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Development of an HTS Hydroelectric Power 

Generator for the Hirschaid Power Station  
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Advanced Technology Group, Converteam, Rugby, United Kingdom CV21 1BD 

ruben.fair@converteam.com 

Abstract. This paper describes the development and manufacture of a 1.7MW, 5.25kV, 
28pole, 214rpm hydroelectric power generator consisting of superconducting HTS field coils 
and a conventional stator. The generator is to be installed at a hydro power station in Hirschaid, 
Germany and is intended to be a technology demonstrator for the practical application of 
superconducting technology for sustainable and renewable power generation. The generator is 
intended to replace and uprate an existing conventional generator and will be connected 
directly to the German grid. The HTS field winding uses Bi-2223 tape conductor cooled to 
about 30K using high pressure helium gas which is transferred from static cryocoolers to the 
rotor via a bespoke rotating coupling. The coils are insulated with multi-layer insulation and 
positioned over laminated iron rotor poles which are at room temperature. The rotor is enclosed 
within a vacuum chamber and the complete assembly rotates at 214rpm. The challenges have 
been significant but have allowed Converteam to develop key technology building blocks 
which can be applied to future HTS related projects. The design challenges, electromagnetic, 
mechanical and thermal tests and results are presented and discussed together with applied 
solutions. 

1.  Introduction 

The Advanced Technology Group at Converteam, Rugby is currently involved in a European Union 
part-funded project to design, develop and manufacture a superconducting hydroelectric generator. 
Although this machine is primarily a technology demonstrator, it is intended to replace and uprate one 
of three conventional generators at a power station in Southern Bavaria, Germany - to generate and 
supply electricity to the German grid. 
The machine is rated at 1.79MVA, 5.25kV, 0.95pf (over excited), 28 poles, 214rpm, with an over 

speed of 320rpm and a runaway speed of 450rpm. It is a horizontal shaft machine driven by a Francis 
double turbine with integral thrust bearing and is part of a run-of-the-river hydroelectric power 
scheme. The generator has a back-of-core diameter of 3m and an axial length of 1m. 

1.1. Why Superconducting Machines 

HTS wire is presently very expensive but forecasts from the major wire manufacturers indicate that in 
time these novel materials could cost less than copper! For example, the cost to carry 1000A over 1m 
using copper (at the current densities used in conventional high power density motors) is about 
US$15/kAm (with copper prices at US$6.5/kg), whereas present HTS (1G) wire has only just fallen to 
below US$100/kAm. 
HTS machines can be 30% of the size of conventional machines leading to potential savings in 

weight, volume and material costs. The most attractive markets are those where high power density 
and particularly high torque is required – achieved by utilising higher magnetic flux densities and 
reduced iron in the magnetic circuit – both achievable with HTS materials. Ship propulsion motors and 
wind turbine generators are potential candidates for such technology. 
Electrical efficiency improvements of several per cent are possible leading to substantial 

operational cost savings over the lifetime of the machine. A rotor with an HTS field winding has 
almost zero ohmic losses – the power consumed by the cryogenics is a small fraction of the normal 
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losses in a conventional rotor – about 25kW compared to 300kW in a 25MW machine. These higher 
efficiencies are available even with the machine operating under partial load conditions. 
Higher steady state system stability is also attainable due to the inherently low reactances 

associated with certain designs of HTS machine which employ large magnetic air gaps. A lower 
synchronous reactance permits operation of these HTS machines at smaller load angles compared to 
conventional machines. Another consequence of a low synchronous reactance is a high short circuit 
ratio, which might be beneficial if the machine operates within ‘weak’ electrical power grids with low 
short circuit power. An additional benefit of an HTS machine with decreased armature reaction is its 
somewhat ‘stiff’ behaviour within an electrical power network, producing only small voltage changes 
with changing electrical loads. Certain designs of HTS machines can supply both leading and lagging 
reactive power up to their full rating. 
 

 
Fig.1 Hydrogenie HTS generator operating chart (safe operating region shown shaded) 

 
Thermal cycling of conventional copper rotor field windings can cause winding failures in large 

power generators as the ground and turn insulation deteriorates due to mechanical wear. A rotor using 
HTS field coils will undergo fewer thermal cycling events as the winding will always be at the same 
cryogenic temperature. All thermal contraction and expansion of the winding and its suspension 
system will only occur during cool down and warm up of the rotor. 

2.  Selection of Machine Design Concept 

The high current density of HTS materials allows the use of designs without iron or with a partial iron 
magnetic circuit. 
A. Conventional stator with iron teeth + rotor with magnetic pole bodies (warm or cold) 

B. Conventional stator + rotor with non magnetic pole bodies – more HTS wire needed, but lower 
cold mass – otherwise similar to A. 

C. Airgap stator winding + rotor with magnetic pole bodies – rotor iron can be operated highly 
saturated – allows significant reduction in size and mass. 

9th European Conference on Applied Superconductivity (EUCAS 09) IOP Publishing
Journal of Physics: Conference Series 234 (2010) 032008 doi:10.1088/1742-6596/234/3/032008

2



 
 
 
 
 
 

HTS Field CoilsHTS Field Coils

Eddy Current ShieldEddy Current Shield

ExciterExciter

Conventional StatorConventional Stator
Vacuum ChamberVacuum Chamber

Torque/Thermal LinksTorque/Thermal Links

RotorRotor

Rotating Rotating 

CouplingCoupling

Turbine couplingTurbine coupling

Horizontal shaft machine driven by a Francis double turbine withHorizontal shaft machine driven by a Francis double turbine with integral integral 

thrust bearing. Backthrust bearing. Back--ofof--core diameter = 3m. Axial length = 1m. core diameter = 3m. Axial length = 1m. 

HTS Field CoilsHTS Field Coils

Eddy Current ShieldEddy Current Shield

ExciterExciter

Conventional StatorConventional Stator
Vacuum ChamberVacuum Chamber

Torque/Thermal LinksTorque/Thermal Links

RotorRotor

Rotating Rotating 

CouplingCoupling

Turbine couplingTurbine coupling

Horizontal shaft machine driven by a Francis double turbine withHorizontal shaft machine driven by a Francis double turbine with integral integral 

thrust bearing. Backthrust bearing. Back--ofof--core diameter = 3m. Axial length = 1m. core diameter = 3m. Axial length = 1m. 

D  Airgap stator winding + rotor with non-magnetic pole bodies – uses more HTS wire than C 
(depending on flux density) - significant reduction in size and mass. 

 
Hydroelectric generators require high inertia; hence reduction of mass was not a key driver in this 

case. 
Design Type A was selected primarily to satisfy the requirement to be able to synchronise the 

machine directly to the electrical grid (an air-gap winding at 28 poles, 50Hz would have resulted in 
most of the HTS Ampere-Turns being wasted as leakage). The machine construction was therefore 
fairly conventional i.e. iron stator and copper winding with 1G HTS (Bi-2223) field coils on a more-
or-less conventional rotor using magnetic iron at room temperature. 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig.2 The HYDROGENIE superconducting generator 
 

Keeping the rotor iron at room temperature reduces the overall cold mass of the superconducting 
rotor. This reduces the required cryogenic cooling power and allows faster cool down and warm up 
times. Special steel suitable for operation at cryogenic temperatures, although available, was thus not 
necessary for this generator. 
The majority of the load torque is transferred from the rotor shaft and magnetic iron poles directly 

to the stator teeth and then to the stator core frame with minimal torque acting on the superconducting 
coils, resulting in a more simplified suspension system. 
The complete rotor is housed within a vacuum chamber which is sealed to and rotates with the 

shaft. The HTS coils are cooled using gaseous helium at about 30 to 40K,  from a Stirling-type 
cryocooler, which is pumped up the shaft and radially outwards to the coils. As the rotor iron is at 
room temperature, the individual HTS field coils ‘float’ over the iron poles and are wrapped in multi-
layer insulation as are all the other cryogenically cold components. The suspension system consists of 
radially and axially located glass fibre rods linking ‘cold’ and ‘warm’ components. 
Field excitation for the HTS coils is provided via electronic circuitry located on the outside wall of 

the vacuum chamber. The temperature and voltage of each HTS coil is monitored continuously and is 
fed into the control and protection circuitry also located on the outside of the vacuum chamber. 
Communication between the HTS machine and the Automatic Voltage Regulator (A.V.R.) is provided 
via a wireless link. A rotating brushless interface, instead of slip rings, was selected to provide a robust 
and reliable means of providing electrical power for the electronics mounted on the vacuum chamber. 
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3.  HTS Winding Design and Construction 

The maximum current carrying capacity (Ic, critical current) of HTS wire is normally quoted with its 
self-field at a temperature of 77K i.e. with no externally applied magnetic field. If an external field is 
applied the critical current reduces. HTS flat conductor is more sensitive to fields in the direction 
perpendicular to the broad face compared to the narrow face. Minimising exposure to this particular 
magnetic field vector is therefore a key part of our HTS coil design. 
The critical current density decreases as the stress or strain in the wire increases - this can be very 

difficult to quantify in practice. Recommendations from HTS wire manufacturers with respect to 
minimum bend radii and wire strains were adhered to. 
The coil and former design needs to be able to cope with the relatively high rotational ‘g’ forces 

which also contribute to the overall stress in the HTS conductors. For this particular design most of the 
torque is experienced by the field pole iron rather than the coils, however the coil design still needs to 
allow for worst case short circuit conditions when the field current, and therefore coil forces, can 
increase significantly. 
Coil winding and impregnation processes can influence coil performance significantly, as can 

soldering temperatures whilst making joints. Differential thermal contraction between the coil winding 
pack and the coil former can also contribute to the stress within a coil and can lead to delamination of 
the winding pack. 
We only get true superconductivity with direct current. Alternating current and time-varying fields 

produce losses in the HTS wire necessitating the use of eddy current shields. These shields are only 
truly effective for a certain range of frequencies – therefore the performance of the coil and the overall 
system heat budget must make allowance for additional internal coil heating produced during the 
various phases of operation of the generator. 
The a.c. losses within the HTS coils also limit the rate at which the field current is allowed to 

change. 

4.  Cooling and Coolant Transfer 

Low temperature superconductors require cooling to sub-30K temperatures, normally using liquid 
helium at 4K. With helium costs ranging from £3 to £6/litre, this can be prohibitively expensive. High 
temperature superconductors can be cooled by liquid nitrogen at 77K which is much cheaper at about 
£0.70/litre. However, to get any useful work out of the current range of HTS materials, they still need 
to be cooled to lower temperatures of about 30 or 40K. 
Commercially available cryocoolers can provide about 100W or more of cooling power at 25 to 

40K and the relative cooling costs are lower when compared to the cost of liquid helium. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.3 Refrigeration Energy Consumption 
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Although it is widely accepted that the ideal Carnot efficiency can never be attained in practice, 

present cryocooler designs are still a very long way off this ideal – a typical work input/output ratio for 
the temperature range 300K to 30K is approximately 100:1 – i.e. to obtain 100W of cooling power at 
30K, an electrical input power of about 10kW is required. 
For rotating machinery, one of the significant challenges lies in transferring the cryogenic coolant 

from a stationary cryocooler to a rotating component. A rotating coupling is usually the solution and in 
its simplest form uses two concentric thin-walled tubes, one rotating inside the other. Seals used can 
be either PTFE or ferrofluid or a combination of the two. At high speeds and torques, ferrofluid seals 
can generate a considerable amount of heating which must be removed. Alignment, robustness and 
reliability of these transfer couplings remain key concerns.  
Transferring the ‘cooling’ to where it is needed on the HTS coils poses its own challenges and is 

dependent on the heat transfer mechanism employed – be it via convection or conduction. For 
conduction cooling methods, choice of high thermal conductivity materials, e.g. annealed high purity 
copper as well as material surface conditions can be critical for adequate thermal transfer – oxidation 
of thermal transfer surfaces should be kept to a minimum. 
Soldered thermal connections are best but need to be assessed for integrity. Correct choice of solder 

for operation in vacuum and at cryogenic temperatures is essential to ensure even solder flow between 
jointed parts (without void formation) and the prevention of cracking when subjected to repeated 
thermo-mechanical cycling. Bolted connections are also a possible solution but again, thermal 
differential contraction of materials must be allowed for, usually by employing the use of disc springs 
with bolts torqued to appropriate values. On a rotating machine, some vibration is always present and 
can loosen bolts and fixings if not secured appropriately. 
Depending on the cooling mechanism employed, different parts of the HTS machine can cool down 

at different rates which can lead to differential stresses between welded and bolted components, 
necessitating the use of flexible connections such as braids, bellows and disc springs. 
 

Typical Cooldown Curve
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Fig.4 Typical Cool Down Profile 
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5.  Minimisation of Heat Loads 

The Hydrogenie machine heat budget is split fairly evenly between conduction and radiation heat 
loads with a small amount linked to internal coil heat generation during operation. 
 

Full Load Heat Budget

Radiation Heat 

Load, 48%

Conduction Heat 

Load, 46%

Internal Coil Heat 

Load, 6%

 
 

Fig.5 HYDROGENIE Heat Budget 
 
Conduction loads were reduced by the appropriate use of low thermal conductivity materials (e.g. 

GFRP, CFRP) for the linkages between cryogenic components and components at room temperature. 
However, as these links are also intended to transmit some torque, a compromise had to be struck 
between reducing cross sectional area (to reduce heat load) and increasing it for strength. A 
mechanical test rig was developed to allow tensile testing of these links down to 30K. 
A vacuum space was used to minimise conduction and convection heat loads, and it was critical 

that this space was kept scrupulously clean. A vacuum level of about 1 x 10-5 mbar was found to be 
adequate for our generator. Rotating machinery construction involves the use of many non-vacuum 
friendly materials like mild steel, plastic and paper insulation materials, impregnation resins, 
lubricating oils and greases, etc. It was therefore essential that, wherever possible, materials were 
cleaned to at least high vacuum standards and clean handling methods and manufacturing areas were 
employed during the machine build. 
Rust is extremely hygroscopic and corrosion was therefore kept to a minimum by the plating of 

large components. Certain key components were also vacuum baked to remove moisture. A controlled 
pump down and cool down process was also adopted to produce a clean moisture-free system. 
Differentially pumped vacuum seals greatly reduced the ‘in-leak’ into the vacuum system. 
‘Trapped volumes’ were eliminated by the careful design of all vacuum sub-assemblies – otherwise 

these volumes would have manifested themselves as ‘leaks’ thereby degrading the vacuum level and 
limiting the operational lifetime of the machine. Appropriate fasteners, for example vented bolts and 
washers, and vacuum compatible weld preps were used for all sub-assemblies within the vacuum 
chamber. 
Outgassing and residual gas analyses were carried out for each individual material used within the 

vacuum chamber to enable the proper design of vacuum seals, cryopumping surfaces and getters. 
Vacuum degassing of the rotor shaft steel was carried out while still in its molten state, primarily to 
remove hydrogen. 
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Fig.6 Spectral peaks from outgassing tests 
 
Cryogenically cold surfaces can behave as ‘cryopumps’ and act to ‘remove’ certain contaminants 

within the vacuum system, thereby improving its overall vacuum level - typically by an order of 
magnitude. 
 

Cryopumping
 

 
Fig.7 Improvement of vacuum level due to cryopumping (vacuum pumps turned off) 

 
 
In order to assess the efficacy of any cryopumping surface, the temperature of the said surface and 

its surrounding vacuum pressure level must be established [1, 2]. For example, if there is a leak from 
atmosphere into a vacuum chamber operating at 1 x 10-5 mbar, in order to successfully cryopump N2, 
the major constituent of air, the cryopumping surface temperature needs to be lower than 30K.  
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Fig.8 Vapour pressure of some common gases 
 

Multi-layer insulation (superinsulation) was utilised to reduce radiation heat loads onto 
cryogenically cold components. These pre-cut MLI blankets were appropriately supported against 
rotational forces. During the application of these blankets care was taken not to thermally short the 
individual layers of the blanket. Vulnerable areas are the joints between individual blankets and 
sufficient overlap area was employed. 
 

 
 

Fig.9 MLI blanket being fitted to an HTS coil 
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An estimation of the radiation heat load transmitted through a typical (uncompressed) multi-layered 
superinsulation blanket can be obtained using [3]: 

 
 
 

Q/A = Watts transmitted per unit area (W/m
2
) 

σ = Stefan-Boltzmann Constant = 5.67 x 10
-8
 W/ (m

2
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4
) 

e = emissivity 

T2 = ‘hot’ surface temperature 

T1 = ‘cold’ surface temperature 

n = no. of layers of superinsulation 
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Fig.10 Radiation heat transfer vs no. of layers of superinsulation (T2 = 300K, T1 = 30K, e = 0.03 for 

aluminised Mylar) 
 

 
It is essential that these blankets are not over-compressed or their excellent radiative properties will 

be compromised by conduction heat loads through the compressed blanket walls. The effect of 
compression on the performance of these blankets can be assessed using the following chart. 
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Fig.11 Increase in radiation heat load transmitted through a MLI blanket due to compression of the 

blanket [4] 
 

Special consideration was also be given to the design of the HTS coil current leads. The leads were 
profiled in order to minimise the conduction heat load – by varying the cross section of the leads along 
their length. The leads together with all the diagnostic wiring was also thermally dumped to further 
reduce conduction heat loads. 
 

6.  Key Enablers for HTS Rotating Machinery 

As we see it, there are five key areas for further development that are crucial to the successful 
application of HTS materials to rotating machinery. 
 

1. Industrialisation of cryocoolers 
� This equipment needs to be low maintenance or preferably maintenance-free. 
� Have low susceptibility to vibration. 
� Able to withstand the high ‘g’ forces due to rotation (for rotor mounted coolers) 
� Low mass and low profile 
� Higher efficiencies are required 
 

2. Industrialisation of rotating cryogen transfer couplings 

� Must not impose high heat loads 
� Need to be robust and have low susceptibility to vibration and misalignment 
� Long term reliability is all important 
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3. Industrialisation of instrumentation and vacuum components 
� e.g. high vacuum pressure gauges, valves, getters etc. capable of withstanding high 'g' forces 

due to rotation 
� Low mass and low profile 

 
4. Industrialisation of vacuum pumps 

� This equipment needs to be low maintenance or preferably maintenance-free. (Note: Turbo 
pumps with magnetic bearings are available but backing pumps still fall short of these 
requirements) 

� Capable of withstanding high 'g' forces due to rotation 
� Low mass and low profile 

 
5. Supplier chain and test facilities 

� Suppliers with an appreciation of the requirements for good vacuum and cryogenic practice 

� Flexible bespoke test facilities for testing at cryogenic temperatures (outgassing, 
thermal conductivity, stress and strain etc.) 

7.  Conclusion 

It is clear that the electromagnetic design of an HTS machine cannot be carried out in isolation from 
the cryogenics and vacuum design. These areas need to be considered as early on in the design process 
as possible.  
In order to be able to apply HTS technology successfully, a company’s infrastructure must be able 

to support it. For example, appropriate testing facilities are crucial as are suitable industrial and 
academic partners. An understanding of good vacuum and cryogenic practice is essential for the 
successful production of these machines as is the availability of ‘clean’ manufacturing facilities. 
 

 
 

Fig.12 Test vacuum chamber and associated equipment 
 

Databases of experience and knowledge are essential in order to qualify the materials and processes 
applied within the dual fields of cryogenics and vacuum technology. National laboratories like the 
Rutherford Appleton and Daresbury Laboratories have vast amounts of expertise and knowledge 
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databases that can be tapped – usually for a fee. Similarly, certain specialist suppliers to various 
industries, notably aerospace and motor sport can also be of enormous assistance. 
At present, the application of superconductivity to industrial equipment can be extremely costly 

with low economic returns and limited technical advantage over conventional technology if its 
application is not handled selectively and appropriately. 
Cryogenics and vacuum technologies (like superconductivity itself) are sometimes treated like the 

‘black arts’. However, that attitude is simply due to the fact that for every HTS related project, the 
number of variables is high and they are all interlinked - any one of them can compromise a 
cryogenics or vacuum system if not treated appropriately. It is for this reason that most present HTS 
machines are over designed. Until we can begin to understand better the limits of this technology, only 
then will we be able to make more educated design compromises. 
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