# Lessons and Tricks Learned in Using ANSYS

v1.3 - Part 2

Eric Sun

Nov 30, 2020





## Outline

- 1. Meshing Quality, Virtual Topology, Multizone, Sweep, and Size of Problem
- 2. Boundary Conditions
- 3. Coordinate Systems
- 4. Selection
- 5. User Defined Results
- 6. Penetration, Legends, Rendering Quality, and Material Designer
- 7. APDL and Celsius
- 8. Maxwell

ENERGY Science



2

## **Tricks Learned – Mesh Quality**

1. Display Option under Integration Point Results, Details could be used to determine the mesh quality. Nodal Difference and Elemental Difference are particularly useful.

| - | Scope                                                                                                     |                                                                                                                                         |  |  |  |  |
|---|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|   | Scoping Method                                                                                            | Geometry Selection                                                                                                                      |  |  |  |  |
|   | Geometry                                                                                                  | All Bodies                                                                                                                              |  |  |  |  |
| Ξ | Definition                                                                                                |                                                                                                                                         |  |  |  |  |
|   | Туре                                                                                                      | Equivalent (von-Mises)                                                                                                                  |  |  |  |  |
|   | Ву                                                                                                        | Time                                                                                                                                    |  |  |  |  |
|   | Display Time                                                                                              | Last                                                                                                                                    |  |  |  |  |
|   | Calculate Time History                                                                                    | Yes                                                                                                                                     |  |  |  |  |
|   | Identifier                                                                                                |                                                                                                                                         |  |  |  |  |
|   | Suppressed                                                                                                | No                                                                                                                                      |  |  |  |  |
|   | Suppressed                                                                                                | NO                                                                                                                                      |  |  |  |  |
| Ξ | Integration Point Resu                                                                                    | lts                                                                                                                                     |  |  |  |  |
| Ξ | Integration Point Resu<br>Display Option                                                                  | Nodal Difference                                                                                                                        |  |  |  |  |
|   | Integration Point Resu<br>Display Option<br>Results                                                       | Nodal Difference  Unaveraged                                                                                                            |  |  |  |  |
|   | Integration Point Resu<br>Display Option<br>Results<br>Minimum                                            | Its<br>Nodal Difference<br>Unaveraged<br>Averaged<br>Nodal Difference                                                                   |  |  |  |  |
|   | Integration Point Resu<br>Display Option<br>Results<br>Minimum<br>Maximum                                 | Its<br>Nodal Difference<br>Unaveraged<br>Averaged<br>Nodal Difference<br>Nodal Fraction                                                 |  |  |  |  |
|   | Integration Point Resu<br>Display Option<br>Results<br>Minimum<br>Maximum<br>Average                      | Its<br>Nodal Difference ▼<br>Unaveraged<br>Averaged<br>Nodal Difference<br>Nodal Fraction<br>Elemental Difference<br>Elemental Eraction |  |  |  |  |
|   | Integration Point Resu<br>Display Option<br>Results<br>Minimum<br>Maximum<br>Average<br>Minimum Occurs On | Its Nodal Difference Unaveraged Averaged Nodal Difference Nodal Fraction Elemental Difference Elemental Fraction Elemental Mean         |  |  |  |  |



## **Example – Poor Mesh Quality**

#### **B: Linear, reduced integration**



#### B: Linear, reduced integration



Science

#### B: Linear, reduced integration Equivalent Stress 2 Type: Equivalent (von-Mises) Stress Unit: MPa Averaged Time: 1 Max: 189.43 Min: 3.5256 189.43 168.77 148.12 127.46 106.8 86.149 65.493 44.837 24.181 3.5256

### **B: Linear, reduced integration** Equivalent Stress 4 Type: Equivalent (von-Mises) Stress (Elemental Difference) Unit: MPa Elemental Difference Max: 0 Min: 0 0 ρ



Jefferson Lab

## **Tricks Learned – Element Quality**

2. The Element Quality option provides a composite quality metric that ranges between 0 and 1. A value of 1.0 indicates a perfect cube or square while a value of 0 indicates that the element has a zero or negative volume.

2D 
$$Quality=C(area/\sum(EdgeLength)^{2})$$

3D Quality = 
$$C \left[ volume / \sqrt{\left[ \Sigma (Edge length)^2 \right]^3} \right]$$

| Element     | Value of C   |
|-------------|--------------|
| Triangle    | 6.92820323   |
| Quadrangle  | 4.0          |
| Tetrahedron | 124.70765802 |
| Hexagon     | 41.56921938  |
| Wedge       | 62.35382905  |
| Pyramid     | 96           |





## **Example – Element Quality**

#### Quality

U.S. DEPARTMENT OF Office of Science

| Check Mesh Quality | Yes, Errors         |                      |      | 2    |
|--------------------|---------------------|----------------------|------|------|
| rror Limits        | Standard Mechanical |                      |      | Z    |
| Target Quality     | Default (0.050000)  |                      |      |      |
| moothing           | Medium              |                      |      |      |
| Mesh Metric        | Element Quality     |                      |      |      |
| Min                | 0.11456             |                      |      |      |
| Max                | 0.54205             |                      | Dr   |      |
| Average            | 0.42303             |                      |      | T    |
| Standard Deviation | 0.16272             |                      |      |      |
|                    | h Metrics           |                      |      |      |
|                    | Controls            |                      |      |      |
|                    | 2 Hex20             |                      |      |      |
|                    | 320.00              |                      |      |      |
|                    | a 150.00            |                      |      |      |
|                    | <b>3</b> 0.11 0.2   | 0.30 Element Metrics | 0.40 | 0.50 |

Min element quality = 0.11 due to two layers of 0.015 mm gaskets. Gaskets are special elements and can be very thin.



## Tricks Learned – Virtual Topology

3. Virtual topology can convert a nonsweepable body into a sweepable body. It basically stitches multiple edges into one continuous edge or multiple faces into one face.







7



## **Example – Virtual Topology**

### One virtual face

|          |              |                                                                                                                   |                       |                          | Definition                                                                                      |           |           |
|----------|--------------|-------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------|-------------------------------------------------------------------------------------------------|-----------|-----------|
|          |              |                                                                                                                   | ~                     |                          | Method                                                                                          | Automatic |           |
| Nonsweer | al           | ole                                                                                                               |                       |                          | Behavior                                                                                        | High      |           |
|          |              |                                                                                                                   |                       |                          | Advanced                                                                                        |           |           |
|          |              |                                                                                                                   |                       |                          | Generate on Update                                                                              | Yes       |           |
|          |              |                                                                                                                   |                       |                          | Simplify Faces                                                                                  | Yes       |           |
|          |              |                                                                                                                   |                       | /                        | Merge Face Edges                                                                                | Yes       |           |
|          |              |                                                                                                                   |                       |                          | Lock Position of Dependent Edge Splits                                                          | Yes       |           |
|          | /            |                                                                                                                   |                       |                          | Statistics                                                                                      |           |           |
|          |              |                                                                                                                   |                       |                          | Virtual Faces                                                                                   | 1 📕       |           |
|          |              |                                                                                                                   |                       |                          | Virtual Edges                                                                                   | 0         |           |
|          |              | There                                                                                                             | is a                  |                          | Virtual Split Edges                                                                             | 0         |           |
|          |              |                                                                                                                   |                       |                          | Virtual Split Faces                                                                             | 0         |           |
|          | -            | tiny fac                                                                                                          | ce.                   |                          | Virtual Hard Vertices                                                                           | 0         |           |
|          |              |                                                                                                                   |                       |                          | Total Virtual Entities                                                                          | 1         | Messages  |
|          | h' 纾<br>ee 纾 | Insert I<br>Update<br>Generate Mesh<br>Preview I<br>Show I<br>Create Pinch Controls<br>Group All Similar Children | ст                    | Sweep<br>Sweep           | able Bodies<br>able Eaces<br>eepable Bodies<br>ect all bodies that are topologically sweepable. |           | Sweepable |
|          | -            | Clear Generated Data                                                                                              | F                     | 1—                       |                                                                                                 |           |           |
|          | aIb          | Rename F2                                                                                                         | F                     | ١                        | Press F1 for help.                                                                              |           |           |
|          |              | Start Recording<br>Force Update Mesh State (Beta)                                                                 | 2<br>2<br>1<br>1<br>1 | Suppr<br>Suppr<br>Defeat | essed vertices (Beta)<br>essed Edges (Beta)<br>tured Faces (Beta)<br>tured Edges (Beta)         | 2         |           |



ENERGY Office of Science

(d)

JSA



## **Tricks Learned – Multizone**

4. Multizone meshing could be misleading. It may produce low quality elements hidden by beautiful exterior mesh patterns.

Don't use Hexa Core for wall-like structures because they don't have enough volume for Hexa Core.

Science

|  | Definition            |                    |
|--|-----------------------|--------------------|
|  | Suppressed            | No                 |
|  | Method                | MultiZone          |
|  | Mapped Mesh Type      | Hexa/Prism         |
|  | Surface Mesh Method   | Program Controlled |
|  | Free Mesh Type        | Hexa Core          |
|  | Element Order         | Use Global Setting |
|  | Src/Trg Selection     | Manual Source      |
|  | Source Scoping Method | Geometry Selection |
|  | Source                | 1 Face             |
|  | Sweep Size Behavior   | Sweep Element Size |
|  | Sweep Element Size    | Default            |
|  | Element Option        | Solid              |



# Example – Multizone (Hexa Core)



Uniform exterior mesh has a messy interior. Minimum element quality = 0.077. Since this is a wall-like structure, it doesn't have enough interior volume to generate a hexa core.

U.S. DEPARTMENT OF Office of Science



# Example – Multizone (Hexa Dominant)



ENERGY

Science

Jefferson Lab

## Tricks Learned – Sweep vs Multizone

5. Sweep is better than Multizone's Hexa Dominant or Hexa Core. Sweep produces high quality elements with less number of nodes and elements. Sweep is not noticeably better than Multizone if Multizone's Free Mesh Type is turned off.







## **Example – Sweep vs Multizone**



Min element quality = 0.22

Office of

Science

ENERGY

JSA

Min element quality = 0.0025

Min element quality = 0.020



## **Tricks Learned – Control Problem Size**

6. Properly define mesh sizes at the interested areas and use coarse meshes in unimportant regions.

It is tempting to think "the finer the mesh the better" and therefore not to pay attention to the size of the FEA problem as the computer is powerful and has a lot of RAM.

This strategy has four issues: (1) stress concentration could produce misleading maximum stress in linear elastic analysis; (2) a long solve time would make debugging very difficult; (3) the waiting could quickly become intolerable; (4) this strategy may reveal a lack of understanding of which area is the most important.

## **Example – Control Problem Size**





Jefferson Lab

## **Tricks learned – Constrained BC**

7. Under-constrained bodies produce rigid body movements. To find them, fix every body except the suspicious ones and run analysis under gravity. If no solution, identify the direction that is not constrained.

8. Over-constrained bodies produce incorrect reaction forces and stresses.







## **Example – Under-constrained**



The problem is not properly constrained: although there is no movement in X, Y and Z, it can rotate along Y at Vertex A.

U.S. DEPARTMENT OF Office of Science

JSA





## **Example – Properly constrained**



You may turn on Weak Spring to prevent rigid body movements.



JSA

ENERGY Office of Science

Y Axis - Directional Deformation - shared\gaskets\gasket-0.15mm - 1. s Type: Directional Deformation(Y Axis) Unit: mm Global Coordinate System Time: 1 Custom Max: 0 Max: 0



18



Min

## **Example – Over-constrained**



## **Comparison – Properly and Over Constrained**



ENERGY

Science



# **Tricks Learned – Coordinate Systems**

9. The element coordinate system is used for: orthotropic material input; pressure loading input on certain faces of the surface effect elements; output of element quantities, such as stresses, strains, and thermal gradients.

10. While global and local coordinate systems *locate* geometry items, the nodal coordinate system *orients* the degree of freedom directions at each node. Each node has its own nodal coordinate system, which, by default, is parallel to global Cartesian (regardless of the active coordinate system in which the node was defined).





21

## **Example – Elemental Coordinate System**

|    |                 | CODIE 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X                                          |
|----|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|    |                 | Image: Markov | Z                                          |
| De | etails of "1-1" | <b>→</b> ¶ □ ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |
| Ξ  | Scope           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |
|    | Scoping Method  | Geometry Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |
|    | Geometry        | 1 Body                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V                                          |
| =  | Definition      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |
|    | Defined By      | Surface and Edge Guide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |
|    | Suppressed      | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |
| Ξ  | Surface Guide   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ý                                          |
|    | Scoping Method  | Geometry Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |
|    | Geometry        | 1 Face                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |
|    | Axis            | X Axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Z V                                        |
| Ξ  | Edge Guide      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |
|    | Scoping Method  | Geometry Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |
| Ì  | Geometry        | 1 Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |
| Ì  | Axis            | Z Axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |
|    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Elemental Triads<br>Tone: Elemental Triads |

For complicated cases, elemental edges could be used to define coordinate systems.

JSA

ENERGY Office of Science





## Lessons Learned – Cylindrical Coordinate Sys

11. For 2D axisymmetric analysis, its default coordinate system is cylindrical coordinate system. When comparing the resultant reaction forces from 2D with those from 3D models, the cylindrical coordinate system must be used in 3D analysis also.





# **Reaction Force on yoke - 2D vs 3D**



## $F_{2D} = 34,015 \text{ N}$ $F_{3D} = 876.2 \times 36 = 31,543 \text{ N}$

Summary: Forces from 2D and 3D analysis matches more or less. 2D is more accurate because much more fined 2D meshes are used.

Science



## **Tricks Learned – Use Worksheet Select Tiny Faces**

12. Name the body. Convert the body into faces using worksheet. If you get 8 faces for a body with 7 faces, you have one invisible face. Select and name the 7 visible faces. Subtract the 7 faces from the 8 faces using worksheet. You have selected one extremely tiny face. Use *Select Items in Group* to select the tiny face and merge it with the large face using Virtual Topology->Merge Cells. The body is sweepable now.

This procedure is much more complicated than using Extend. However, it does provide a comprehensive picture.





## **Example – Select Tiny Faces with Worksheet**



| Vorksheet : |          |  |  |  |
|-------------|----------|--|--|--|
| block_t     | iny-face |  |  |  |

Generate

Note: Internal comparisons of values that have units are done in the CAD Unit System. See help for more information. Current CAD Unit System: Metric (m, kg, N, s, V, A)

|   | Action     | Entity Type | Criterion       | Operator | Units | Value         | Lov |
|---|------------|-------------|-----------------|----------|-------|---------------|-----|
| • | Add        | Body        | Named Selection | Equal    | N/A   | block         |     |
| ✓ | Convert To | Face        | N/A             | N/A      | N/A   | N/A           |     |
| ✓ | Remove     | Face        | Named Selection | Equal    | N/A   | block_7-faces |     |





## **Tricks Learned – Use "Extend" to Select Tiny Faces**

13. Use "Extend" to select adjacent tiny faces so that Virtual Topology->Merge Cells can be used to merge them. This is a much simpler procedure than using Worksheet. Watch the bottom status bar; if it says 2 or more Faces Selected you need to Merge Cells.



# 2 Faces Selected

2 Faces Selected: Area = 2661. mm<sup>2</sup>





# Tricks Learned – Edge Color

14. Edge color indicates connectivity. By Connection -> five categories: free (blue), single (red), double (black), triple (pink) and multiple (yellow). Free means that the edge is not shared by any faces. Single means that the edge is shared by one face.



Science



Jefferson Lab

## **Tricks – User Defined Results**

15. Stress components (Sx, Sy, Sz, Sxy, Syz, Sxz) of elements are readily available for users to access. Users can define any results based on these components.

 Table 185.1:
 SOLID185
 Homogeneous
 Structural
 Solid
 Element
 Output
 Definitions

| S:X, Y, Z, XY, YZ, XZ       | Stresses                       |
|-----------------------------|--------------------------------|
| S:1, 2, 3                   | Principal stresses             |
| S:INT                       | Stress intensity               |
| S:EQV                       | Equivalent stress              |
| EPEL:X, Y, Z, XY, YZ,<br>XZ | Elastic strains                |
| EPEL:EQV                    | Equivalent elastic strains [6] |
| EPTH:X, Y, Z, XY,<br>YZ, XZ | Thermal strains                |
| EPTH:EQV                    | Equivalent thermal strains [6] |
| EPPL:X, Y, Z, XY, YZ,<br>XZ | Plastic strains [7]            |
| EPPL:EQV                    | Equivalent plastic strains [6] |





## **Example – User Defined Results**

User defined von Mises stress

#### Built-in von Mises stress

-JSA

Office of

ENERGY Science

#### A: Static Structural A: Static Structural Equivalent (von-Mises) Stress - Solid - End Time von mises = $sqrt(0.5*((Sx-Sy)^2+(Sy-Sz)^2+(Sx-Sz)^2+6*(Sxy^2+Syz^2+Sxz^2))) - 2, s$ Type: Equivalent (von-Mises) Stress Expression: von\_mises\_user = sqrt( $0.5^{((Sx-Sy))} + (Sy-Sz)^2 + (Sx-Sz)^2 + 6^{((Sxy)} + (Sxz^2))$ Unit: MPa Time: 2 Time: 2 Max: 3.0891 Max: 3.0891 Min: 0.20509 Min: 0.20509 3.0891 3.0891 2.7687 2.7687 2.4482 2.4482 2.1278 2.1278 1.8073 1.8073 1.4869 1.4869 1.1664 0.84599 1.1664 0.84599 0.52554 0.20509 0.52554 0.20509 Type User Defined Result = sqrt(0.5\*((Sx-Sy)^2+(Sy-Sz)^2+(Sx-Sz)^2+6\*(Sxy^2+Syz^2+Sxz^2))) Expression Input Unit System Metric (mm, kg, N, s, mV, mA) $\sigma_{\rm v}^2 = \frac{1}{2} \left[ (\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 + 6 \left( \sigma_{23}^2 + \sigma_{31}^2 + \sigma_{12}^2 \right) \right]$





Jefferson Lab

## **Tricks Learned - Identifiers**

16. Identifiers are user-defined parameters linking to outputs of elements. They can be used to create complicated user defined results.





JSA



## **Example - Identifiers**



### Identifiers are user-defined parameters.



Office of

Science

ENERGY

JSA



# **Tricks Learned – Penetration**

17. For very thin layers, the penetration tolerance should be much smaller than the layer thickness. Set the penetration tolerance to be small even for bonded contact so that no error will accumulate. Otherwise, the displacement could be wrong.

18. Only 99 instantaneous CTE temperature points shall be defined. Anything more will produce an error.







## **Tricks Learned - Legends**

19. For the legend, its font size can be controlled; its number of significant digits can be set; a scientific notation or a regular number format can be used. To control font size, a snippet of Javascript is needed.



ENERGY

Science

Copy the following text into a text file and rename it as \*.js; hit "Automation" on your toolbar; "Run macro", then pick the file you created. This will make the font size in your pictures larger so they are readable in your report (Courtesy of Bill Crahen).

DS.Graphics.SetFontStyle( 0, 'Arial', 0, 0, 24, 0, 0 ); DS.Graphics.SetFontStyle( 2, 'Arial', 0, 0, 24, 0, 0 ); DS.Graphics.Redraw(1);



## **Tricks Learned – Rendering Quality**

20. Set SpaceClaim Options -> Popular -> Rendering Quality to 10 if there is a warning like: A body was processed that had faces with no facets.





Science



# Tricks Learned – Material Designer

21. ANSYS Material Designer is a useful tool to homogenize (average) complex components with multiple composite materials so that the component's material can be represent by an orthotropic material or Hill material.

It supports linear and nonlinear materials.







# **Example – ANSYS Material Designer**

#### Unit cell



### **Five materials**

Science

ENERGY

JSA

#### **Computed material properties**

| Name        | Value       | Unit |  |  |  |  |
|-------------|-------------|------|--|--|--|--|
| Engineering | Engineering |      |  |  |  |  |
| E1          | 1.2301E+11  | Pa   |  |  |  |  |
| E2          | 1.2304E+11  | Pa   |  |  |  |  |
| E3          | 8.0168E+10  | Pa   |  |  |  |  |
| G12         | 3.2031E+10  | Pa   |  |  |  |  |
| G23         | 3.4686E+10  | Pa   |  |  |  |  |
| G31         | 3.3911E+10  | Pa   |  |  |  |  |
| nu12        | 0.32126     |      |  |  |  |  |
| nu13        | 0.33797     |      |  |  |  |  |
| nu23        | 0.33793     |      |  |  |  |  |

#### **Detailed Material Designer Model**





# **Tricks Learned – APDL Script**

22. APDL is powerful. Workbench Mechanical provides us the most commonly used features of ANSYS; APDL enables us to access any feature of ANSYS. For example, defining materials not supported by Mechanical, orienting elemental coordinate systems, and using special features of contacts or elements.

ANSYS APDL may be more powerful than you thought.

23. In APDL scripts, the temperature must be Celsius because the solver uses Celsius.







24. Surface force density on the yoke steel doesn't transfer to the 2D analysis if the internal edges of yoke steel touch another material (stainless steel). This material (stainless steel) must be suppressed because it doesn't impact the magnetic field calculation.





## 2D Maxwell – Not suppressed vs Supressed



### Surface force density on yoke

U.S. DEPARTMENT OF Office of Science

Lessons and Tricks Learned in Using ANSYS

40

