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Outline

1. Overview of XYZP spectroscopy

2. Overview of exclusive photon-induced production

3. JPAC Results:

• ”Double polarization observables in pentaquark photoproduction”

DW, Fanelli, Pilloni, Hiller Blin, and JPAC [1907.09393]

• ”XYZ spectroscopy at electron-hadron facilities: Exclusive processes”

Albaladejo, Hiller Blin, Pilloni, DW, and JPAC [2008.01001]

4. Summary and outlook
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Charmonium landscape

Brambilla et al.[1907.07583]
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The XYZ ’s

Plethora of states have been observed by experiments since 2003.

We focus on those best established in experiment.

(See Olsen et al. [1708.0401] or Brambilla et al.[1907.07583])

X(3872) or χc1(3872)

First observed by Belle in B → (ππJ/ψ)K spectrum.

Confirmed in variety of production modes (B decay, pp, pp̄ and e+e−

collisions)

JPC = 1++ mX = 3871.69± 0.17 ΓX = 1.19± 0.19

Mass coincidence with DD̄∗ threshold, narrow width, and large

observed isospin violation (decays mostly into isospin-1 final states)

point to beyond cc̄ structure.

molecular? compact tetraquark?
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The XYZ ’s

Y(4260) or ψ(4260)

First seen in electron-positron collisions with ISR by BaBar.

JPC = 1−− mY = 4220± 15 ΓY = 44± 9

Part of ”supernumeracy” states not predicted by quark model below
4500 MeV and no observed decays to open-charm final states.

hadrocharmonium? hybrid?

Zc(3900)+

Simultaneously discovered by BESIII and Belle in subsequent decays of

Y (4260)→ J/ψππ.

JPC = 1+− mZ = 3888.4± 2.5 ΓZ = 28.3± 2.5

Charged cc̄-like resonance, also very close to D̄D∗ threshold.

tetraquark? molecule? triangle-singularity?
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The P’s

Pc states

Series of states observed in Λb → (J/ψp)K decays.

First 2015 analysis suggested two states:

Pc(4380)+ and Pc(4450)+

but follow-up analysis in 2019 with larger data set reported three

narrow states:

Pc(4312)+, Pc(4440)+, and Pc(4457)+

Spin parities currently unknown and close proximity to ΣcD̄ and ΣcD̄
∗.

compact pentaquark? molecule? triangle singularity?
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Heavier states

Zb(10610)+ and Z ′b(10650)+

Analogues of the charged Zc

states in the bb̄-like spectrum.

Two best established exotic

candidates so far in the

bottomonium sector.

X (6900)

Recently observed peak in the

di-J/ψ spectrum by LHCb.

Four charm valence quarks, may

be indication of tetraquark-like

structure.
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Theoretical landscape

Variety of phenomenological and theoretical tools available. e.g.:

• QCD Sum Rules

• NRQCD

• Potential Models

• Quark / diquark models

• Lattice QCD

• HQET

No single approach particularly conclusive on the substructure of exotic

candidates.

Exploring alternative production mechanisms in experiment can further

help disentangle the various interpretations of exotic candidate signals.
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Triangle Singularities

Resonance-like peaks generated by

kinematic singularities in

rescattering of on-shell particles.

Multitude of open thresholds makes

separating kinematic effects difficult.
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Exclusive Photoproduction

Allows direct production

with no spectator particles

in the final state

(insensitive to

complications from 3-body

dynamics).

Constrained kinematics means less ambiguous signal and precise

determination of production mechanism.

Well understood in terms of Regge phenomenology: forward production

dominated by beam fragmentation by exchanges with meson quantum

numbers.
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Existing photoproduction experiments

Photoproduction already being employed in Hall D to illuminate the light

hadron spectrum.
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But importantly...

Relevant for proposed next generation of experimental facilities!

EIC

Accardi et al. [1212.1701]

EicC

Chen [1809.00448]

The EIC is projected to cover
√
s from 20 to 140 GeV with a peak

luminosity of 1.2× 1034cm−2 s−1
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Exclusive Photoproduction

Production amplitudes in terms of exchanges determined by quantum

numbers. Couplings may be estimated by available experimental data.

〈λQλ′N |TE |λγλN〉 =
∑
V

e fV
mV
T α1···αj

λV =λγ ,λQ
Pα1···αj ;β1···βj B

β1···βj

λN ,λ′N

Recipe:

• Bottom vertex, BλN ,λ
′
N

, known

from Regge phenomenology

• Use VMD to relate incoming

photon to lowest lying vector

quarkonium

• Top vertex, TλV ,λQ , from ΓQ→VE
partial width

• Use Feynman amplitudes to fix

couplings at low-energies, then

Reggeize propagators to get

high-energy behavior.
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Exchanges

Q V E B(Q → V E) (%)

X (3872)
J/ψ

ρ 4.1

ω 4.4

Zc(3900)+ π 10.5

Zb(10610)

Υ(1S)

π

0.54

Υ(2S) 3.30

Υ(3S) 9.22

Z ′b(10650)+

Υ(1S)

π

0.21

Υ(2S) 1.47

Υ(3S) 4.8

Y and J/ψ (primary background for pentaquark production) proceed

through Pomeron exchange and are treated separately.
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Nucleon vertices

Based on standard forms of vector meson-nucleon interactions:

BµλNλ′N
= β(t) ū(p′, λ′N)

(
g γµ + g ′

σµν(p − p′)ν
2mN

)
u(p, λN)

and πNN interactions:

BλNλ′N
=
√

2 gπNN β(t) ū(p′, λ′N) γ5 u(p, λN)

Couplings g & g ′ known from nucleon potential models and gπNN from

πN and NN scattering data.

Additional form factor β(t) = et
′/Λ suppress large t behavior to match

experimentally observed behavior. Momentum cutoffs, Λ for each

exchange also take usual values.

See for example:

Matsinos [1901.01204] and Chiang et al. [nucl-th/0110034]
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Propagators

At low energies (near threshold) we expect the partial wave sum of the

full amplitude to be ∝ (p(s)q(s))j such that only the lowest j

contributes. Thus, we consider fixed-spin, Feynman propagators which

contain full energy dependence at low energies.

Easily written in terms of Feynman rules:

P0 =
1

t −m2
E
, P1

α,β =
gαβ − kαkβ/m

2
E

t −m2
E

Equivalently contracting all Lorentz structures evaluated in the t-channel

CM frame we may match this to a helicity amplitude proportional to

d j
µµ′(θt)

t −m2
E

=
polynomial of order j in s

t −m2
E
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Reggeization

At high energies, the above will like s j which for j ≥ 1 exceeds unitarity

bounds. Therefore we restrict fixed-spin exchanges heuristically to a few

GeV above threshold.

Beyond that, we must consider the re-summed (Reggeized) tower of
arbitrary spin with the replacement

N j

µµ′

(
4p(t) q(t)

s0

)j−M d j

µµ′ (θt)

ξ
(t)

µµ′ (s, t)

1

t − m2
E
→ −α′ Γ(j −α(t))

[
1 + τe−iπα(t)

2

] (
s

s0

)α(t)−M

We use usual real, linear parameterizations for the ρ− ω and π Regge

trajectories:

αρ(t) = 1 + 0.9 (t −m2
ρ) απ(t) = 0.7 (t −m2

π) .

Note an intercept α0 = α(t = 0) < 1 forces the Reggeized amplitude to

decrease at high energies.
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Results: Z’s

Minimally gauge invariant A-P-V interaction:

TλVλZ
=

gVZπ
mZ

εµ(q, λV ) ε∗ν(q′, λZ )
[
(q · (q − q′) gµν − (q − q′)µqν

]
Couplings fixed by saturating Z width by observed decay modes.
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Results: X(3872)

Gauge invariant V-V-A interaction. Coupling fixed by fits to differential

decay widths to X → J/ψρ→ J/ψππ and X → J/ψω → J/ψπππ.

Tµ
λEλX

= gψXE εσναβ
[
gσµ ε∗ν(q′, λX ) qα εβ(q, λE)

]

High energy cross-sections highly-suppressed by Reggeization!
18



Aside: Primakoff Production of X(3872)

Although the decay X (3872)→ 2γ

is forbidden by Landau-Yang

theorem, recent measurement of

X (3872) in two-photon interactions

by Belle gives the reduced width:

Γ̃X
γγ = lim

Q2→0

m2
X

Q2
ΓX
γγ∗(Q

2) .

Can use this to estimate coupling of

X to two photons. At small (but

finite) Q2 we expect quasi-elastic

Primakoff production.

Can take advantage of EIC’s ability

to accelerate high Z beams.
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Aside: Primakoff Production of X(3872)

Squared amplitude given in terms of spin-summed tensors and photon

propagator: ∑
λX ,λ

(′)
A

| 〈λXλ′A|T |λγλA〉 |2 =
e2

t2
Tµν
λγ

Wµν

Top tensor Tµν
λγ

given in terms of our X (3872) A-V-V interaction, and the

nuclear tensor is assumed to be dominated by the nuclear electric field:

Wµν ' 16π(pµ +
1

2
kµ)(pν +

1

2
kν)

Z 2

4π

16m4
AF

2
0 (t)

(4m2
A − t)2

The form factor, F0(t), accounts for the finite size of the nucleus and is

parameterized by a Fermi model:

F0(t) =
ρ0

Z

∫
d3x

sin |~k ||~x |
|~k ||~x |

[
1 + exp

(
|~x | − R

a

)]−1
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Results: Primakoff

Differential and integrated cross-sections for longitudinal (solid) and

transverse (dotted) photons respectively.
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Pomeron Exchange

At high-energies, vector-meson photoproduction is well described by

Pomeron exchange.〈
λQλ

′
N

∣∣T (HE)
P

∣∣λγλN

〉
= F (s, t) δλQλγ δλNλ

′
N

At energies near threshold, vector production may be realized by the

explicit multi-gluon (Brodsky et al. [hep-ph/0010343]) or open-charm

exchanges (Du et al. [2009.08345]).

To be as agnostic as possible to the microscopic dynamics, we use a
phenomenological model of that realizes the vector-like coupling of a
Pomeron at low energies.

〈
λQλ

′
N

∣∣T (LE)
P

∣∣λγλN

〉
=

F (s, t)

s

[
ū(p′, λ′N ) γµ u(p, λN )

]
ε
∗
ν(q′, λQ)

[
ε
µ(q, λγ) qν−εν(q, λγ)qµ

]
In both cases the function F (s, t) contains all the dynamical s and t

dependence of the Pomeron and must be fit to data:

F (s, t) = ie A

(
s − sth

s0

)α(t)

eb0 t′
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J/ψ photoproduction

Fits to recent near-threshold data from GlueX and moderate energy

SLAC data allow us to extract γψ−Pomeron couplings.

No observation of peaks consistent with pentaquark states places upper

bounds of < 4% on branching fractions B(Pc → J/ψp).
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Aside: Pc production in polarization observables

Able to study the sensitivity of polarization observables to

pentaquark-like peaks in the coherent sum of J/ψ production and

direct-channel Breit-Wigner resonances.

Pentaquark candidates amplitude in terms of usual nucleon resonance

parameterization:

〈λψλp′ |TR |λγλp〉 = fth(s)

〈
λψλ

′
p

∣∣Tdec

∣∣λR〉 〈λR |T †em|λγλp〉
M2

R − s − iΓRMR
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Aside: Pc production in polarization observables

Couplings estimated with nominal branching fractions,

B(Pc → J/ψp) = 1% and VMD to fix overall photo-coupling strength.

Proposed measurement of beam-target polarization asymmetry ALL and

and beam-recoil polarization asymmetry KLL in Hall A at JLab sensitive

to many pentaquark scenarios.

A(K )LL =
1

2

[
dσ(++)− dσ(+−)

dσ(++) + dσ(+−)
− dσ(−+)− dσ(−−)

dσ(−+) + dσ(−−)

]
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Rescaling couplings for higher charmonia

We may relate the previously fit coupling Aψ to ψ(2S) production by a

scale factor:

Aψ′ = Rψ′ Aψ .

Assuming the Pomeron exchange is dominated by 2-gluon exchange:

Rψ′ =

√
g2(ψ′ → γgg)

g2(ψ → γgg)
∼ 0.55

where the the coupling are computed from known partial widths of the

three-body process divided by the corresponding phase space (PS) by:

g2(ψ → γgg) = 6mψ
ΓψB(ψ → γgg)

PS(ψ → γgg)

26



Y(4260) coupling

Radiative Y → γgg decays have not yet been measured.

Instead we appeal to factorization arguments of Voloshin and Zakharov

[Phys. Rev. Lett.45, 688 (1980)]:

g2(Y → ψππ) = g2(Y → ψgg)× g2(gg → ππ)

g2(ψ′ → ψππ) = g2(ψ′ → ψgg)× g2(gg → ππ)

Furthermore use VMD to relate g(Y → γgg) =
efψ
mψ

g(Y → ψgg),

RY =
ef ψ

mψ

√
g2(Y → ψππ)

g2(ψ → γgg)

g2(ψ′ → ψgg)

g2(ψ′ → ψππ)

Everything known up to coupling g(Y → ψππ) which depends on the

electromagnetic decay width ΓY
e+e− . Compare with high-energy HERA

data to put an upper limit on this value and RY = 0.84.
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Results: Y(4260)

Unlike meson exchanges, diffractive production increases with energy.
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Photoproduction toolkit

Code implementations of all amplitudes to be available on the JPAC

website or at https://github.com/dwinney/jpacPhoto.

Array of observables (cross-sections, asymmetries, SDME’s) also

available. Future plans to incorporate other JPAC models into centralized

toolkit for amplitude analysis in photoproduction.

Easily interface-able to Monte-Carlo tools for simulation.

Helping motivate spectroscopy detector requirements for the EIC,

feasibility studies for current experiments such as SBS and GlueX at JLab.
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Summary and Outlook

Observation of exotic candidates in photoproduction would be important

step towards understanding their structure. As such, photoproduction

cross-sections for more robust exotic candidates predicted at two regimes

of interest: near threshold and at high energies.

Future electron-ion colliders ideal laboratories for diffractive production of

Y (4260), high-mass states such as the Zb’s, and Primakoff production of

X (3872) utilizing heavy ion beams.

Ongoing JPAC studies into semi-inclusive production will further

motivate the XYZP spectroscopy program at next-generation

electron-hadron facilities.
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