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Perturbation Theory of Non-Perturbative QCD

OUTLINE

@ Screened Massive Expansion:
Yang-Mills: F.S. arXiv:1509.05891; Nucl.Phys.B907(2016) 572-596;
Quarks and analytic prop. F.S. PRD 94 (2016)

@ Dynamical mass generation and confinement:
F.S. arXiv:1701.00286; F.S. PRD 96 (2017); G. Comitini + F.S. PRD 97 (2018)

@ BRST, generic covariant gauge and Optimization:
F.S. + G. Comitini PRD 98 (2018); F.S. PRD 99 (2019)

@ Screened MOM and Strong coupling: F.S. arXiv:1902.04110

The outcome is a very predicitive, self-contained, optimized
perturbation theory from first principles
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Motivations: Dynamical Mass Generation

Higgs mechanism: SU(2) x U(1) — U(1)em
Higgs field vev: v = 246 GeV

my, ~myg~5—10MeV
mg =0  SU(3) is unbroken

while

M, ~ 1 GeV
Two orders of magnitude larger!
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Motivations: Dynamical Mass Generation

Higgs mechanism: SU(2) x U(1) — U(1)em
Higgs field vev: v = 246 GeV
Where do the masses come

from?
my, ~myg~5—10MeV
my =0  SU(3) is unbroken o)
. R
while
M, ~ 1 GeV

Two orders of magnitude larger!

What glues everything is the GLUON ! ]
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Motivations: Confinement

QCD is a confining theory (phenomenological evidence)
but no formal proof yet!

Yang-Mills (no quark):
Center Symmetry — Order Parameter (Polyakov Loop)

Gluons are confining for heavy quarks in a theory without quarks! |
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Motivations: Confinement

QCD is a confining theory (phenomenological evidence)
but no formal proof yet!

Yang-Mills (no quark):
Center Symmetry — Order Parameter (Polyakov Loop)

Gluons are confining for heavy quarks in a theory without quarks! |

But, what about the confining mechanism of gluons?

A dynamical mechanism arises from their complex mass:
finite damping rate — c¢7~ 107 m

Dynamical Mass Generation and Confinement are related J
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Standard Perturbation Theory
Our understanding of QFT relies mainly on PT

Historically based on PT (QED, SM, etc.)
PT has many merits:
@ explicit calculations
@ analytical results at lowest order and 1-loop
@ order by order improved accuracy
@ important symmetries embedded in the formalism (gauge inv.)
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Standard Perturbation Theory
Our understanding of QFT relies mainly on PT

Historically based on PT (QED, SM, etc.)
PT has many merits:
@ explicit calculations
@ analytical results at lowest order and 1-loop
@ order by order improved accuracy
@ important symmetries embedded in the formalism (gauge inv.)

Unfortunately, PT breaks down in the IR of QCD

It is a pity since:
@ Important phenomenology occurs in the IR (e.g. bound states)

@ QCD is believed to be a complete consistent theory at any
scale, containing its necessary cut-off
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Non-Perturbative Effects

They cannot be addressed by any finite-order truncation

@ Typically described by an infinite resummation

@ They might be the sign of a wrong expansion point
(rather than a failure of PT)

e.g. hydrogen atom is N.P. —; breaking down of PT in QED?

They are not intrinsic if can be cured by a change of the expansion
point. (Well known issue of PT in QM where the accuracy depends
on the "good" choice of Hy)

What is "perturbative" and what is not?

It might depend on the Expansion Point

o
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Trivial Example of a Wrong Expansion Point

2 4
Ao dfiom ]

The pole is at p = 0 at any finite order, but
1 1 1

A:— =
p21+%§ m2 + p?

The shift of the pole emerges as NP effect by an infinite resumm. of
the Dyson expansion.

resummation <= change of expansion point

awTrTTTT = comens + armknns + ke + ok ko + - @
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Which Expansion point is the best?

Gauge inv. (BRST) —> {NO gluon mass at any

finite order of PT
exact resumm. (NP approach)
or
Dyn. Mass Generation = < change the exp. point of PT
BUT give up exact gauge inv.
at any finite order
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Which Expansion point is the best?

Gauge inv. (BRST) =

Dyn. Mass Generation —

No gluon mass at any
finite order of PT

exact resumm. (NP approach)
or

change the exp. point of PT
BUT give up exact gauge inv.
at any finite order

We can build a viable PT in the IR
but we must give up exact gauge invariance at any finite order.

o
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Exact vs. Approximate Invariance

Suppose we want a SQUARE to be drawn

1) By a computer using a "silly"
algorithm which however
preserves exact symmetries like

@ Rotat. Inv. by 6 = 7
@ Inversion of axes
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Exact vs. Approximate Invariance

Suppose we want a SQUARE to be drawn

1) By a computer using a "silly"
algorithm which however
preserves exact symmetries like

@ Rotat. Inv. by 6 = 7
@ Inversion of axes
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Exact vs. Approximate Invariance

Suppose we want a SQUARE to be drawn

1) By a computer using a "silly" 2) Hand-drawn by a human
algorithm which however (giving up exact symmetries)
preserves exact symmetries like

@ Rotat. Inv. by 6 = 7
@ Inversion of axes

Fabio Siringo



Exact vs. Approximate Invariance

Suppose we want a SQUARE to be drawn

1) By a computer using a "silly" 2) Hand-drawn by a human
algorithm which however (giving up exact symmetries)
preserves exact symmetries like

@ Rotat. Inv. by 6 = 7
@ Inversion of axes

Does not satisfy any of the
symmetries!

If it looks like a square = approximate symmetries
Exact symmetries = correct result B

Fabio Siringo



Screened Expansion in a generic covariant gauge

Standard BRST invariant SU(N) YM Lagrangian:

L = Lyy + L + Lrp + from Faddeev-Popov Determinant

Loy = —%Tr (FuwF™),  Lp= —2Tr (8,4 (0,47)]

So =3 [ Au)AG" (6, A, (A x ddy + [ W (0)Gy ! (x, y)w(y)dix diy
Ao (p) = Ao(p) [t (p) + £ (p)]
1 1
Ao(p) = el Go(p) = o
S; = [d% [Lgn + L3 + L4] where:
1
£3 = _gﬁlbc(a,uAuu)AZAlc/u £4 = _ZngabcfadeAbuAcyAZAgy
Len = _gfabC(auWZ JwpAL @
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Screened Expansion in a generic covariant gauge

Same standard, BRST invariant, SU(N) YM Lagrangian:

1 1
S=S+S8 = |:So+2/A#5F“VAV:| + I:SI—Z/A#(SF‘WA,,]

"\ not BRST inv.

P.T. does not satisfy exact relations imposed by BRST at any finite order‘

1
p2+m2

A’ (p) =

" (p) + = " (p) (free propagator)
"\ Exact since IIX = 0
STHY — [A,;““’ ~ A =m? 1 (p)  (2-point vertex)

P.T. with the new vertex set

1
£3 - _gfabc(auAau)AZAZu 'C4 - _ZngabcfadeAbuAcuAsAey

1
gh = gfabc( )(/JbAg, Em = _E(Sab(SFMVAgAZ @
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Screened Expansion in a generic covariant gauge

At variance with Curci-Ferrari model (Tissier and Wschebor, 2011):

1 1 1
(pZ + mZ) - ur (P2 + mZ) (,n2 + HLoops) HI7:00ps
/ ol =
s . £ N @ The pole shift cancels at
tree level
é@% @ All spurious diverging
X
T - ke g;g T A gf';;i N mass terms cancel
() (1b) (1c) ) without counterterms
v e+ o mﬁw and/or parameters
o o) s @ Standard UV behavior

AMQ . diverg. __ Ng? 13 ¢
In the MS scheme: 1% = &, ( +log & ) (6 2)
Standard UV behavior — TF" ~ — &, p2 (lé g) ®
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Screened Expansion at one-loop

Expanding around the best Gaussian vacuum
Setting s = p?/m? « the scale m cannot be fixed by theory!

2 .
Hzoops = _(iing)z p2 [F(s) —+ ng(S)] + T1diverg.

After subtraction (wave function renormalization):

= &
md P+ i F(S)+5F€(s)_F<'%) I (’%)}

7
AP) = 2 FE) T EF) + Rl

<= Fo

12
Duarte et al., SU(3) ——

@ Results depend on p/m — Fy ‘ @ —

@ Nielsen Identities (BRST) are O et
NOT exactly satisfied

m = 0.654 GeV
Fy = —0.887
&

sl

6|

D)

Bestfitaté =0: {
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The Dark Side of the Propagators

What do we really know about propagators in the IR of Minkowski space?

MINKOWSKI

SIDE

%
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ANALYTIC CONTINUATION
Is there any dynamical pole?

F.S., Nucl. Phys. B 907, (2016); arXiv:1605.07357.

GLUON PROPAGATOR - SU(3)

1+t Lattice e i
Real Part

0.8 ) R
Imaginary Part
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ANALYTIC CONTINUATION
Is there any dynamical pole?

F.S., Nucl. Phys. B B 907, (2016); arXiv:1605.07357

GLUON PROPAGATOR - SU(3)

1t Lattice . i
Real Part

0.8 . m?= (0.16 + i 0.60) GeV?
Imaginary Part

p’ (GeV?)
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ANALYTIC CONTINUATION AND CONFINEMENT

In the long wave-length limit p? = w? — k* — w? the poles are at
w==x(M=*iy) where M=0581GeV and ~=0.375GeV.
10

-1 ' Im w (GeV)

No violation of unitarity and casuality (Stingl, 1996):

short-lived quasigluons with lifetime = = 1/~ are canceled from the
asymptotic states
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Gauge-Parameter-Independence of Poles and Residues

Proof by Nielsen Identities (BRST)

8 1 _ T 1 2 v, *
N.I. — NG G' (p) [A(p)] G ~ (T [D*w,A,w}Bp))
The pole po(&) must be gauge-parameter-independent:
1 d 1 d
— =0, ———+—=0 — =0
Ap(©) " A (p©) = e

The residues are also ¢-independent (first suggested by D.Dudal):

dfd 1] [d 4T[17 ;1 [d1
% o) = a7 7] 3] 2 x [aen

d 1 17" B
R=1lim A 2ol =1 — —R=0
Jm Alp)p” = po) = lim [dpzA(p)] — o
¢-independent  Principal Part  AF(p) = R + K (RGZ)
P’=ry P -py E
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Optimized Screened Expansion

Fo = F|

Assume that if 0 () = N.l. are satisfied
m=m(§)

and define the complex variable: 7> = —pz =p3,, z==x+iy

A=y where [W(e Fom) = (-2 /) + ¢ Fe(=2 /) + Fo

Conformal map — (21, &1, Fo(&), m(1) ) = ¥ (22,2, Fo(&),m(&) )

Fixed Point: \II<ZO,§1,F0(§1),m(§1)) = W(Zo;fzfo(fz%’"(fz)) =0
§&1=0
m(&1) = m(0) } = Fo(&), m(&) (two real equations)
Fo(&1) = Fo(0)
BUT N free param.{ d

. 7\II(Z’07FO(O)7m(0>)
R(&) = R(0)€?®), 6(¢) = Arg

& } #0
CTZ (Z7§7F0(€)7m(§)) =2 @



Optimized Screened Expansion

Optimization by &-independence of principal part

1 T
e me=0 o —
&1, Rew =0 —— 04 | pioke
£=0, MY =0 - - - - R0 - 050 —
3 £=0, ReW=0 - - - - FlO=02 —
> 03
| g€ o2}
1.5 2
x (GeV) ]
0.1
Fo(0) = —0.876, my = m(0) = 0.656 GeV, Z(0) = 2.684
10(6)] <2.76-107°,  0<¢< 12 . —
Fo(€) ~ —0.8759 — 0.01260¢ + 0.009536£2 + 0.009012€° ‘isx

m*(€)/mj ~ 1 —0.39997¢ + 0.064141¢> 0 02 04 06 08 1 12
20/mo = 0.8857 + 057184, 1z = ImR(0)/Re R(0) = 3.132 :
M = 0.581 GeV, v = 0.375 GeV (invariant pole) @
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Back to Euclidean Space
Optimized S.E. vs. Lattice data in the Landau gauge
Zy

2 |F(s) + EFe(s) — F (iji) —¢F, (;‘Ti)}
2

Alp) =
P+

(4m)2
A(p) = 2 SR, ¢=0, 5=
PIFG) + EFcs) + Fo(©)] | 1T BT
12 T T
Duarte et al., SU(3) ———
Fit ——
Optimized

10’____?_\3_

(p)

NE

o

2 | X . i
0 L L — =
0.1 1
p (GeV
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Back to Euclidean Space: generic covariant gauge £ # 0

Optim. S.E. vs. Lattice data of Bicudo,Binosi,Cardoso,Oliveira,Silva PRD 92 (2015)

14 . . 105
£=00 —

12 £=05 — ||
£=10 —

°(p)

< i
I Qg 095
£
09
£=05 —e—
L L £§=10 ——
0.01 0.1 1 10 100 0.85 . . . . : :
p? (Gev?) 0 05 1 15 2 25 3 35
p (GeV)
f— @ Optim. in Complex pl. = Euclidean
@ Quantitative agreement with lattice
= @ Qual. agreem. with DS if N.I. are used:
g Aguilar, Binosi, Papavassiliou (2015)

b \ @ Not afit! No free parameters.

@ Quantitative prediction up to and

‘ ‘ ‘ beyond the Feynman gauge (£ = 1) @
0.01 01 1 10 100 (not accessible by other methods)

p? (GeV?
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Back to Euclidean Space: generic covariant gauge £ # 0

Optim. S.E. vs. Lattice data of Cucchieri,Dudal,Mendes,Oliveira,Roelfs,Silva, PRD 98 (2018).

10

G(p) (Gev?)
-

o
2

P’ G(p)

S(p) =3 () 2 [66) - 5]

47 12
§ —1
P60) = 06) - s + G
025 1 2 3 p‘((:ev) 5 6 | 7 8 -~ (€ lnp)fl % 0

@ Not afit! No free parameters.
@ Ghost Dressing — 0 in the IR

@ Qual. agreem. with DS:
Aguilar, Binosi, Papavassiliou (2015)

@ Quantitative agreement with lattice ?

@ Prediction up to and beyond the
Feynman gauge (¢ = 1)

0 ‘ ‘ (not accessible by other methods) @
0.01 0.1 1 10
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General Renormalization
Exact Relations

Slavnov — Taylor — [Multiplicative Renorm.]
BRST — { _
Nielsen Id. — [¢ — independence]

1

. 3 4 2
ﬁzzlg: Zlg
7. Za 7

=0 =|Z{=2Z,Z./Zy = 1| [Taylor (1971), Wschebor(2008) ]

In the Landau gauge:

2

= J(p,p) x(1:p)

holds exactly if
G(p) = x(1,p)G(p) (Ghost),  A(p) =J(u,p)Ao(p) (Gluon)

with J (4, 1) = x (11, 1) = 1 50 that A(p) = Ao(),  G(u) = Golw). e




Screened MOM scheme (SMOM)

G(u) =~ G(n) = — s
MOM { A(p) = SMOM § A(p) = i
J(p,p) = P> A(p) In(;p) = (p* + m*) A(p)

MOM < SMOM:  J,, (11, p) = 2% J (11, p)

[72

p2+m2

a@)swon = (“™ ) 10)on

apom ~p* = asyom ~ (p* +m?) s finite in the IR
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Screened MOM scheme (SMOM)

Natural units of m:  |s=2-, =% a=3n (%)

( Hﬁnite

]—loop(p> =—paF@s)], = Ju(ts) = (I+1/r) + oz(l‘;

(o) =P 0 GO)) =X(09) = a6




SMOM scheme

Optimization by Variation of RS: Stevenson 1981, 2013, 2016

0G
-0 — pram (rF=10037)
ot
Only one scale y~m = no scale at all! ]

and no large logs In(yp/m)!

ool @ Fo(r*) = —0.876, Go(r*) = 0.14524
0.26 10 Qu* ~m:
024 1 [ gyon = 22255, (] oy = 1.117
0.22 B
S o2l | @ If a; is known — units are fixed!
O]
018 1 @ If the units are fixed — « is predicted!
0.16 | 4
014 | - Go=0.14524 1 @ a,(t) = a,(t*)In(t*, 1)x (1", 1)*
012 1 Analytical!

0.1
0

0.5 1 15 2 25 3 @
t= “2 /m?
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attice Data in the

Comparison with 8 = 6.0 and L

x1.16 —=

.
0.01 0.1 1 10 %

H/m H/m
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Analytical beta function (arxiv:1902.04110)

IR stable fixed point: qualitative agreement with FR (e.g. Gies 2002) and
AdS duality (e.g. Brodsky et al. 2010, Deur et al. 2016)
0 — T T T T

Y%
-0.5 4
A \ 2-LOOP (exact)
15 \
5 2
Q L5l 2009 |
_3 L
3.5
4 BSMOM
-4.5 L
0 2 4 6 8 10
g
a b b -1
fine) = 2(g —e0) 1= [ 2410 L2 i (10 220
b g — 8o g— 80
_ 4w ~ o5
£0 A ko a( 5y A 9.4017 (7T = 2.239) @
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SUMMARY

@ PT works well in IR
Approx. BRST = self-contained optimization at y = m
Analytical and Predictive tool from First Principles
(Minkowski, £ —gauge, as).

@ Optimization in Complex Plane — Agreem. in Euclidean
Complex Poles are genuine!
Direct evidence for Gluon Confinement

@ QCD has its own cut-off m (complete theory)
m ~ 0.6 GeV — Gribov copies irrelevant!
The mass m is as effective as the Gribov parameter for
screening the theory (Gao,Qin,Roberts,Rodriguez-Quintero,2018);
Faddeev-Popov — very good approx. if PT works well.

@ Analytical propagators: basic blocks for phenomenology?
Include Quarks!
Intrinsic NP problems: PDFs, Hadron Masses...
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SUMMARY

@ PT works well in IR
Approx. BRST = self-contained optimization at y = m
Analytical and Predictive tool from First Principles
(Minkowski, £ —gauge, as).

@ Optimization in Complex Plane — Agreem. in Euclidean
Complex Poles are genuine!
Direct evidence for Gluon Confinement

@ QCD has its own cut-off m (complete theory)
m ~ 0.6 GeV — Gribov copies irrelevant!
The mass m is as effective as the Gribov parameter for
screening the theory (Gao,Qin,Roberts,Rodriguez-Quintero,2018);
Faddeev-Popov — very good approx. if PT works well.

@ Analytical propagators: basic blocks for phenomenology?
Include Quarks!
Intrinsic NP problems: PDFs, Hadron Masses...

THANK YOU! *
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Dynamical Mass Generation

Variational argument by the Gaussian Effective Potential (GEP)

P.M. Stevenson PRD 32 (1985); P.M. Stevenson Z.Phys.C35 (1987)

mp=0 =— Ez[lgb(—ﬁz—mz)(b]—[i\‘(b mqﬁ}

2
O+ Q + (X)) SCALAR
Veep( (9), m*) = {
- gig gf §Z§§Z§§ SU(N)

“Precarious” renormalizationind =4 +¢, PM. Stevenson, (1987):

OVaerr( () =0, m*) _ . {mzmo #0

m4
om? Vaer ((6) =0, mg) = =55 < 0

Same identical result for SU(N) YM in any covariant £-gauge
(gauge parameter independent! G. Comitini + ES. PRD 97 (2018)) &
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Gaussian Effective Potential (GEP)

Renormalized Effective Potential in units of the best mass my

mt m2\ 2 m?
Vim) = —— la(log™5 ) +210g™ —1
m) = Tag2 | ( o8 mg) i

From the gap eq.:
0c = myexp(—1/a)]

The vacuum energy does not

depend on §,. and a:

4
mg

12872

<0

V(mg) =

-1.

5 L .
0.01 0.1 1 10
m2/m02
Gluon mass generation: the same identical result for SU(N)
Yang-Mills Theory in any covariant £-gauge if « = 9Na,/(87)
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UNIVERSAL SCALING

GLUON INVERSE DRESSING FUNCTION (Landau gauge ¢ = 0)

5 T :
\ Duarte et al., SU(3) ——
45 Cucchieri and Mendes, SU(2) —— |]
4l ; Bogolubsky et al., SU(3)
F(p?im?)+Fy ——
35
< 3
C
= 25 F
2 L
15
1 -
0.5 Il Il Il Il Il
0 0.5 1 1.5 2 2.5 3

p (GeV) %



UNIVERSAL SCALING

GHOST INVERSE DRESSING FUNCTION (Landau gauge ¢ = 0)

The ghost universal function is just
G(s) =15 [2+ + — 2slogs + (1 +5)%(2s — 1) log (1 + 5)]

1.2
1.1
1 -
09 r
i
= 08
< Bogolubsky et al.
0.7 1 Duarte etal. = )
; Cucchieri-Mendes SU(2)
0.6 ; Ayalaetal. N;=0 g
Ayalaetal. Ni=2
0.5 . Ayala et al. Nt2= 2+1+1 . E
' G(pAm?)+G,
0.4 ‘ ! !
0 0.5 1 1.5 2

p (GeV) %



Finite T
Trajectory of poles in the complex plane

In the limit k — 0 the pole w = +(m + i) is the same for A, Ar.
Using my = 0.73 GeV and Fy = —1.05 (fixed at T = 0):

0.8 T T T T T T T 1
0.75 " q 09
07 b i 08
3 =3
8 o065 & o7t
£ e >
06 | e : 06 -
0.55 q 0.5 L
05 _— 0.4 _—
0O 01 02 03 04 05 06 07 08 0O 01 02 03 04 05 06 07 08
T (GeV) T (GeV)
The line is the fit v = o + bT with vy = 0.295 GeV and b = 1.12.
(Hard thermal loops: ~/T = 3.3a) &N
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Complex Poles and Confinement

Failure of Wick Rotation:

Observables in Minkowski require extra contribution from poles
Tiburzi, Detmold, Miller, PRD 68, (2003).

Ap(1) < Fourier Transform = Ap(pm)
p° = ip* (analytic)
Ag(tp) < Fourier Transform = Ag(pE)

The Schwinger function Ag(zg) is NOT the analytic contin. of Ay (7) )

NO Kallen-Lehmann Representation J

But the numerical reconstruction improves if the poles are added
(Binosi and Tripolt arXiv:1904.08172)

Fabio Siringo



Complex Poles and Confinement

Schwinger function vs. Minkowski

400 d )
Ag(tg) = / P4 ipate AP =0,ps) (tg = Euclidean time)

oo 2m

Belp) = joig + il Where
Ag(tg) = [IM} e Mlel cos (v|tg| — ¢), ¢ = Arg[R] —tan™! 1

/M2 _;'_,72

+00d
AM(t)_/ o e Ay (po, 7 =0) (¢ = real time)

oo 2m
Ap(t) = [VMRT} e~ sin (M|t + ¢) = Aw(r) # iAgl(if) ®
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Complex Poles and Confinement

Schwinger function

+o00 .
A(t) = / dps ePA(F=0,ps) (t = Euclidean time)

oo 2T
P R R* p*+ M12 RGZ |
A — R _ anguage
(p> p2+Z(2) p2+Z52 GZ p4 T M%pz + Mg ( guag )
AP(1) = | —IBL__| o=Mt oo (v — where ¢ = Arg[R] — tan—! 2
(1) /T e s(yt—¢) e ¢ rg(R] M
3 T
=00 — @ 1, ~ 5.8 GeV~! ~ hadron size:
25 Efg; | physical gauge-invariant scale ?
o Conject. by Alkofer, Detmold,
~ 2 Princ. Part - - - - || Fischer, Maris PRD 70 (2004)
E 151 @ Large ¢ behavior dominated by
= singularities (i.e. £-independent
< a1y principal part)
0.5 @ nH~ $ (Arg[R] _ tan~! 24 %)
th—>oo if 4v—0
0

0 2 4 6 8 10 @
t[Gev?Y
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Running Coupling
Pure Yang-Mills SU(3)

RG invariant product (Landau Gauge — MOM-Taylor scheme):

2 .
as(p) = as(uo)% What if 0Fy = 6Gy = £25% ?

1.6

14

12

1L

s 08¢

0.6 -

001 01 1 10
H @ev)
uo =2 GeV, ay = 0.37, data of Bogolubsky et al.(2009).
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CHIRAL QCD

Quark sector: ANALYTIC CONTINUATION TO MINKOWSKY SPACE

Quark propagator:

S(p) = Sp(P*)p + Su(p?)

NO COMPLEX POLES = Standard Dispersion Relations

1
pu(p?) = - Im Sy (p?)

po(p?) = — = Im,(p?)

Y 5 0o (@B + pu(g?)
S@>—/O ag L R,

Positivity Conditions:

pp(P?) =0, P op(p?) — pu(p®) = 0

Fabio Siringo



CHIRAL QCD

Quark sector: m = 0.7 GeV, M is fixed by requiring that #(0) ~ 0.

0.35
0s=0.6 ------
0.3 0520.9 — |
0g=1.2 e
0.25 =15 ——— |
s 0=1.8 —----
& 0.2 Lattice e 7
=
~ 015 m=0.7 GeV
=
0.1
0.05
0 . . & =
0.1 1 10

Pe (GeV)
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CHIRAL QCD

Quark sector: Ny =2, M = 0.65 GeV, m = 0.7 GeV

o
S
T

L

—
>
[}
Q
S 02
o) ' p=M
@
: |
< 0
&2 (0.32 GeV)
>
3 1t p=m+M
= -02¢f 0
2 p
%. Pm m=0.7 GeV
& g4l| RSl —— M = 0.65 GeV
& Re[Sy] as=0.9

Positivity Conditions:
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Quark sector: Ny =2, M = 0.65 GeV, m = 0.7 GeV
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