

JLab Theory Seminar

$\mu\text{-}e$ scattering at 10ppm

Yannick Ulrich

AEC, University of Bern

1 April 2024

- what is up with g-2?
- how is the theory value determined?
- what is MUonE?
- reaching 10^{-5} relative accuracy with $\rm McMule$

the muon's g-2

• magnetic moment of a charged lepton:
$$\vec{\mu} = g \frac{e}{2m} \vec{S}$$

• Dirac:
$$g_{\mu}^{\text{Dirac}} = 2$$
 $(-ie)\bar{u}\gamma^{\mu}u =$

• SM quantum corrections: $g_{\mu}^{\rm SM} = 2 \times (1 + a_{\mu}) = 2 \times (1 + F_2(0))$

$$(-ie)\bar{u}\Big[F_1(Q^2) \ \gamma^{\mu} + F_2(Q^2) \frac{i\sigma^{\mu\nu}Q_{\nu}}{2m}\Big]u =$$

• BSM quantum corrections: $g_{\mu}^{
m BSM} \sim g_{\mu}^{
m exp} - g_{\mu}^{
m SM}$

(insert favourite BSM)

most precise measurement of g-2

most precise measurement of g-2

	value	diagrams	
QED 1-loop	$\alpha/2\pi = 116140973$		+ 3 others
QED 2-loop	-177231		+ 1 conspiracy theory
QED 3-loop more QED	1480 -5	d d	+ 70 others
EW	153	Ζ/Ĥ/	
HVP	6845(40)		+ others
HLbL	92(17)		
total FNAL+BNL	$\frac{116591810(43)}{116592062(40)}$	[g-2 white paper 20]	

largest source of uncertainty & non-perturbative

this problem is bigger than g - 2! [CMD-3 23] [BMW 20]

largest source of uncertainty & non-perturbative

this problem is bigger than g - 2! [CMD-3 23] [BMW 20]

using optical theorem s > 0

- measure $ee \rightarrow hadrons$
- remove radiative corrections
- extrapolate to $s \to \infty$ using pQCD
- integrate over s

 $\int \mathrm{d}s \Big(K(s) \Big)$

• 72% (78%) of value (uncertainty) from the $ee \to \pi\pi$ channel $s \lesssim 1\,{\rm GeV}$

measure low Q^2 regions

- instead measure in *t*-channel, i.e. space-like
- no resonances \rightarrow much cleaner signal
- HVP is loop-induced \rightarrow much smaller signal $(10^{-3} \times LO)$
- competitive extraction @ 10^{-2}
- $\Rightarrow~$ goal for MUonE: measure $e\mu o e\mu$ @ 10^{-5}

 $\int \mathrm{d}t \Big(K'(t) \Big)$ [MUonE 19]

- scattering μ of low-Z material (₄Be)
- pure t-channel $-s \simeq Q^2 \simeq 0$
- \Rightarrow high $s \leftrightarrow$ measure more of the curve
 - beam energy needs to be quite high $E_{\mu} \simeq 160 \, {
 m GeV}$
- \Rightarrow M2 muon beam at CERN North Area
 - main measurement: θ_e , θ_μ
 - + E_{beam} for calibration
 - $+~~E_{\mu}$ for particle ID

cancel systematic effects $\left(d\sigma/d\theta\right)_{sig} / \left(d\sigma/d\theta\right)_{norm}$

some history

LU AGE CHASTER CATER OF UNDAMENTAL PHYSIS MCMULE

	problem	solution	what?	doable up to?
1	lots of masses	massification	expand in m_e^2/Q^2	LP, three-loop
2	numerical issues in real corrections	NTS stabilisation jettification	expand in $E_\gamma/\sqrt{Q^2}$ expand in $\cos heta ightarrow 1$	NLP, all-orders LP, one-loop
3	phase space	FKSℓ	YFS-inspired subtraction scheme	all-orders

- NNLO double-boxes: (1)
- NNLO real-virtual: ②
- N³LO real-virtual-virtual: ①, ②, jettification

masses are physical in QED \Rightarrow keep masses

- drop polynomially suppressed terms at two-loop \rightarrow error $\sim \left(\frac{\alpha}{\pi}\right)^2 \log \frac{m^2}{O^2} \times \frac{m^2}{O^2}$
- based on factorisation, SCET, and method of regions
 [Penin 06; Mitov, Moch 06; Becher, Melnikov 07; Engel, Gnendiger, Signer, YU 18]
- process e.g. $e\mu
 ightarrow e\mu$ at two-loop:

 $\mathcal{A}(m) = \mathcal{S} \times \sqrt{Z} \times \sqrt{Z} \times \mathcal{A}(0) + \mathcal{O}(m) \supset \{1/\epsilon^2, L^2\}$

- soft: process-dependent $S=1+{\rm fermion\ loops}$ $\rightarrow\,$ compute separately anyway to combine with hadron loops
- collinear: universal Z, converts $1/\epsilon \rightarrow \log(m^2/Q^2)$
- hard: massless calculation

real-virtual corrections trivial in principle, extremely delicate numerically

example $ee \rightarrow ee\gamma$ [Engel, Signer, YU 21; Kollatzsch, YU 22; Engel 23]

- soft limit $E_{\gamma} = \xi \sqrt{s}/2$
- arbitrary prec. calculation vs dp, qp, eikonal
- stability problem

real-virtual corrections trivial in principle, extremely delicate numerically

example $ee \rightarrow ee\gamma$ [Engel, Signer, YU 21; Kollatzsch, YU 22; Engel 23]

- soft limit $E_{\gamma} = \xi \sqrt{s}/2$
- arbitrary prec. calculation vs dp, qp, eikonal, NTS
- stability problem solved & speed-up

test next-to-soft stabilisation vs OL4 (OpenLoops quad) for $\mu e ightarrow \mu e$ real-virtual

- same statistics, same result
- 70 days vs 4 days
- integrated results for different cuts
- ⇒ this is not an approximation but a numerical tool

NTS	OL4
-0.29268(4)	-0.29267(4)
-0.44789(6)	-0.44778(6)
-0.64662(9)	-0.64649(9)

• universal soft limit $\mathcal{M}_{n+1}^{(\ell)} = \mathcal{E}\mathcal{M}_n^{(\ell)} + \mathcal{O}(E_{\gamma}^{-1})$

• universal pole structure
$$e^{\hat{\mathcal{E}}} \sum_{\ell=0}^{\infty} \mathcal{M}_n^{(\ell)} = \sum_{\ell=0}^{\infty} \mathcal{M}_n^{(\ell)f} = \text{finite}$$

use this to construct an all-order subtraction scheme FKS^{ℓ} [Engel, Signer, YU 19]

- nothing complicated needed higher than $\mathcal{O}(\epsilon^0)$
- only one universal CT: $\hat{\mathcal{E}}$

implementation

implemented in MCMULE v0.4.2 https://mule-tools.gitlab.io

• $\mu^- e^- \rightarrow \mu^- e^-$

- S1: $E_e > 1 \text{ GeV}, \ \theta_{\mu} > 0.3 \text{ mrad}$
- run for 2.5 CPU yr (290 kWh energy / 3.5 kgCO2e)

[Broggio, Engel, Ferroglia, Mandal, Mastrolia, Rocco, Ronca, Signer, Torres Bobadilla, Zoller, YU 22] all results and data: https://mule-tools.gitlab.io/user-library/mu-e-scattering/muone-full-legacy/

this clearly isn't working

Sa/

 u^{\flat}

- at this rate ($\sim 10\%$ NLO, $\sim 0.1\%$ NNLO), we would need N^4LO to reach 10^{-5}
- most of this is due to hard radition
- S2: same as S1 + needs to be in the band

new observable

- $ee \to \gamma^*$ can be taken to N^3 LO
 - VVV: known

[Fael, Lange, Schönwald, Steinhauser 22]

- RRR: "trivial"
- RRV: OpenLoops + NTS stabilisation
- RVV: massless known (three-jet @ NNLO), massive (DiffExp?)
- \Rightarrow LBK + jettification at two-loop

jettification

• expand for small emission angles

\checkmark first NNLO with multiple external masses

[Broggio, Engel, Ferroglia, Mandal, Mastrolia, Rocco, Ronca, Signer, Torres Bobadilla, Zoller, YU 22]

- \checkmark event generation (not in MCMULE)
- ✓ iterative HVP extraction procedure [Fael 18]
- \checkmark precision now: $\mathcal{O}(10^{\{-3,-4\}})$, goal: $\mathcal{O}(10^{-5})$
- lots of optimisation still possible (observable, μ^+ vs. μ^- beam, polarisation etc)
- resummation (analytic & parton shower)
- partial N³LO $(Q_e^8 Q_\mu^2)$

MCMULE mule-tools.gitlab.io

f.I.t.r.: F.Hagelstein (Mainz), A.Coutinho (IFIC), N.Schalch (Bern), L.Naterop (Zurich & PSI), S.Kollatzsch (Zurich & PSI), A.Signer (Zurich & PSI), M.Rocco (PSI), T.Engel (Freiburg), V.Sharkovska (Zurich & PSI), Y.Ulrich (Bern), A.Gurgone (Pavia) not pictured: P.Banerjee (IIT Guwahati), D.Moreno (PSI), D.Radic (PSI)

playing with the beam

the beam can do both μ^+ and μ^-

