Noise-aware variational eigensolvers: a dissipative route for lattice gauge theories

Enrique Rico Ortega
Wednesday 03 April 2024
Noise-aware variational eigensolvers: a dissipative route for lattice gauge theories

J. Cobos,¹,², D. F. Locher,³,⁴, † A. Bermudez,⁵, ‡ M. Müller,³,⁴, § and E. Rico¹, ², ⁶, ⁷, ¶

Quantum State Preparation

\[|ψ(0)\rangle \xrightarrow{U_1 U_3 U_5} |ψ(t)\rangle \]

We show how a variational low-depth circuit can prepare the lowest energy state of a gauge theory
Simulating lattice gauge theories within quantum technologies

Collaborators: M. Dalmonte, S. Montangero, U.-J. Wiese, P. Zoller…

https://doi.org/10.1140/epjd/e2020-100571-8

Simulating lattice gauge theories within quantum technologies

Mari Carmen Bañuls1,2, Rainer Blatt3,4, Jacopo Catani5,6,7, Alessio Celi3,8, Juan Ignacio Cirac1,2, Marcello Dalmonte9,10, Leonardo Fallani5,6,7, Karl Jansen11, Maciej Lewenstein8,12,13, Simone Montangero14,15,a, Christine A. Muschik3, Benni Reznik16, Enrique Rico17,18, Luca Tagliacozzo19, Karel Van Acoleyen20, Frank Verstraete20,21, Uwe-Jens Wiese22, Matthew Wingate23, Jakub Zakrzewski24,25, and Peter Zoller3
Quantum Simulations of Lattice Gauge Theories using Ultracold Atoms in Optical Lattices
E. Zohar, J.I. Cirac, B. Reznik

Towards Quantum Simulating QCD
U.-J. Wiese
A fruitful dialogue
(two-way communication)

Quantum Computing for High-Energy Physics
State of the Art and Challenges
Summary of the QC4HEP Working Group

Alberto Di Meglio,¹,* Karl Jansen,²,3, † Ivanov Tavernelli,⁴, † Constantia Alexandrou,⁵,3 Srinivasan Arunachalam,⁶ Christian W. Bauer,⁷ Kerstin Borras,⁸,‡ Stefano Carrazza,¹⁰,¹ Arianna Crippa,²,¹¹ Vincent Croft,¹² Roland de Putter,⁶ Andrea Delgado,¹³ Vedran Dunjko,¹² Daniel J. Egger,⁴ Elias Fernández-Combarro,¹⁴ Elina Fuchs,¹,¹⁵,¹⁶ Lena Funcke,¹⁷ Daniel González-Cuadra,¹⁸,¹⁹ Michele Grossi,¹, Jad C. Halimeh,¹⁰,¹¹ Zoë Holmes,²² Stefan Kühn,² Denis Lacroix,²³ Randy Lewis,²⁴ Donatella Lucchesi,²⁵,²⁶,¹ Miriam Lucio Martínez,²⁷,²⁸ Federico Meloni,⁸ Antonio Mezzacapo,⁶ Simone Montanaro,²⁵,²⁶ Lento Nagano,²⁹ Voica Radescu,³⁰ Enrique Rico Ortega,³¹,³²,³³,⁴ Alessandro Roggero,³⁵,³⁶ Julian Schuhmacher,⁴, Joao Seixas,³⁷,³⁸,³⁹ Pietro Silvi,²⁵,²⁶ Panagiota Spentzouris,⁴⁰ Francesco Tacchino,⁴ Kristian Temme,⁶ Koji Terashi,²⁹ Jordi Tura,¹²,⁴¹ Cenk Tüysüz,²,¹¹ Sofia Vallecorsa,¹ Uwe-Jens Wiese,⁴² Shinjia Yoo,⁴³ and Jinglei Zhang⁴⁴,⁴⁵

- Quantum Dynamics
- Hybrid Qu-CI
- Optimisation
- Classification
- Quantum Kernels
- VQE/varQITE
- Trotter Dynamics
- TN/QTN
- varQTE
- QNNs
- Quantum Kernels
- Jet/track reconstruction
- Rare signal extraction
- Regression
- For & beyond Standard Model
- Parton Shower
- Experiment Simulation
- Classification
- Quantum Kernels
- QNNs
- QAOA
- Quantum Annealing
- HHL Algorithm
- QBMs
- QCBMs
- QGANs
Simulating lattice gauge theories within quantum technologies

- Implementing the gauge invariant dynamics

\[\hat{\psi}_{\vec{r}}^+ \quad \hat{U}_{\vec{r}, \vec{r}+\hat{\mu}} \quad \hat{\psi}_{\vec{r}+\hat{\mu}} \]

\[\vec{r} \quad \vec{r} + \hat{\mu} \]

- Energy penalty
- Color singlet hopping
- Internal symmetry
- Encoding gauge invariant degrees of freedom
Quantum simulation of light-front parton correlators

(semi-inclusive) deep-inelastic lepton scattering
Quantum simulation of light-front parton correlators

(semi-inclusive) deep-inelastic lepton scattering

highly virtual photons resolve inner (partonic) structure
Quantum simulation of light-front parton correlators

modern microscopes

(semi-inclusive) deep-inelastic lepton scattering

highly virtual photons resolve inner (partonic) structure

factorization theorems separate non-calculable from calculable parts
Quantum simulation of light-front parton correlators

M. G. Echevarria1,*, I. L. Egusquiza2,†, E. Rico3,4,‡, and G. Schnell2,4,§

Project in progress with: M.G. Echevarria, I.L. Egusquiza, G. Schnell
Quantum simulation of light-front parton correlators

cross section:

\[\sigma(\xi, Q^2) = \sum_f \int_{\xi}^1 d\bar{\xi} \, \hat{\sigma}(\bar{\xi}, Q^2) \, f_f/P(\xi/\bar{\xi}) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{Q}\right) \]

factorization theorems separate non-calculable from calculable parts
Quantum simulation of light-front parton correlators

cross section:

$$\sigma(\xi, Q^2) = \sum_f \int_{\xi}^{1} \d\bar{\xi} \hat{\sigma}(\bar{\xi}, Q^2) f_{f/P}(\xi/\bar{\xi}) + \mathcal{O}\left(\frac{\Lambda_{QCD}}{Q}\right)$$

partonic cross section: calculable

factorization theorems separate non-calculable from calculable parts
Quantum simulation of light-front parton correlators

cross section:

\[\sigma(\xi, Q^2) = \sum_f \int_1^{\xi/2} d\tilde{\xi} \hat{\sigma}(\tilde{\xi}, Q^2) f_f/P(\xi/\tilde{\xi}) + \mathcal{O}\left(\frac{\Lambda_{QCD}}{Q}\right) \]

partonic cross section: calculable

non-perturbative parametrization of nucleon: PDFs, TMDs etc.

factorization theorems separate non-calculable from calculable parts
Quantum simulation of light-front parton correlators

cross section:

\[\sigma(\xi, Q^2) = \sum_f \int_1^1 d\bar{\xi} \hat{\sigma}(\xi, Q^2) f_f/P(\xi/\bar{\xi}) + \mathcal{O}\left(\frac{\Lambda_{QCD}}{Q}\right) \]

partonic cross section: calculable

non-perturbative parametrization of nucleon: PDFs, TMDs etc.

factorization theorems separate non-calculable from calculable parts
Quantum simulation of light-front parton correlators

cross section:

\[\sigma(\xi, Q^2) = \sum_f \int_\xi^1 d\bar{\xi} \hat{\sigma}(\bar{\xi}, Q^2) f_{f/P}(\xi/\bar{\xi}) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{Q}\right) \]

corrections

partonic cross section: calculable

non-perturbative parametrization of nucleon: PDFs, TMDs etc.

factorization theorems separate non-calculable from calculable parts

partonic cross section:

\[f_{f/P}(\xi) = \sum_S \int \frac{dy^-}{2\pi} e^{-i\vec{p}^+ y^-} \langle PS | [\bar{\psi} \mathcal{U}] (y^-) \gamma^+ \mathcal{U}^+ \psi | 0 \rangle | PS \rangle \]
Quantum simulation of light-front parton correlators

cross section:

$$\sigma(\xi, Q^2) = \sum_f \int_{\xi}^{1} d\tilde{\xi} \hat{\sigma}(\tilde{\xi}, Q^2) f_{f/P}(\xi/\tilde{\xi}) + \mathcal{O}\left(\frac{\Lambda_{QCD}}{Q}\right)$$

corrections

partonic cross section:

calculable

non-perturbative parametrization of nucleon:
PDFs, TMDs etc.

factorization theorems separate non-calculable from calculable parts

partonic cross section:

$$f_{f/P}(\xi) = \sum_{S} \int \frac{dy^-}{2\pi} e^{-i\xi p^+ y^-} \langle PS | \bar{\psi} \mathcal{U} (y^-) \gamma^+ \frac{1}{2} \mathcal{U}^\dagger \psi (0) | PS \rangle$$

Non-local (space-time) matrix elements require Wilson lines for gauge invariance

We study the quantum simulation of Wilson loops in space and real-time
Quantum simulation of light-front parton correlators

Non-local (space-time) matrix elements require Wilson lines for gauge invariance. We study the quantum simulation of Wilson loops in space and real-time.

\[
f_{flP}(\xi) = \sum_S \int \frac{dy^-}{2\pi} e^{-i\xi p^+ y^-} \langle PS \mid [\bar{\psi}\mathcal{U}] (y^-) \gamma^+ \mathcal{U}^\dagger \psi (0) \mid PS \rangle
\]

Requirements for the quantum simulation of parton correlators:
Quantum simulation of light-front parton correlators

Non-local (space-time) matrix elements require Wilson lines for gauge invariance
We study the quantum simulation of Wilson loops in space and real-time

\[f_{f\bar{f}P}(\xi) = \sum_S \int \frac{dy^-}{2\pi} e^{-i\xi p^+ y^-} \langle PS | [\bar{\psi} \mathcal{U}] (y^-) \frac{\gamma^+}{2} [\mathcal{U}^\dagger \psi] (0) | PS \rangle \]

Requirements for the quantum simulation of parton correlators:

- encode in quantum degrees of freedom both matter and gauge fields
- preparation of a reference state, e.g., vacuum, proton, glue-ball
- simulate gauge-invariant quantities, e.g., minimal gauge-matter coupling
- real-time evolution, since the Wilson line is non-local in time
- carry out measurements after the evolution, i.e., quantum interferometer
Quantum simulation of light-front parton correlators

Digital simulation: Universal simulator

\[|\psi(0)\rangle \rightarrow U_4 \rightarrow \rightarrow U_3 \rightarrow U_2 \rightarrow U_1 \rightarrow |\psi(t)\rangle \]

Decompose dynamics into sequence of quantum gates

Stroboscopic simulation in an analog simulator
Quantum simulation of light-front parton correlators

Digital simulation: Universal simulator

\[|\psi(0)\rangle \rightarrow U_1 U_3 U_5 |\psi(t)\rangle \]

Decompose dynamics into sequence of quantum gates

Stroboscopic simulation in an analog simulator

Note: in the Hamiltonian formulation the temporal gauge \(A_0 = 0 \) is chosen
Quantum algorithms for quantum state preparation

- Quantum algorithms are recipes that manipulate quantum states

\[|\psi_0\rangle \xrightarrow{\text{Q-Algorithm}} |\psi_f\rangle \xrightarrow{\text{For our purposes}} |E_0\rangle \]

- We classify algorithms depending on how they manipulate quantum states.
Quantum algorithms for quantum state preparation

- Quantum algorithms are recipes that manipulate quantum states.

\[|\psi_0\rangle \xrightarrow{\text{Q-Algorithm}} |\psi_f\rangle \xrightarrow{\text{For our purposes}} |E_0\rangle \]

- We classify algorithms depending on how they manipulate quantum states.

Variational quantum algorithms

\[|\psi(\alpha)\rangle = U_k(\alpha_N)U_{k-1}(\alpha_{N-1}) \ldots U_1(\alpha_1) |\psi_0\rangle \]

\[|\psi_f\rangle = |\psi(\alpha^*)\rangle \quad \alpha^* = \arg\min_{\alpha} \langle \psi(\alpha) | \hat{H} | \psi(\alpha) \rangle \quad \langle \psi | \hat{H} | \psi \rangle \geq E_0 \ \forall |\psi\rangle \]

Short depth

Hard Optimization
Quantum algorithms for quantum state preparation

- Quantum algorithms are recipes that manipulate quantum states

\[|\psi_0\rangle \rightarrow \text{Q-Algorithm} \rightarrow |\psi_f\rangle \rightarrow \text{Useful Use} \]

For our purposes \[|\psi_f\rangle \simeq |E_0\rangle \]

- We classify algorithms depending on how they manipulate quantum states.

Adiabatic algorithms

\[\text{AA} \quad \Rightarrow \quad \mathcal{T}\left\{ \int_0^T \exp \left[-\frac{it}{\hbar} H(t) \right] \right\} \]

\[H(t) = [1 - \lambda(t)]H_0 + \lambda(t)H_f \]

\[\lambda(0) = 0 \quad \lambda(T) = 1 \]

\[T \sim \mathcal{O}\left(\frac{1}{\Delta}\right) \quad \Delta \rightarrow \text{Min. Gap} \]

Less sensitive to noise

Hamiltonian engineering
Quantum algorithms for quantum state preparation

- Quantum algorithms are recipes that manipulate quantum states

\[|\psi_0\rangle \xrightarrow{\text{Q-Algorithm}} |\psi_f\rangle \xrightarrow{\text{For our purposes}} |\psi_f\rangle \approx |E_0\rangle \]

- We classify algorithms depending on how they manipulate quantum states.

Provable algorithms

\[\text{QPE} = \begin{array}{c}
\text{H} \\
\vdots \\
\text{H}
\end{array} \quad \begin{array}{c}
U^{2^0} \\
\vdots \\
U^{2^{n-1}}
\end{array} \quad \begin{array}{c}
\text{QFT}^{-1}
\end{array} \]

- Guarantee of success
- Long depths
In the general case, it is known to be a QMA problem (analogue of NP problem)

With unitary circuits, it is known that the depth scales with the system size (topological order)

Bravyi, Hastings, Verstraete (2006)
Quantum State Preparation

\[|\psi(0)\rangle = U_1 U_3 U_5 |\psi(t)\rangle \]

In the general case, it is known to be a QMA problem (analogue of NP problem)

With unitary circuits, it is known that the depth scales with the system size (topological order)

Bravyi, Hastings, Verstraete (2006)

We show how a variational low-depth circuit can prepare the lowest energy state of a gauge theory

\[\hat{H}_{\mathbb{Z}_2} = - \sum_{\text{link}} \hat{\sigma}_i^x - \lambda \sum_{\text{plaq}} (\hat{\sigma}_i^z \hat{\sigma}_j^z \hat{\sigma}_k^z \hat{\sigma}_l^z) \]

\[\lambda_c = 3.04438 \]
Noise-aware variational eigensolvers: a dissipative route for lattice gauge theories

J. Cobos, 1, 2, * D. F. Locher, 3, 4, † A. Bermudez, 5, ‡ M. Müller, 3, 4, § and E. Rico 1, 2, 6, 7, ¶

We propose a novel variational ansatz for the ground state preparation of the \mathbb{Z}_2 LGT in quantum computers.

The \mathbb{Z}_2 lattice gauge theory

- **Hamiltonian**
 \[
 \hat{H} = - \sum_{n,i} \hat{\sigma}^{x}_{(n,i)} - \lambda \sum_{n} \hat{P}_{n}
 \]
 - Electric term
 - Magnetic term

- **Gauge invariance**
 \[
 [\hat{G}_k, \hat{H}] = 0 \quad \forall \ k = 0, 1 \ldots N_g
 \]

- **Gauss’ Law**
 \[
 (\nabla \cdot \mathbf{E})(k) \equiv 0 \quad \Rightarrow \quad \hat{G}_k \ket{\psi} = \ket{\psi}
 \]
 \[
 \ket{\psi} \rightarrow \text{Physical states}
 \]

- **Phase diagram**
 \[
 \lambda \quad \text{Topological}
 \]
 \[
 \lambda_{c} = 3.04438
 \]
 - Confined
 - Deconfined

- **Dual magnetization**
 \[
 \hat{M}_n = \prod_{(n,i) \in \partial C_n} \hat{\sigma}^{x}_{(n,i)}
 \]
 \[
 d = 4
 \]
Variational gauge invariant state

$$|\psi\rangle = \frac{e^{\beta \sum_{\text{plaq}} (\hat{\sigma}_x^z \hat{\sigma}_x^z \hat{\sigma}_x^z \hat{\sigma}_x^z)_{\text{plaq}}}}{Z} \otimes_{\text{link}} |+\rangle_l$$

$$\hat{G}_{\text{vertex}} |\psi\rangle = (\hat{\sigma}_x^x \hat{\sigma}_x^x \hat{\sigma}_x^x \hat{\sigma}_x^x)_{\text{vertex}} |\psi\rangle = |\psi\rangle$$

$$\begin{align*}
|\psi\rangle &= \otimes_{\text{link}} |+\rangle_l \\
|\psi\rangle &= \otimes_{\text{plaq}} \frac{1 + (\hat{\sigma}_x^z \hat{\sigma}_x^z \hat{\sigma}_x^z \hat{\sigma}_x^z)_{\text{plaq}}}{2} \otimes_{\text{link}} |+\rangle_l \\
\end{align*}$$

Cardy, Hamber (1980)
Variational gauge invariant state

\[|\psi\rangle = \frac{e^\beta \sum_{\text{plaq}} (\hat{\sigma}^z \hat{\sigma}^z \hat{\sigma}^z \hat{\sigma}^z)}{Z} \bigotimes_{\text{link}} | + \rangle_l \]

\[\hat{G}_{\text{vertex}} |\psi\rangle = (\hat{\sigma}_x \hat{\sigma}_x \hat{\sigma}_x \hat{\sigma}_x)_{\text{vertex}} |\psi\rangle = |\psi\rangle \]

\[
\begin{cases}
|\psi\rangle = \bigotimes_{\text{link}} | + \rangle_l & \lambda = 0 \\
\left| \frac{\hat{\sigma}^z \hat{\sigma}^z \hat{\sigma}^z \hat{\sigma}^z}{2} \bigotimes_{\text{link}} | + \rangle_l \right| \lambda \gg 1
\end{cases}
\]

Cardy, Hamber (1980)

\[\Theta(\beta) = \tan^{-1}(\tanh \beta) \]

Tantivasadakarn, Thorngren, Vishwanath, Verresen (2021)
Variational gauge invariant state

\[|\psi\rangle = \frac{e^\beta \sum_{\text{plaq}} (\hat{\sigma}^a \hat{\sigma}^b \hat{\sigma}^c \hat{\sigma}^d)_{\text{plaq}}}{Z} \otimes_{\text{link}} | + \rangle_l \]

\[\hat{G}_{\text{vertex}} |\psi\rangle = (\hat{\sigma}_x \hat{\sigma}_x \hat{\sigma}_x \hat{\sigma}_x)_{\text{vertex}} |\psi\rangle = |\psi\rangle \]

\[
\begin{cases}
|\psi\rangle = \otimes_{\text{link}} | + \rangle_l & \lambda = 0 \\
|\psi\rangle = \otimes_{\text{plaq}} \frac{1 + (\hat{\sigma}^a \hat{\sigma}^b \hat{\sigma}^c \hat{\sigma}^d)_{\text{plaq}}}{2} \otimes_{\text{link}} | + \rangle_l & \lambda \gg 1
\end{cases}
\]

\[|\psi(0)\rangle_{P_n} \quad |\psi(0)\rangle_{P_n} \xrightarrow{\text{CZ}} \frac{1}{\sqrt{2}} \left\{ \left[\frac{e^\beta \hat{P}_n}{(\cosh 2\beta)^{Np/2}} \right] |+\rangle_a + \left[\frac{e^{-\beta \hat{P}_n}}{(\cosh 2\beta)^{Np/2}} \right] |-\rangle_a \right\} |\psi(0)\rangle_{P_n} \]

\[\hat{\sigma}_m \in P_n \quad e^{-\hat{P}_n} = e^{\hat{P}_n} \hat{\sigma}_m \in P_n \]

\[\hat{\sigma}_m |\psi(0)\rangle = |\psi(0)\rangle \quad \forall \ m \]
Variational gauge invariant state

We propose a novel variational ansatz for the ground state preparation of the \mathbb{Z}_2 LGT in quantum computers.

Variational ansatz

$$|\psi(\alpha, \beta)\rangle = \prod_{k=2}^{\ell} e^{i\alpha_k H_E} e^{i\beta_k H_B} e^{i\alpha_1 H_E} \frac{e^{\beta_1 H_B}}{(\cosh 2\beta_1)^{N_f/2}} |\Omega_E\rangle$$

The ansatz captures the ground states of H_E, H_B

$$H = -H_E - \lambda H_B$$

$$H_E = \sum_{n,i} \sigma^x_{(n,i)} \quad H_B = \sum_n P_n \quad |\Omega_E\rangle = \bigotimes_{n,i} |+\rangle_{(n,i)}$$

$$|\psi(0, \beta_1 = \infty)\rangle = \prod_n \left[\frac{1 + P_n}{\sqrt{2}} \right] |\Omega_E\rangle$$

$$\lim_{\tau \to \infty} e^{-\tau \hat{H}} |\psi\rangle \longrightarrow |\text{g.s.}\rangle$$

$$e^{-\tau \hat{H}} |\psi\rangle = e^{-\tau E_0} |\text{g.s.}\rangle + e^{-\tau E_1} |E_1\rangle + e^{-\tau E_2} |E_2\rangle + \ldots$$

$\lambda_c = 3.04438$
We propose a novel variational ansatz for the ground state preparation of the \mathbb{Z}_2 LGT in quantum computers.

Unitary part implementation

- $e^{i\alpha \sigma^x}$ Single qubit rotations
- Circuit implementation of $e^{i\gamma_k \sigma_z^k}$

Hamiltonian variational ansatz

$$
|\phi_{u,c}(\alpha, \beta)\rangle = \left[\prod_{k=2}^{\ell} e^{i\alpha_k H_E} e^{i\beta_k H_B} \right] |\Omega_E\rangle
$$

$$
|\phi_{u,m}(\alpha, \beta)\rangle = \left[\prod_{k=2}^{\ell} e^{i\beta_k H_B} e^{i\alpha_k H_E} \right] \left[\prod_{n=1}^{1} \frac{1 + P_n}{\sqrt{2}} \right] |\Omega_E\rangle
$$

λ ~ Confined ~ Deconfined

$\lambda_c = 3.04438$
Modified variational gauge invariant state

\[|\psi(\alpha, \beta, \gamma, \theta)\rangle = \left[\prod_{k=2}^{L} e^{i\theta_k \hat{H}_E} e^{i\gamma_k \hat{H}_B} \right] e^{i\alpha \hat{H}_E} \frac{e^{\beta \hat{H}_B}}{(\cosh 2\beta)^{N_p/2}} \left(\bigotimes_{n=0}^{N} |+\rangle \right) \]
Modified variational gauge invariant state

\[\left| \psi(\alpha, \beta, \gamma, \theta) \right\rangle = \left[\prod_{k=2}^{L} e^{i \theta_k \hat{H}_E} e^{i \gamma_k \hat{H}_B} \right] e^{i \alpha \hat{H}_E} \frac{e^{\beta \hat{H}_B}}{(\cosh 2\beta)^{N_p/2}} \left(\bigotimes_{n=0}^{N} | + \rangle \right) \]

Energy deviation

- Energy difference with the exact ground state

![Energy deviation graphs]

\(\ell = 2 \)

\(d = 3 \)
\(d = 4 \)
\(d = 5 \)
Modified variational gauge invariant state

$$\left| \psi(\alpha, \beta, \gamma, \theta) \right\rangle = \left[\prod_{k=2}^{L} e^{i\theta_k \hat{H}_E} e^{i\gamma_k \hat{H}_B} \right] e^{i\alpha \hat{H}_E} \frac{e^{\beta \hat{H}_B}}{(\cosh 2\beta)^{N_p/2}} \left(\bigotimes_{n=0}^{N} |+\rangle \right)$$
Modified variational gauge invariant state

\[|\psi(\alpha, \beta, \gamma, \theta)\rangle = \left[\prod_{k=2}^{L} e^{i\theta_k \hat{H}_E} e^{i\gamma_k \hat{H}_B} \right] e^{i\alpha \hat{H}_E} \frac{e^{\beta \hat{H}_B}}{(\cosh 2\beta)^{N_p/2}} \left(\bigotimes_{n=0}^{N} |+\rangle \right) \]

Dual magnetization

| | Dissipative | Monte Carlo | Exact diag. | Unitary $|\phi_{u,e}\rangle$ | Unitary $|\phi_{u,m}\rangle$ |
|---------|-------------|-------------|-------------|----------------------------|----------------------------|
| λ_c | 3.24 | 3.04 | 3.06 | 2.56 | 2.09 |
| β | 0.35 | 0.33 | 0.36 | 0.04 | -1.27 |
| ν | 0.59 | 0.63 | 0.64 | -0.20 | -0.40 |
Modified variational gauge invariant state

\[|\psi(\alpha, \beta, \gamma, \theta)\rangle = \left[\prod_{k=2}^{L} e^{i\theta_k \hat{H}_E'} e^{i\gamma_k \hat{H}_B'} \right] e^{i\alpha \hat{H}_E'} \frac{e^{\beta \hat{H}_B'}}{(\cosh 2\beta)^{N_p/2}} \left(\bigotimes_{n=0}^{N} \right) \]

Topological entanglement entropy

\[S_{\text{topo}} = S_A + S_B + S_C - S_{AB} - S_{AC} - S_{BC} + S_{ABC} \]
Modified variational gauge invariant state

\[|\psi(\alpha, \beta, \gamma, \theta)\rangle = \left[\prod_{k=2}^{L} e^{i\theta_k \hat{H}_E'} e^{i\gamma_k \hat{H}_B'} \right] e^{i\alpha \hat{H}_E'} \frac{e^{\beta \hat{H}_B'}}{(\cosh 2\beta)^{N_p/2}} \left(\bigotimes_{n=0}^{N} |+\rangle \right) \]

State preparation with noisy gates

\[\lambda = 3.00 \]
Quantum State Preparation

\[|\psi(0)\rangle \xrightarrow{U_1 U_3 U_5} |\psi(t)\rangle \]

We show how a variational low-depth circuit can prepare the lowest energy state of a gauge theory
A fruitful dialogue (two-way communication)

- The first successful implementations of gauge-field theory dynamics on quantum simulators have emerged for small systems.
- Efficient Hamiltonian formulations for (non-Abelian) gauge theories along with best approaches to state preparation and measurement will continue to develop.
- Abelian and non-Abelian lattice gauge theories in higher than 1+1 dimensions present significant challenge but progress is being made.
- Theory-experiment collaborations will be highly beneficial.
- New results in the frontier between HEP and Quant-Ph