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Hadronic tensor
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Wμν =
1

4π ∫ d4zeiq⋅z ⟨p, s [J†
μ(z)Jν(0)] p, s⟩

Wμν = (−gμν +
qμqν

q2 ) F1(x, Q2)+
̂Pμ

̂Pν

P ⋅ q
F2(x, Q2)

deep (               ) inelastic (               ) scattering (DIS)Q2 ≫ M2 W2 ≫ M2

d2σ
dxdy

=
2πyα2

Q4 ∑
j

ηjL
μν
j Wj

μνto leading order perturbation

for unpolarized cases

Fi = ∑
a

Ca
i ⊗ fa

Fel
2 = δ(q2 + 2mNν)

2mN

1 − q2/4mN
2 (G2

E(q2)−
q2

4M2
N

G2
M(q2))

the hadronic tensor

for high energy scatterings (DIS), extract 
PDFs through factorization 

for low energy cases (e.g., elastic 
scatterings), extract form factors



Sketch the structure function
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Elastic

RES and SIS

DIS region

ν

|q |
F(ν)

Q2 < 0

away from the SIS region
ν < |q | (physical    and     )   x Q2

N\pi, \Delta, …, continuous spectrum

nucleon form factors

Wμν =
1

4π ∫ d4zeiq⋅z ⟨p, s [J†
μ(z)Jν(0)] s, s⟩

=
1

4π ∑
n

∫
n

∏
i [ d3pi

(2π)32Ei ]⟨p, s |J†
μ(z) |n⟩⟨n |Jν(0) |p, s⟩(2π)3δ4(q − pn + p)



Motivation 1: parton physics
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Hadronic tensor is scale independent! No need to do renormalization.
Structure functions are frame independent! No need of large external momentum.

Quasi-PDFs and LaMET  

Compton amplitude

Puedo-PDFs

Lattice cross sections

…

Lattice efforts:

X. Ji, PRL110, 262002 (2013)

A. V. Radyushkin, PRD96, 034025 (2017)

Y.-Q. Ma and J.-W. Qiu, PRL120, 022003 (2018)

A. J. Chambers et. al., PRL118, 242001(2017)

K.F. Liu and S. J. Dong, PRL 72, 1790 (1994)

The u-bar and d-bar difference of PDFs
(Gottfried sum rule violation) is related to 
the connected-sea anti-partons.

Hadronic tensor provides a direct way to
reveal the connected-sea anti-parton contribution.

K.-F. Liu, PRD62, 074501 (2000)

J. Liang et. al., EPJ Web Conf. 175, 14014 (2018)

K.-F. Liu, PoS LATTICE2015, 115 (2016)L. A. Harland-Lang et. al., EPJ C75, 204 (2015)

H.W. Lin et. al., PRL121, 242003 (2018)

K. Orginos et. al., PRD96, 094503 (2017)

R. S. Sufian et. al., arXiv:1901.03921 



Motivation 2: neutrino-nucleus scattering

�5

J.A. Formaggio and G.P. Zeller, RMP84, 1307 (2012); Teppei Katori’s talk

                 , theoretical input about nucleon structure is needed to help map out the 
original neutrino beam energy and flux.
For elastic contribution, nucleon FFs can be calculated by lattice or models.
But soon enough, one will not be able to tell one state from another and will need 
INCLUSIVE hadron tensor (the resonance and shallow inelastic scattering (SIS) 
region).
The only way that lattice QCD can help as far as we know.

νA → νN

one of the most important tasks in 
High Energy Physics is to 
understand the properties of 
neutrinos.

DUNE@LBNF FERMILAB with 
neutrino energy ~1-~7 GeV



Lattice QCD
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Euclidean field theory using the path-integral formalism,
t → − iτ ⟨O⟩ =

1
Z ∫ 𝒟Aμ𝒟ψ𝒟ψ̄Oe−S

C2(t) = Tr [Γ⟨O(t)Ō(0)⟩] = ∑
n

⟨0 |O |n⟩
2

e−Ent O(t) = eĤtO(0)e−Ĥt

C3(t, τ) = Tr [Γ⟨O(t)C(τ)Ō(0)⟩] = ∑
mn

⟨0 |O |n⟩⟨n |C |m⟩⟨m |O |0⟩e−En(t−τ)e−Emτ

time dependent matrix element can be problematic (e.g., light-cone PDFs)

Euclidean time correlation functions:

Wμν =
1

4π ∫ d4zeiq⋅z ⟨p, s [J†
μ(z)Jν(0)] s, s⟩

W′�μν =
1

4π ∑
n

∫ dte(ν−(En−Ep))t ∫ d3zeiq⋅z⟨p, s |J†
μ(z) |n⟩⟨n |Jν(0) |p, s⟩

=
1

4π ∑
n

e(ν−(En−Ep))T − 1
ν − (En − Ep) ∫ d3zeiq⋅z⟨p, s |J†

μ(z) |n⟩⟨n |Jν(0) |p, s⟩

Euclidean

Minkowski

=
1
2 ∑

n
∫

n

∏
i [ d3pi

(2π)32Ei ]⟨p, s |J†
μ(0) |n⟩⟨n |Jν(0) |p, s⟩(2π)3δ4(q − pn + p)



Hadronic tensor on the lattice
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C4 = ∑
xf

e−ip⋅xf ∑
x2x1

e−iq⋅(x2−x1) ⟨χN(xf, tf )J†
μ(x2, t2)Jν(x1, t1)χ̄N(0, t0)⟩

C2 = ∑
xf

e−ip⋅xf ⟨χN(xf, tf )χ̄N(0, t0)⟩

W̃μν( p, q, τ) =
Ep

mN

Tr[ΓeC4]
Tr[ΓeC2]

→ ∑
x2x1

e−iq⋅(x2−x1)⟨p, s |Jμ(x2, t2)Jν(x1, t1) |p, s⟩

= ∑
n

Ane−(En−Ep)τ, τ ≡ t2 − t1

four-point function with two currents

nucleon two-point function

Euclidean hadronic tensor

exponential behavior w.r.t. the time difference between the two currents

K.-F. Liu, PRD62, 074501 (2000)
J. Liang et. al., EPJ Web Conf. 175, 14014 (2018)

K.F. Liu and S. J. Dong, PRL 72, 1790 (1994)



Contractions
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C4 = ∑
xf

e−ip⋅xf ∑
x2x1

e−iq⋅(x2−x1) ⟨χN(xf, tf )Jμ(x2, t2)Jν(x1, t1)χ̄N(0, t0)⟩
χN = [uT

1 Cγ5d] u2

t0

t1 t2

tf t0 tf

t2t1

t0 tf

t1 t2

t0

t1

t2
tf t0 tf

t1

t2

More contractions if we consider different types of the two currents: vector, axial vector, 
neutral or charged, various quark flavors …
No disconnected insertions in the current plan
The latter two are suppressed when the momentum and energy transfers are large.



Contractions
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t0

t1 t2

tf t0 tf

t2t1

t0 tf

t1 t2

valence and 
connected-sea parton

disconnected-sea 
parton and anti-parton

C4 = ∑
xf

e−ip⋅xf ∑
x2x1

e−iq⋅(x2−x1) ⟨χN(xf, tf )Jμ(x2, t2)Jν(x1, t1)χ̄N(0, t0)⟩
χN = [uT

1 Cγ5d] u2

K.F. Liu and S. J. Dong, PRL 72, 1790 (1994)

connected-sea anti-parton 
(Gottfried sum rule violation)

For the moment, we will focus on the first one.



Back to the Minkowski space
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Wμν( p, q, ν) =
1
i ∫

c+i∞

c−i∞
dτeντW̃μν( p, q, τ)

W̃μν( p, q, τ) ∼ ∑
n

Ane−νnτ, νn ≡ En − Ep

Euclidean hadronic tensor

several (O(10)) discrete data points

Formally, an inverse Laplace transform will do

Practically, need to solve the inverse problem of the Laplace transform

W̃μν( p, q, τ) = ∫ dνWμν( p, q, ν)e−ντ

continuous function w.r.t. \nu

lack of information, an ill-posed problem



More about the inverse problem
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c(τ) = ∫ k(τ, ν)ω(ν)dν

k(τ, ν) = e−ντ

A general form

where it is hard to have the inverse function. In our case, the Laplace kernel

If the number of nu is equal to the number of tau, linear equations

If the number of nu is less than the number of tau, chi square fitting

         is a continuous function, but numerically we can discretize it.ω(ν)

If the number of nu is larger than the number of tau, no unique solution

plug in Bayesian prior information?

c(τ) = ∑
ν

k(τ, ν)ω(ν)Δν



Inverse problems are everywhere
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Extracting spectral functions from lattice data

Lattice calculation of Quasi-PDFs

Lattice calculation of Pseudo-PDFs

Lattice cross sections 

H.-W. Lin et.al., PRL121, 242003(2018)

K. Orginos et al., PRD96, 094503 (2017)

Y.-Q. Ma and J.-W. Qiu, PRL120, 022003 (2018)

Global fittings of PDFs 



Solving the inverse problem
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Backus-Gilbert (BG)

Maximum Entropy (ME) E Rietsch et. al., JOURNAL OF GEOPHYSICS, 42:489  (1977)

G. Backus and F. Gilbert, Geophysical Journal International 16, 169 (1968)

∑
τ

c(τ, ν0)k(τ, ν) ∼ δ(ν − ν0)

c(τ) = ∑
ν

k(τ, ν)ω(ν)Δν

∑
τ

c(τ, ν0)c(τ) ∼ ∫ δ(ν − ν0)ω(ν)dν = ω(ν0)

If the kernels can span a complete function basis 

P[ω |D, α, m] ∝
1

ZSZL
eQ(ω) Q = αS − L

S = ∑
ν [ω(ν) − m(ν) − ω(ν)log ( ω(ν)

m(ν) )] Δν

The actual incompleteness of the kernels leads to bad resolution.

Maximum search is using SVD in a reduced parameter space (O(101)).

Hyper parameter alpha is averaged over based on assumptions.

M. Asakawa et. al., Prog. Part. Nucl. Phys. 46, 459 (2001)



Solving the inverse problem
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Bayesian Reconstruction (BR)
Y. Burnier and A. Rothkopf, PRL 111, 182003 (2013)

c(τ) = ∑
ν

k(τ, ν)ω(ν)Δν

P[ω |D, α, m] ∝ eQ′�(ω) Q′� = αS − L − γ(L − Nτ)2

S = ∑
ν [1 −

ω(ν)
m(ν)

+ log ( ω(ν)
m(ν) )] Δν

Maximum search is in the entire parameter space (O(103)).

Hyper parameter alpha is integrated over.

No over fitting

P[ω |D, m] =
P[D |ω, I]
P[D |m] ∫ dαP[α |D, m]

High precision architecture is needed (e.g., 512-bit floating point number).



Tests on nucleon two-point functions
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expecting peaks at ~1 GeV and ~1.6 GeV

bad resolution of BG

BR is shaper and more stable than ME

mock two-point function data: three single 
exponentials with mass 1.0, 1.5 and 1.8 GeV 
respectively, a~0.1 fm, Nt=20, S/N=100 



The elastic case
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W̃44( p = 0, q = 0, τ) τ→∞= |⟨N |J4 |N⟩ |2 e−(Mp−Mp)τ

W̃μν( p, q, τ) = ∫ dνWμν( p, q, ν)e−ντ

= F2
1(q2 = 0) = g2

V = 1

area ~1.18(6) area ~ 1.001(7)

q2=0= δνG2
E(q2 = 0) = δνg2

V = δν

normalized vector current J4 = ψ̄γ4ψ

inverse

delta function at zero

note, different x scale

W44(q2, ν) = δ(q2 + 2mNν)
2mN

1 − q2/4mN
2 (G2

E(q2) −
q2

4M2
N

G2
M(q2))



Large momentum transfer
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higher intermediate-states 
contribution (exponentially decay)

elastic contribution
(flat)

higher intermediate-states 
contribution (exponentially decay)

elastic contribution
(flat)

very close to sink
excited-states?

W̃μν( p, q, τ) = ∑
n

Ane−(En−Ep)τ

(0,3,3) (0,-6,-6) 2.15 2.15 3.57 [2.96, 3.68] [4, 2] [0.16, 0.07]

p q Ep En=0 |q | ν Q2 x

andμ = ν = 1 p1 = q1 = 0 W11(ν) = F1(x, Q2)

E0 = (m2
N + | p + q |2 ) = Epp + q = − p



Minkowski hadronic tensor (after ME)
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Elastic contribution is suppressed by the large momentum transfer.

RES contribution is large and relatively stable.
Large error in the SIS and DIS region, no enough constraint from the data

Q2 ∼ 13 GeV2, G2(0) ∼ 10−5

G2(0) ∝
1

(1 +
Q2

el

Λ2 )
4

elastic contribution

resonance region

shallow and deep 
inelastic scattering region

elastic contribution

resonance region

shallow and deep 
inelastic scattering region



How about BR
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similar structures show around 1 GeV (but shaper)
quickly approach to the default model after 2 GeV



Check the effective mass

�20

W̃μν( p, q, τ) = ∑
n

Ane−(En−Ep)τ Ep ∼ 2.15 GeV

lattice artifacts: finite volume (resulting in discrete momenta and discrete 
spectrum)? finite lattice spacing (an UV cutoff)? and/or unphysical pion 
mass (unphysical multi-particle states)?

one can check the effective mass of the Euclidean hadronic tensor

meff = log[W̃(τ)/W̃(τ + 1)]

En − Ep ∼ 1 GeV En ∼ 3.2 GeV



Learn more from two-point functions
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Other factors are not significant.
The a~0.045 fm lattice can be a much better choice.

It seems how high we can reach is mainly connected 
to the lattice spacings.



Summary and outlook
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Calculating the hadronic tensor on the lattice would be helpful to 
the neutrino experiments and to understand more about the 
nucleon structure.

This might be the only lattice approach that can have inclusive 
results in the Elastic, RES and SIS region.

We can have reasonable results for the elastic contributions.

We find that the lattice spacing plays an important role to reach 
higher excited states.

We are working on lattices with smaller lattice spacings to have 
better results.

There are more applications.

Thank you for your attention!
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Thank you for your attention!



Lattice setups
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clover anisotropic lattice,

andμ = ν = 1 p1 = q1 = 0 W11(ν) = F1(x, Q2)

243 × 128, at ∼ 0.035 fm, mπ ∼ 380 MeV,
2π
L

∼ 0.42 GeV

(0,3,3) (0,-6,-6) 2.15 2.15 3.57 [2.96, 3.68] [4, 2] [0.16, 0.07]

p q Ep En=0 |q | ν Q2 x

H.-W. Lin et al., PRD 79, 034502 (2009) 

two sequential-sources for each 4-point function 
554 configurations, 16 source positions

The x-range can be reached on this lattice is roughy [0.05, 0.3] by 
combining different kinematic setups.

Wμν = (−gμν +
qμqν

q2 ) F1(x, Q2) +
̂Pμ

̂Pν

P ⋅ q
F2(x, Q2)

t0

t1 t2

tf

This calculation:



More on the setups
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W̃μν( p, q, τ) = ∑
n

Ane−(En−Ep)τ

p=(033), q=(0-6-6)

E0 = (m2
N + | p + q |2 ) = Ep

p + q = − p

t0 = 0 tf = 28

t1 = 8 t2 = t1 + τ

τ ∈ [1, 12]to avoid the contact point and sink excited stats

for small   , higher intermediate states contribute, exponentially decay τ
for large   , lowest intermediate state (elastic contribution) dominates, constantτ

energy of the intermediate state n external nucleon energy

the lowest energy of intermediate states



Contractions (d quark)
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d

C4 = ∑
xf

e−ip⋅xf ∑
x2x1

e−iq⋅(x2−x1) ⟨χN(xf, tf )Jμ(x2, t2)Jν(x1, t1)χ̄N(0, t0)⟩

u1

u2

d

u1

u2

t1 t2

t0 tf

t1 t2
d

u1

u2
t0 tf

t1 t2

d

t0 tf

t1 t2

u1

u2

t0 tf

d

u1

u2

d

u1

u2

t1

t0 tf

t1

t0 tf

t2 t2

d

u1

u2

d
u1

u2

t0 tf

t1

t0 tf

t2

t1

t2

d

u1

u2

d

u1

u2
t0 tf t0 tf

t1 t2t1 t2

χN = [uT
1 Cγ5d] u2

connected insertions only for now



Contractions (u quark)
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d

C4 = ∑
xf

e−ip⋅xf ∑
x2x1

e−iq⋅(x2−x1) ⟨χN(xf, tf )Jμ(x2, t2)Jν(x1, t1)χ̄N(0, t0)⟩

u1

u2

d
u1

u2

t1 t2

t0 tf

t1

t2t0 tf

χN = [uT
1 Cγ5d] u2

d

u1

u2

d

u1

u2
t1 t2

t0 tf
t1

t2

t0 tf

d

u1

u2

d

u1

u2

t1

t2

t0 tf

t1 t2

t0 tf

d

u1

u2

d

u1

u2
t1

t2

t0 tf
t1 t2

t0 tf

plus all possible backward propagating ones

currents can be on two different quark lines respectively (cat ear diagrams)



Check the effective mass
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W̃μν( p, q, τ) = ∑
n

Ane−(En−Ep)τ Ep ∼ 2.15 GeV

one can also check the effective mass of vector meson with point source

one can check the effective mass of the Euclidean hadronic tensor

meff = log[W̃(τ)/W̃(τ + 1)]

En − Ep ∼ 1 GeV En ∼ 3.2 GeV


