$

- Gluon helicity $\Delta G = \int dx \,\Delta g \sim 0.20$
- Orbital angular momentum of quarks and gluons: little known

The future: the EIC



The future: the EIC



Plots from the EIC White paper

Summary

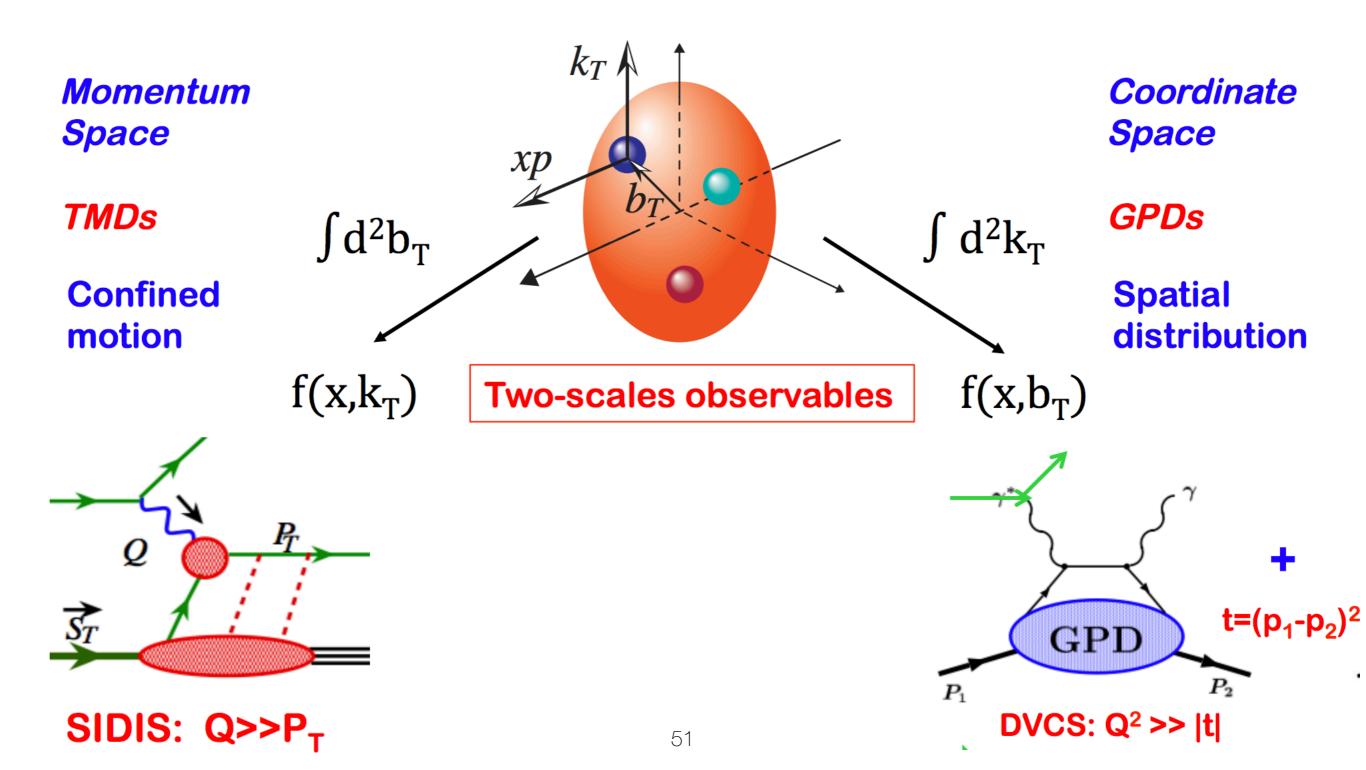
- QCD is very successful predicting high energy experimental data
- QCD factorization is the tool to computed cross sections with identified hadrons
- We do not know much yet about hadron structure
- TMDS, GPDS give insight on the 3D hadron structure. The EIC will make them more accessible! See Barbara Pasquini lectures

Thanks!

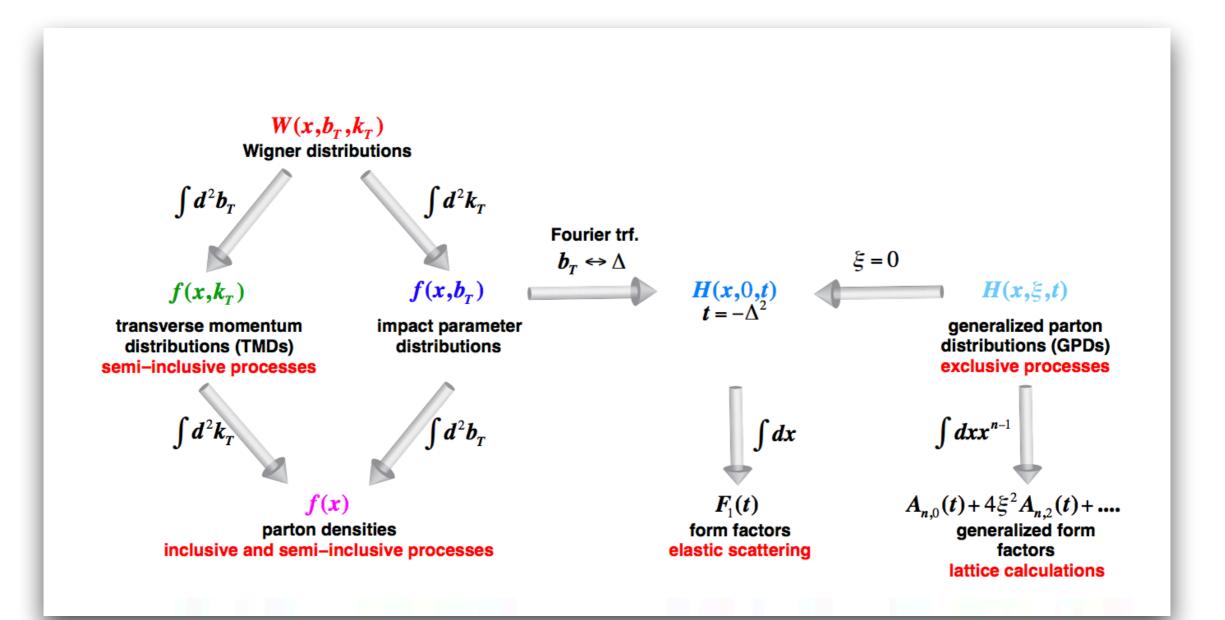
Backup

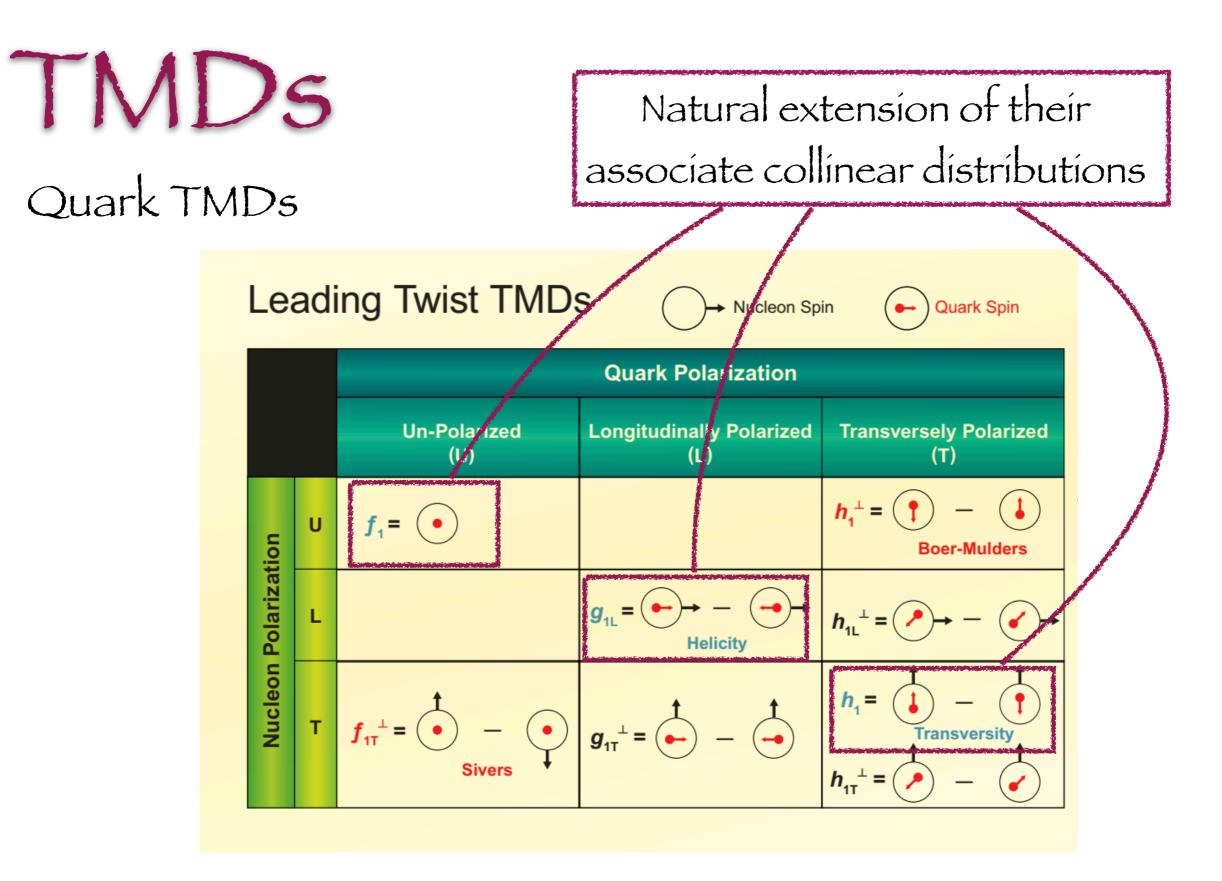
3D proton structure

3D partoníc structure



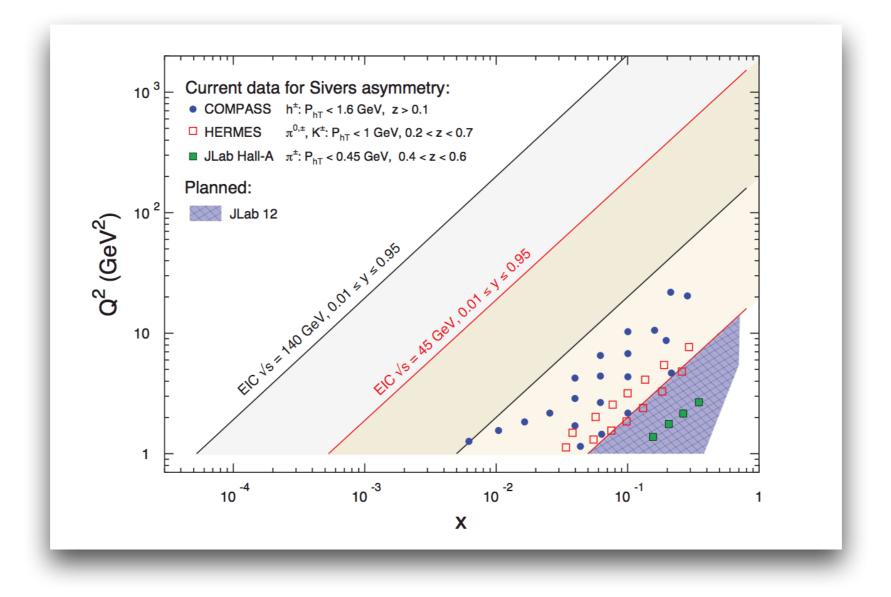
Relations



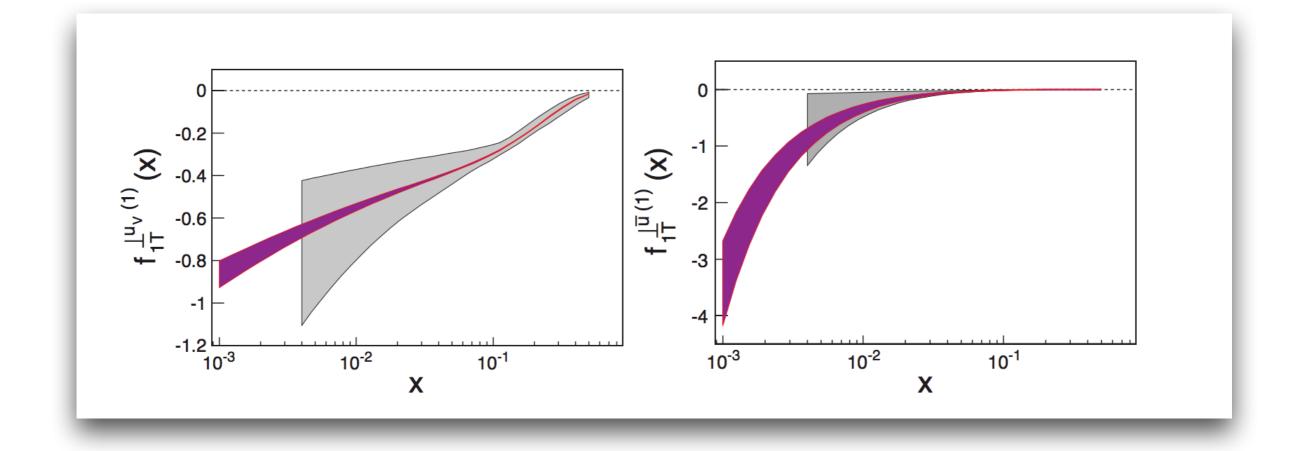


Símílar for gluons

TMDS at the EIC



TMDS at the EIC



EIC with c.o.m energy of 45 GeV and luminosity of 10 fb-1

GPDs at the EIC

