MICHAEL PAOLONE
TEMPLE UNIVERSITY
FOR THE E05-110 COLLABORATION.

COULOMB CORRECTIONS AND THE COULOMB SUM RULE AT JLAB
Coulomb Sum Rule

Inclusive electron scattering cross-section:

\[
\frac{d^2 \sigma}{d\Omega d\omega} = \sigma_{\text{Mott}} \left[\frac{q^4}{|q|^4} R_L(\omega, |q|) + \left(\frac{q^2}{2|q|^2} + \tan^2 \theta \right) R_T(\omega, |q|) \right]
\]
COULOMB SUM RULE

Inclusive electron scattering cross-section:

\[
\frac{d^2\sigma}{d\Omega d\omega} = \sigma_{\text{Mott}} \left[\frac{q^4}{|q|^4} R_L(\omega, |q|) + \left(\frac{q^2}{2|q|^2} + \tan^2 \theta \right) R_T(\omega, |q|) \right]
\]

- Scattering response due to **charge** properties
- Scattering response due to **magnetic** properties
COULOMB SUM RULE

Inclusive electron scattering cross-section:

\[\frac{d^2 \sigma}{d\Omega d\omega} = \sigma_{\text{Mott}} \left[\frac{q^4}{|q|^4} R_L(\omega, |q|) + \left(\frac{q^2}{2|q|^2} + \tan^2 \frac{\theta}{2} \right) R_T(\omega, |q|) \right] \]

Coulomb Sum Rule definition:

\[S_L(|q|) = \int_{\omega^+}^{|q|} d\omega \frac{R_L(\omega, |q|)}{ZE_p^2(Q^2) + N\tilde{G}_{En}^2(Q^2)} \]

If one integrates the charge response divided by the total charge form factor over all available virtual photon energies, naively one might expect the integral to go to unity.
Coulomb Sum Rule definition:

\[S_L(|\mathbf{q}|) = \int_{\omega^+} |\mathbf{q}| d\omega \frac{R_L(\omega, |\mathbf{q}|)}{Z \tilde{G}_{Ep}^2(Q^2) + N \tilde{G}_{En}^2(Q^2)} \]

At small $|\mathbf{q}|$, S_L will deviate from unity due to long range nuclear effects, Pauli blocking. (directly calculable, well understood).

If one integrates the charge response divided by the total charge form factor over all available virtual photon energies, naively one might expect the integral to go to unity.
Coulomb Sum Rule

Inclusive electron scattering cross-section:

\[
\frac{d^2\sigma}{d\Omega d\omega} = \sigma_{\text{Mott}} \left[\frac{q^4}{|q|^4} R_L(\omega, |q|) + \left(\frac{q^2}{2|q|^2} + \tan^2 \frac{\theta}{2} \right) R_T(\omega, |q|) \right]
\]

Coulomb Sum Rule definition:

\[
S_L(|q|) = \int_{\omega_+}^{\|q\|} d\omega \frac{R_L(\omega, |q|)}{Z\tilde{G}_{Ep}^2(Q^2) + N\tilde{G}_{En}^2(Q^2)}
\]

At small $|q|$, S_L will deviate from unity due to long range nuclear effects, Pauli blocking. (directly calculable, well understood).

At large $|q| >> 2k_f$, S_L should go to 1. Any significant* deviation from this would be an indication of relativistic or medium effects distorting the nucleon form factor!

*Short range correlations will also quench S_L, but only by < 10%
COULOMB SUM RULE

- Long standing issue with many years of theoretical interest.
- Even most state-of-the-art models cannot predict existing data.
- New precise data at larger $|q|$ would provide crucial insight and constraints to modern calculations.

\[S_L(|q|) = \int_{\omega^+} |q| \frac{R_L(\omega, |q|)}{ZG_{Ep}^2(Q^2) + NG_{En}^2(Q^2)} \]

At large $|q| \gg 2k_f$, S_L should go to 1. Any significant* deviation from this would be an indication of relativistic or medium effects distorting the nucleon form factor!

*Short range correlations will also quench S_L, but only by $< 10\%$
QUASI-ELASTIC SCATTERING

- Quasi-elastic scattering at intermediate Q^2 is the region of interest for our experiment:
 - Nuclei investigated:
 - 4He
 - 12C
 - 56Fe
 - 208Pb

We want to integrate above the coherent elastic peak:
Quasi-elastic is “elastic” scattering on constituent nucleons inside nucleus.

\[
S_L(|q|) = \int_{\omega^+} \frac{d\omega}{Z\tilde{G}^2_{Ep}(Q^2) + N\tilde{G}^2_{En}(Q^2)}
\]

Nuclear Response function $R(Q^2, \omega)$
First group of experiments from Saclay, Bates, and SLAC show a quenching of S_L consistent with medium modified form-factors.

$|q_{\text{eff}}|$ is $|q|$ corrected for a nuclei dependent mean coulomb potential. Methodology agreed on by Andreas Aste, Steve Wallace and John Tjon.
First group of experiments from Saclay, Bates, and SLAC show a quenching of S_L consistent with medium modified form-factors.

Very little data above $|q|$ of 600 MeV/c, where the cleanest signal of medium effects should exist!

- Saclay, Bates limited in beam energy reach up to 800 MeV.
- SLAC limited in kinematic coverage of scattered electron at $|q|$ below 1150 MeV/c.

$|q_{eff}|$ is $|q|$ corrected for a nuclei dependent mean coulomb potential. Methodology agreed on by Andreas Aste, Steve Wallace and John Tjon.
PUBLISHED EXPERIMENTAL RESULTS

- First group of experiments from Saclay, Bates, and SLAC show a quenching of S_L consistent with medium modified form-factors.
- Very little data above $|q|$ of 600 MeV/c, where the cleanest signal of medium effects should exist!
- Saclay, Bates limited in beam energy reach up to 800 MeV.
- SLAC limited in kinematic coverage of scattered electron at $|q|$ below 1150 MeV/c.

$|q_{\text{eff}}|$ is $|q|$ corrected for a nuclei dependent mean coulomb potential.

Methodology agreed on by Andreas Aste, Steve Wallace and John Tjon.
EXPERIMENTAL DESIGN

- Need R_L → Use Rosenbluth separation!

$$S_L(|q|) = \int_{\omega_+}^{\omega_-} \frac{R_L(\omega, |q|)}{Z\tilde{G}^2_{Ep}(Q^2) + N\tilde{G}^2_{En}(Q^2)} \, d\omega$$

- Experiment run at 4 angles per target: 15, 60, 90, 120 degs. Very large lever arm for precise calculation of R_L!

- Need data for each angle at a constant $|q|$ over an ω range starting above the elastic peak up to $|q|$.

- When running a single arm experiment with fixed beam energy and scattering angle, $|q|$ is NOT constant over your momentum acceptance.

- Need to take data at varying beam energies, and “map-out” $|q|$ and ω space.
EXPERIMENTAL DESIGN

- If one wants to measure from 100 to 600 MeV \(\omega \) at constant \(|q| = 650\) MeV/c

\[S_L(|q|) = \int_{\omega^+}^{q} d\omega \frac{R_L(\omega, |q|)}{Z\tilde{G}_{Ep}^2(Q^2) + N\tilde{G}_{En}^2(Q^2)} \]

CSR calculated at constant \(|q|!!\)
EXPERIMENTAL DESIGN

- If one wants to measure from 100 to 600 MeV ω at constant $|q| = 650$ MeV/c
- Take data at different beam energies, and interpolate to determine cross-section at constant $|q|$.
EXPERIMENTAL DESIGN

- If one wants to measure from 100 to 600 MeV ω at constant $|q| = 650$ MeV/c

- Take data at different beam energies, and interpolate to determine cross-section at constant $|q|$.

- $|q|$ can be selected between 550 and 1000 MeV/c

Repeat this “mapping” for 60, 90, and 120 degree spectrometer central angles.

q / ω coverage for 15 degree Iron data

E$_{\text{beam}}$ = 1.26 GeV
E$_{\text{beam}}$ = 1.65 GeV
E$_{\text{beam}}$ = 2.15 GeV
E$_{\text{beam}}$ = 2.45 GeV
E$_{\text{beam}}$ = 2.85 GeV
E$_{\text{beam}}$ = 3.68 GeV
EXPERIMENTAL SPECIFICS

- E05-110:
 - Data taken from October 23rd 2007 to January 16th 2008
 - 4 central angle settings: 15, 60, 90, 120 degs.
 - Many beam energy settings: 0.4 to 4.0 GeV
 - Many central momentum settings: 0.1 to 4.0 GeV
 - LHRS and RHRS independent (redundant) measurements for most settings
 - 4 targets: 4He, 12C, 56Fe, 208Pb.

Each data line represents a constant beam-energy
INTERPOLATION TECHNIQUES

- Interpolation of $|q|$
INTERPOLATION TECHNIQUES

- Interpolation of $|q|$

 - Could go along a constant ω line. Not the best option.

q / ω coverage for 15 degree Iron data
INTERPOLATION TECHNIQUES

- Interpolation of $|q|$
 - Could go along a constant ω line. Not the best option.
 - Better: use a constant y line, which will follow the trend of quasi-elastic peak.
 - Alternative: use a constant W line, which should follow the Δ peak.
 - or even a combination of y and W.

q / ω coverage for 15 degree Iron data
3D Machine learning techniques are also available:

- Unsupervised Neural Network
 - Method uncertainty is hard to pin down.
- Supervised Gaussian Process Regression.
 - Implemented from scratch.
 - Uncertainties are well constrained.
The offset in the spectra when using the EMA corrected momentum transfer significantly affects the interpolation landscape.

Effect is largest at low momenta and in heavier targets.
I’d like to discuss 56Fe

- We use a foil target for Iron (well understood).
- We are still working on extracting XS from 208Pb, which is housed inside a extended hydrogen cell.

Preliminary results show some trends in the Rosenbluth extraction:
- At low energy transfer, the low beam-energy backward angle data pulls the Rosenbluth. At large energy transfer, the high beam-energy forward angle data pulls the fit.
- An EMA correction has been applied.
I’d like to discuss 56Fe

- We use a foil target for Iron (well understood).
- We are still working on extracting XS from 208Pb, which is housed inside a extended hydrogen cell.

Preliminary results show some trends in the Rosenbluth extraction:

- At low energy transfer, the low beam-energy backward angle data pulls the Rosenbluth. At large energy transfer, the high beam-energy forward angle data pulls the fit.

- An EMA correction has been applied.
I’d like to discuss 56Fe

We use a foil target for Iron (well understood).

We are still working on extracting XS from 208Pb, which is housed inside a extended hydrogen cell.

Preliminary results show some trends in the Rosenbluth extraction:

At low energy transfer, the low beam-energy backward angle data pulls the Rosenbluth. At large energy transfer, the high beam-energy forward angle data pulls the fit.

An EMA correction has been applied.
I’d like to discuss ^{56}Fe

- We use a foil target for Iron (well understood).
- We are still working on extracting XS from ^{208}Pb, which is housed inside a extended hydrogen cell.

Preliminary results show some trends in the Rosenbluth extraction:

- At low energy transfer, the low beam-energy backward angle data pulls the Rosenbluth. At large energy transfer, the high beam-energy forward angle data pulls the fit.
- An EMA correction has been applied.
I’d like to discuss 56Fe

We use a foil target for Iron (well understood).

We are still working on extracting XS from 208Pb, which is housed inside a extended hydrogen cell.

Preliminary results show some trends in the Rosenbluth extraction:

At low energy transfer, the low beam-energy backward angle data pulls the Rosenbluth. At large energy transfer, the high beam-energy forward angle data pulls the fit.

An EMA correction has been applied.
World data comparisons for ^{56}Fe

- We can use our interpolation space and our Rosenbluth fits to compare to world data.
- Reasonable agreement suggests that XS extraction is in control:
 - Radiative corrections.
 - Efficiencies and spectrometer response.
 - Interpolation procedures.
Since we scatter off of a bound nucleon, consideration has to be given to the long-range field effects during the scattering process.

One can expect the energy and trajectory of both the incident and scattered electron to be affected:

- Results in both an energy change and focusing effect.

First studied by I. Sick and J.S. McCarthy in 1970, and plenty of interest from many theorists through the early 2000’s.
Conceptually, the problem is well defined. In practice, calculations can be painful:

Solutions to the Dirac equation for electron scattering in the presence of many-body nuclear fields are (laboriously) calculable with partial wave expansion and numerical calculation.

For a systematic analysis of experimental data, the numerical effort is usually too big and unpractical. This is true in particular as often computer codes have been developed for \((e,e'p)\), in which case the \((e,e')\) cross section has to be generated by summing over all possible initial and final states of the knocked-out nucleon.

The DBWA amplitude goes like:

$$T_{if}^{if} = \langle \chi_f^-, \psi_f | H_{\text{int}} | \chi_i^+, \psi_i \rangle$$
The DBWA amplitude goes like:

\[T^{if} = \langle \chi_f^-, \psi_f | H_{\text{int}} | \chi_i^+, \psi_i \rangle \]

Initial and final nucleus states

Traini, Turck-Chieze, Zghiche, Phys. Rev. C38
COULOMB CORRECTIONS AND THE DBWA

The DBWA amplitude goes like:

\[T^{if} = \langle \chi_f^-, \psi_f | H_{\text{int}} | \chi_i^+, \psi_i \rangle \]

Solution of Dirac equation for incoming and outgoing electron in a static Coulomb field

Traini, Turck-Chieze, Zghiche, Phys. Rev. C38
The DBWA amplitude goes like:

\[
T^{if} = \langle \chi^-_f, \psi_f | H_{\text{int}} | \chi^+_i, \psi_i \rangle \\
= \int d\mathbf{r} \left[\rho_e(\mathbf{r}) \phi^{if}_N(\mathbf{r}) - \mathbf{j}_e(\mathbf{r}) \cdot \mathbf{A}^{if}_N(\mathbf{r}) \right]
\]

Traini, Turck-Chieze, Zghiche, Phys. Rev. C38
COULOMB CORRECTIONS AND THE DBWA

The DBWA amplitude goes like:

\[T_{if}^{ij} = \langle \chi_f^- , \psi_f | H_{\text{int}} | \chi_i^+ , \psi_i \rangle \]

\[= \int dr \left[\rho_e(r) \phi_{N}^{if}(r) - j_e(r) \cdot A_{N}^{if}(r) \right] \]

Charge and current transition densities:

\[\rho_e(r) = \chi_f^- \ast \chi_i^+, \quad j_e(r) = \chi_f^- \ast \sigma \chi_i^+ \]

Traini, Turck-Chieze, Zghiche, Phys. Rev. C38
The DBWA amplitude goes like:

\[T^{if} = \langle \chi_f^-, \psi_f \mid H_{int} \mid \chi_i^+, \psi_i \rangle \]

\[= \int d\mathbf{r} \left[\rho_e(\mathbf{r}) \phi_N^{if}(\mathbf{r}) - \mathbf{j}_e(\mathbf{r}) \cdot \mathbf{A}_N^{if}(\mathbf{r}) \right] \]

Vector and scalar potentials of the nuclear transition

\[\mathbf{A}_N^{if} = \langle \psi_f \mid \mathbf{A}_N \mid \psi_i \rangle, \quad \phi_N^{if} = \langle \psi_f \mid \phi_N \mid \psi_i \rangle \]

Traini, Turck-Chieze, Zghiche, Phys. Rev. C38
The DBWA amplitude goes like:

\[
T^{if} = \langle \chi_f^- , \psi_f \rvert H_{\text{int}} \rvert \chi_i^+ , \psi_i \rangle \\
= \int d\mathbf{r} \left[\rho_e(\mathbf{r})\phi_{N}^{if}(r) - j_e(\mathbf{r}) \cdot A_{N}^{if}(\mathbf{r}) \right]
\]

If we replace the exact solutions by plane-waves:

\[
\rho_e^{\text{PWBA}}(\mathbf{r}) = \rho_{e0} e^{i\mathbf{q} \cdot \mathbf{r}}, \quad j_e^{\text{PWBA}} = j_{e0} e^{i\mathbf{q} \cdot \mathbf{r}}
\]

With

\[
\rho_{e0} = u_f^+ u_i, \quad j_{e0} = u_f^+ \sigma u_i
\]

And the amplitude can be written as the Fourier transform:

\[
T^{if(\text{PWBA})} = \phi_{N}^{if}(\mathbf{q})\rho_{e0} - A_{N}^{if}(\mathbf{q}) \cdot j_{e0}
\]
In the high energy limit (E >> m_e), Lenz and Rosenfelder derived an analytical expression for the Dirac equation solution, by summing terms in inverse powers of the wave number up to second order:

$$\chi^\pm(r) = e^{\pm i\delta_1/2} \eta(r) e^{\pm i\delta_2 (J^2 - 3/4)} e^{ik \cdot r} \eta(r) u_k$$

With:

$$J = L + \frac{1}{2} \sigma = r \times p + \frac{1}{2} \sigma$$
$$\eta(r) = \frac{1}{k \cdot r} \int_0^r [k - V(r')] dr' \to \frac{k'}{k} (1 + ar^2)$$

$$a = -\frac{1}{6k'} \left< \frac{d^2V}{dr^2} \right|_{r=0} \approx -\frac{1}{6k'} \frac{Z \alpha}{R^3} \equiv \tilde{a}$$
$$b = -\frac{Z \alpha}{4k^2} \left< \frac{1}{r^2} \right> \approx -\frac{3}{4} \frac{Z \alpha}{k^2 R^2} \equiv \tilde{b}$$

$$k' = k - V(0) \approx k + \frac{3}{2} \frac{Z \alpha}{R}$$
In the high energy limit \(E >> m_e \), Lenz and Rosenfelder derived an analytical expression for the Dirac equation solution, by summing terms in inverse powers of the wave number up to second order:

\[
\chi_\pm(\mathbf{r}) = e^{\pm i\delta_{1/2}} \eta(\mathbf{r}) e^{\pm i b (J^2 - 3/4)} e^{i \mathbf{k} \cdot \eta(\mathbf{r})} u_k
\]

If one expands about \(r = 0 \), and keeps terms up to \((\alpha Z)^2\) one gets:

\[
\chi_\pm(\mathbf{r}) \bigg|_{\tilde{a} = \tilde{b} = 0} = e^{\pm i\delta_{1/2}} \frac{k'}{k} e^{i \mathbf{k}' \cdot \mathbf{r}} u_k
\]

This gives us the basis of the EMA as a low-rider correction:

\[
q_{\text{eff}} = k'_i - k'_f = q - V(0) \left(\hat{k}_i - \hat{k}_f \right)
\]
An effective momentum approximation (EMA) takes into account the mean field potential of the target nucleus during quasi-elastic scattering.

\[k_i' = k_i - \kappa A \frac{V_0}{c} \quad k_f' = k_f - \kappa A \frac{V_0}{c} \]

\[\omega' = (k_i' - k_f') = (k_i - k_f) = \omega \]

\[Q'^2 = 4(k_i'(k_f') \sin^2 \theta/2 \]

\[q_{eff} = \sqrt{\omega^2 + Q'^2} \]

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>(V_0) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{12}\text{C})</td>
<td>3.46 +/- 0.11</td>
</tr>
<tr>
<td>(^{56}\text{Fe})</td>
<td>9.80 +/- 0.32</td>
</tr>
<tr>
<td>(^{208}\text{Pb})</td>
<td>20.57 +/- 0.66</td>
</tr>
</tbody>
</table>
An effective momentum approximation (EMA) takes into account the mean field potential of the target nucleus during quasi-elastic scattering.

\[
k_i' = k_i - \kappa_A \frac{V_0}{c} \quad k_f' = k_f - \kappa_A \frac{V_0}{c}
\]

\[
\omega' = (k_i' - k_f') = (k_i - k_f) = \omega
\]

\[
Q'^2 = 4(k_i')(k_f') \sin^2 \theta / 2
\]

\[
q_{eff} = \sqrt{\omega^2 + Q'^2}
\]

\[
V_0 = \frac{3\alpha Z}{2r_c}
\]

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>((\kappa_A)V_0) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{12}\text{C})</td>
<td>3.46 +/- 0.11</td>
</tr>
<tr>
<td>(^{56}\text{Fe})</td>
<td>9.80 +/- 0.32</td>
</tr>
<tr>
<td>(^{208}\text{Pb})</td>
<td>20.57 +/- 0.66</td>
</tr>
</tbody>
</table>

An effective momentum approximation (EMA) takes into account the mean field potential of the target nucleus during quasi-elastic scattering.

\[k'_i = k_i - \frac{\kappa_A V_0}{c} \]
\[k'_f = k_f - \frac{\kappa_A V_0}{c} \]

\[\omega' = (k'_i - k'_f) = (k_i - k_f) = \omega \]

\[Q'^2 = 4(k'_i)(k'_f) \sin^2 \theta/2 \]

\[q_{eff} = \sqrt{\omega^2 + Q'^2} \]

\[V_0 = \frac{3\alpha Z}{2r_c} \]

When scattering with positrons, we effectively change the sign of the mean potential.

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>(\kappa_A)V_0 (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12C</td>
<td>3.46 +/- 0.11</td>
</tr>
<tr>
<td>56Fe</td>
<td>9.80 +/- 0.32</td>
</tr>
<tr>
<td>208Pb</td>
<td>20.57 +/- 0.66</td>
</tr>
</tbody>
</table>

An effective momentum approximation (EMA) takes into account the mean field potential of the target nucleus during quasi-elastic scattering.

\[\kappa_f' = \frac{q_{eff}}{r_0} \]

\[r_0 = \frac{3\alpha Z}{2r_c} \]

\[\kappa_A \frac{V_0}{c} = 18.7 \pm 1.5 \text{ MeV/c} \]

[Graphs showing data from Saclay and EMA calculations]
RESPONSE AND THE FOCUSING FACTOR

- Calculating the response Γ:
 - A focusing factor $f(k) = \frac{k'_i}{k_i}$ shows up in the amplitude.
 - When calculating the response $\Gamma = \frac{\sigma}{\sigma_{\text{Mott}}}$ it turns out the EMA focusing factor cancels out when also applying the corrected beam energy.
 - i.e. $\left(\frac{k'_i}{k_i} \right)^2 \sigma'_{\text{Mott}} = \sigma_{\text{Mott}}$
 - And $\Gamma' = \left(\frac{k'_i}{k_i} \right)^2 \frac{\sigma}{\sigma'_{\text{Mott}}} = \frac{\sigma}{\sigma_{\text{Mott}}}$

So, prior studies using the response and no coulomb corrections, according to EMA, only need the energy shift in q and no additional focusing factor.
A number of people have compared EMA to DWBA and PWBA calculations. Many have also created "modified" EMA's that get closer to DWBA calculations in problem regions.

- The exact region where the EMA is a "good" approximation is only moderately discussed.
- Most calculations focus on 208Pb (where the EMA is most likely to fail)
- I'll go through some published calculations, but the is not an exhaustive list!!
Traini, Turck-Chieze, Zghiche:

- Compares a DWBA and PWBA calculations to EMA.

Conclusions: "For medium weight nuclei (Z <= 20) the main effect of Coulomb corrections in (e,e') inclusive scattering, can be embodied in an effective momentum transfer. These effects... are trivial in the sense that they do not need a complete distorted calculation. In heavier nuclei both effective momentum-transfer corrections and focusing effects are important. In that case DWBA are needed...

The analytic approach here discussed allows an evaluation of L-T interference... Such extra terms can be neglected in a separation procedure of longitudinal and transverse components only if the kinematical region is restricted up to 140 deg."

CALCULATIONS IN THE LITERATURE

- Traini, Turck-Chieze, Zghiche:

Longitudinal Response vs. Energy Transfer (ω) in MeV for calcium and lead at q = 500 MeV/c and E = 553 MeV, theta = 60 deg (A) and at E = 331 MeV, theta = 150 deg (B).

A. Aste, C. von Arx, and D. Trautmann:

- Compares focusing effects between exact DWBA calculations and EMA approximations derived from first order expansion.

Conclusions: "Naive lowest order approximations in αZ are not suitable for the analysis of Coulomb corrections in scattering experiments, unless they are modified in a well-controlled manner based on exact calculations... It turns out that the effective momentum approximation is not reliable when the central potential value V_0 of the electrostatic field of the nucleus is taken... but a smaller average value $V_{\text{avg}} \sim (0.75...0.8)V_0$ leads to very good results, if the momentum transfer and the energy of the scattered electron large enough..."

CALCULATIONS IN THE LITERATURE

Focusing factor for exact calculation vs 1st order expansion as a function of the longitudinal and transverse scattering distance f_0 lead at 400 MeV.
A. Aste, C. von Arx, and D. Trautmann:

- Compares focusing effects between exact DWBA calculations and EMA approximations derived from first order expansion.

Conclusions cont: "... An effective potential value of 19 MeV is a very good choice for $q \geq 300$ MeV and $Q^2 \geq (400$ MeV)2... If the energy of the scattered electron becomes smaller than 300 MeV, the semiclassical description of the final state wave function becomes obsolete, but it is still possible to use an EMA-like approach for the description of the inclusive cross section by using a modified fitted potential value, given the condition that the initial and final energy of the electron and the momentum transfer are not too small."

Focusing factor for exact calculation vs 1st order expansion as a function of the longitudinal and transverse scattering distance for lead at 400 MeV.

Kim and Wright:

- Compares a focused EMA-f (with potential calculated at \(r=0 \), or integrated over the radius) with an ad-hoc DWBA.
- Conclusions: "In conclusion, we have shown that the effective momentum approximation (using the Coulomb potential at \(2R/3 \)) with an overall focusing factor of \((p_i(0)/p_i)^2 \) is a very good approximation of the Coulomb distortion effects for the transverse contributions to the quasi elastic cross section. However, for electron energies less than about 600 MeV it is not a good approximation of the longitudinal contributions."

Longitudinal Cross Section vs. Energy Transfer (\(\omega \)) in MeV for lead at 60 deg and 485 and 800 MeV beam energy.

K.S. Kim, L.E. Wright, PRC 72 (2005)
S. Wallace and J. Tjon.

- Compares a modified EMAr, which uses EMA for the hard-photon propagator and form factors, but more carefully treats the r-dependence of Coulomb effects from the electron wave functions.

- Conclusions: "We find that the spin phases in electron wave functions produce very small effects at energies of 500 MeV or higher... our calculations refute claims... [From Kim and Wright] that the EMA procedure is not accurate at 485 electron energy 60deg scattering angle for a 208Pb target."

- Other notes: "Because final state interactions, correlations, and pion production have been omitted, the calculated cross sections may differ significantly from experimental cross sections."

Longitudinal Response (S_L) vs. Energy Transfer (ω)

Solid/dashed is EMAr
Fine-dashed is PWIA (no coulomb distortion)

Further studies comparing DWBA, PWBA, and EMA.

Conclusions: "As a basic result of this work we conclude that the EMA with an effective potential $V = -19$ MeV is a valid approximation for the description of Coulomb distortions in the kinematic region where the momentum transfer squared is larger than $(300 \text{ MeV})^2$ (such that the length scale of the exchanged photon is smaller than the typical size of a nucleus), the energy of the scattered electron is larger than 150 MeV (such that the semiclassical description of the electron wave functions in the nuclear vicinity is valid) and the energy transfer ω is larger than ~ 140 MeV (such that the distortion of the final state nucleon wave functions is moderate). For a typical energy range where the initial electron energy is of the order of some hundreds of MeV, the DWBA cross sections are generally larger by 1–2% than the EMA cross sections. If the energy transfer ω is smaller than 140 MeV, the DWBA cross section can still be approximated by an EMA calculation with a phenomenological effective potential V and a minor amplitude correction. However, in such a case one has to rely on the model used to describe the nuclear current."

Cross section for 208Pb at 485 MeV and 60 deg.

Solid line: DWBA
Dashed line: PWBA
Dot-Dashed line: EMA with $V = -19$ MeV
Further studies comparing DWBA, PWBA, and EMA.

Conclusions: "As a basic result of this work we conclude that the EMA with an effective potential $V = -19$ MeV is a valid approximation for the description of Coulomb distortions in the kinematic region where the momentum transfer squared is larger than $(300 \text{ MeV})^2$ (such that the length scale of the exchanged photon is smaller than the typical size of a nucleus), the energy of the scattered electron is larger than 150 MeV (such that the semiclassical description of the electron wave functions is valid), the energy transfer ω is larger than ~ 140 MeV (such that the distortion of the final state nucleon wave functions is moderate).... For a typical energy range where the initial electron energy is of the order of some hundreds of MeV, the DWBA cross sections are generally larger by $1–2\%$ than the EMA cross sections. If the energy transfer ω is smaller than 140 MeV, the DWBA cross section can still be approximated by an EMA calculation with a phenomenological effective potential V and a minor amplitude correction. However, in such a case one has to rely on the model used to describe the nuclear current."

Further studies comparing DWBA, PWBA, and EMA.

Conclusions: "As a basic result of this work we conclude that the EMA with an effective potential $V = -19 \text{ MeV}$ is a valid approximation for the description of Coulomb distortions in the kinematic region where the momentum transfer squared is larger than $(300 \text{ MeV})^2$ (such that the length scale of the exchanged photon is smaller than the typical size of a nucleus), the energy of the scattered electron is larger than 150MeV (such that the semiclassical description of the electron wave functions in the nuclear vicinity is valid) and the energy transfer ω is larger than $\sim 140 \text{MeV}$ (such that the distortion of the final state nucleon wave functions is moderate). For a typical energy range where the initial electron energy is of the order of some hundreds of MeV, the DWBA cross sections are generally larger by 1–2% than the EMA cross sections. If the energy transfer ω is smaller than 140 MeV, the DWBA cross section can still be approximated by an EMA calculation with a phenomenological effective potential V and a minor amplitude correction. However, in such a case one has to rely on the model used to describe the nuclear current."

Our data goes as low as 116 MeV (although uncertainties are large below 150 MeV).
Further studies comparing DWBA, PWBA, and EMA.

Conclusions: "As a basic result of this work we conclude that the EMA with an effective potential $V = -19$ MeV is a valid approximation for the description of Coulomb distortions in the kinematic region where the momentum transfer squared is larger than $(300 \text{ MeV})^2$ (such that the length scale of the exchanged photon is smaller than the typical size of a nucleus), the energy of the scattered electron is larger than 150 MeV (such that the semiclassical description of the electron wave functions in the nuclear vicinity is valid) and the energy transfer ω is larger than ~ 140 MeV (such that the distortion of the final state nucleon wave functions is moderate)."

For a typical energy range where the initial electron energy is of the order of some hundreds of MeV, the DWBA cross sections are generally larger by 1–2% than the EMA cross sections. If the energy transfer ω is smaller than 140 MeV, the DWBA cross section can still be approximated by an EMA calculation with a phenomenological effective potential V and a minor amplitude correction. However, in such a case one has to rely on the model used to describe the nuclear current."
Further studies comparing DWBA, PWBA, and EMA.

Conclusions: "As a basic result of this work we conclude that the EMA with an effective potential $V = -19\text{ MeV}$ is a valid approximation for the description of Coulomb distortions in the kinematic region where the momentum transfer squared is larger than $\left(300\text{ MeV}\right)^2$ (such that the length scale of the exchanged photon is smaller than the typical size of a nucleus), the energy of the scattered electron is larger than 150 MeV (such that the semiclassical description of the electron wave functions in the nuclear vicinity is valid) and the energy transfer ω is larger than $\sim 140\text{ MeV}$ (such that the distortion of the final state nucleon wave functions is moderate).... For a typical energy range where the initial electron energy is of the order of some hundreds of MeV, the DWBA cross sections are generally larger by $1-2\%$ than the EMA cross sections. If the energy transfer ω is smaller than 140 MeV, the DWBA can be approximated by an EMA calculation with a phenomenological effective potential and a minor amplitude correction. However, in such a case one has to rely on the model used to describe the nuclear current."

We are aiming for cross-section precision on the order of 1% to 2% in that region.

First introduced by I. Sick (1970) and later extended by Friar and Rosen (1978), dynamic corrections due to the nucleus coulomb field were used to describe the shift of the diffractive minima in elastic cross-sections.

The LEDEX group introduced the correction as:

\[
\sigma_{disp} = \sigma_{stat} \left[1 + \delta \left(E_{inc} \right) \right]
\]

Where a zeroth order dispersive correction corresponds to a Coulomb correction:

\[
\sigma_{stat} = \sigma_{Born} \left[1 + \delta(0) \right]
\]

The LEDEX group found a much stronger effect than predicted by Friar and Rosen:

- For 600 MeV beam energy on 12C, a 15% correction is on the minimum of diffraction is expected from data extrapolation.
- The predicted value from Friar and Rosen is only 2% (7.5 times lower).
- If a 3% effect is expected/calculated on the longitudinal response, but too small by a factor of 7.5 times.... The total correction would be on the order of 22%. Implying a much larger correction on even carbon than predicted.
CONCLUSIONS

- Data from Hall-A is being analyzed to extract the Coulomb Sum Rule at momentum transfer between 500 and 1000 MeV/c.

- Corrections due to the electric field of the nucleus are critical in the analysis.
 - The EMA has been used exclusively for targets of ^{56}Fe and lighter, but the exact limits and their contribution to uncertainties is not well defined in our kinematic regime.
 - For ^{208}Pb, we will not be able to use EMA and will need calculations corresponding to our kinematic coverage.

This work is supported in part by the U.S. Department of Energy Grant Award DE-FG02-94ER4084.
PEOPLE

and Hall-A collaboration

Graduate students Spokespersons Run Coordinators
SUPERVISED GAUSSIAN PROCESS REGRESSION (KRIGING)

- Advantages:
 - Can provide "smoothing" of distribution.
 - Does not need an input function (like least squared fitting).
 - Well constrained uncertainties.

- Disadvantages:
 - Interpolation options are still needed:
 - The exact covariant function (gaussian, matern)
 - The "scale" and "width" parameter of the covariant function must be set:
 - A small width parameter will pick out more "bumps".
 - As sigma goes to zero, the interpolation will directly go through every point.
 - A larger width will smooth the distribution.
Basic kinematic definitions:

\[\epsilon(|q|, \omega, \theta) = \left[1 + \frac{2q^2}{q^2 - \omega^2 \tan^2 \frac{\theta}{2}} \right]^{-1} \]

\[Q^2 = q^2 - \omega^2 \]

Relativistic correction to nucleon form-factor:

\[\tilde{G}_E^2 = G_E^2 \frac{1 + Q^2/4M^2}{1 + Q^2/2M^2} \]

\[\frac{d\sigma}{d\Omega_{\text{Mott}}} = \frac{\alpha^2 \cos^2(\theta/2)}{4E^2 \sin^4(\theta/2)} \]

\[W^2 = M_N^2 + 2M_N \omega - Q^2 \]
VERIFICATION OF RADIATIVE CORRECTIONS

\[{^{56}}\text{Fe, } \theta = 15 \text{ E} = 2448 \text{ MeV} \]

\[\frac{d^2 \sigma}{d^2 E} \text{ (mb/GeV/\(\text{sr}\))} \]

\[\omega \text{ (MeV)} \]

\[\% \text{ difference} \]

\[\frac{(\sigma - \sigma W)}{\sigma} \]

\[\frac{(\sigma W/E) - \sigma W}{\sigma W/E} \]

\[\omega \text{ (MeV)} \]