Entanglement in pair creation

From string breaking to strong electric fields

Adrien Florio

"Real-time non-perturbative dynamics of jet production in Schwinger model: quantum entanglement and vacuum modification" with D. Frenklakh, K. Ikeda, D. Kharzeev, V. Korepin, S. Shi, K. Yu, arXiv:2301.11991

"Entropy Suppression through Quantum Interference in Electric Pulses" with G. Dunne, D. Kharzeev, arXiv:2211.13347 "Real-time non-perturbative dynamics of jet production in Schwinger model: quantum entanglement and vacuum modification" with D. Frenklakh, K. Ikeda, D. Kharzeev, V. Korepin, S. Shi, K. Yu, arXiv:2301.11991

"Entropy Suppression through Quantum Interference in Electric Pulses" with G. Dunne, D. Kharzeev, arXiv:2211.13347

Motivation

Electromagnetism in 1 dimension

Electromagnetism in $1\ {\rm dimension}$

Full fledged quantum field theory

Simulable in the near future (?)

Solved in some limit ($m \rightarrow 0$)

Electromagnetism in $1\ {\rm dimension}$

Full fledged quantum field theory

Simulable in the near future (?)

Solved in some limit ($m \rightarrow 0$)

 $\nabla E = \rho$

Confines $V(x) \propto x$

Highly non-trivial vacuum

Electromagnetism in $1\ {\rm dimension}$

Full fledged quantum field theory

Simulable in the near future (?)

Solved in some limit ($m \rightarrow 0$)

 $\nabla E = \rho$

Confines $V(x) \propto x$

Highly non-trivial vacuum

Use-case/testbed \leftarrow Learn new physics (dynamics)

Word of caution

Not QCD, only toy model (1*D*, no dynamical gluons)

Only qualitative predictions

Look at dynamical string breaking

En.~ $m + m + \alpha l_1$

Look at dynamical string breaking

• \rightarrow • En.~ $m + m + \alpha l_1$ • \longrightarrow • En.~ $m + m + \alpha l_2$

Look at dynamical string breaking

• \rightarrow • En.~ $m + m + \alpha l_1$ • \rightarrow • En.~ $m + m + \alpha l_2$ En.~ $m + m + \alpha l_2$

Look at dynamical string breaking

• > •

 $\bullet \longrightarrow \bullet$

En.~ $m + m + \alpha l_2$

En.~ $m + m + \alpha l_3$ En.~m + m + m + mwhen $\alpha l_3 > 2m$

Look at dynamical string breaking

• > •

 $\bullet \longrightarrow \bullet$

En.~ $m + m + \alpha l_1$

En.~ $m + m + \alpha l_2$

En.~ $m + m + \alpha l_3$ En.~ m + m + m + mwhen $\alpha l_3 > 2m$

Screen field by creating particles!

Look at dynamical string breaking

• + •

 $\bullet \longrightarrow \bullet$

• >• <-- • >•

Screen field by creating particles!

Motivation: QCD jets

En.~ $m + m + \alpha l_1$

En.~ $m + m + \alpha l_2$

$$H(t) = \int \mathrm{d}x \left[\frac{1}{2} \mathbf{E}^2 + \hat{\psi} \left(-i\gamma^1 \partial_1 + g\mathbf{A}^1 \gamma_1 + \mathbf{m} \right) \hat{\psi} + \mathbf{j}_{\text{ext}}^1(t) \mathbf{A}_1 \right]$$

$H(t) = \int dx \left[\frac{1}{2} \mathbf{E}^2 + \hat{\psi} \left(-i\gamma^1 \partial_1 + g\mathbf{A}^1 \gamma_1 + \mathbf{m} \right) \hat{\psi} + j_{\text{ext}}^1(t) \mathbf{A}_1 \right]$

Idea: • Find $|vac\rangle_{t<0}$ • Compute $|\psi(t)\rangle = e^{-i\int_0^t dt' H(t')} |vac\rangle_{t<0}$

Idea: • Find $|vac\rangle_{t<0}$ • Compute $|\psi(t)\rangle = e^{-i\int_0^t dt' H(t')} |vac\rangle_{t<0}$

see also [74, Casher, Kogut, Susskind], [12,13, Kharzeev, Loshaj], [14, Berges, Hebenstreit]

In practice

- Staggered fermions χ_n
- Integrate out *E*: $\partial_1 E = \rho + \rho_{ext}$
- (Map to non-local spin chain)

$$\begin{split} H(t) &= H_{\pm} + H_{ZZ} + H_{Z}(t) \\ H_{\pm} &= \frac{1}{4a} \sum_{n=1}^{N-1} (X_{n} X_{n+1} + Y_{n} Y_{n+1}) \\ H_{ZZ} &= \frac{ag^{2}}{4} \sum_{n=1}^{N-1} \sum_{m=1}^{n} \sum_{k=1}^{m-1} Z_{m} Z_{k}, \ H_{Z} &= \sum_{n=1}^{N} f(n) Z_{n} \end{split}$$

- Use exact diagonalization
- Compute observables $\bar{O}(t) = \langle \psi(t) | O | \psi(t) \rangle$

Results, m = 0.25, g = 0.5, a = 1

Results, m = 0.25, g = 0.5, a = 1

 $\nu : \langle \bar{\psi}\psi \rangle$, S_{EE} : entanglement entropy A/B

Is entanglement manifest in correlations \leftrightarrow measurable?

Correlation

1) Look at $\langle \Delta \nu_{N/2+l+1}(t) \Delta \nu_{N/2-l}(t) \rangle$, $\Delta \nu_n = \bar{\psi} \psi|_n(t) - \bar{\nu}$

Correlation

1) Look at $\langle \Delta \nu_{N/2+l+1}(t) \Delta \nu_{N/2-l}(t) \rangle$, $\Delta \nu_n = \bar{\psi} \psi|_n(t) - \bar{\nu}$

2) Compare to uncorrelated reference case

Correlation

2) Compare to uncorrelated reference case

$$|\psi_{ref}
angle = |\psi_L
angle + e^{i\phi}_{\uparrow}|\psi_R
angle$$

Random uniform phase

$$\langle\langle\psi_{\rm ref}|\mathbf{0}|\psi_{\rm ref}\rangle
angle\equiv\int\langle\psi_{\rm ref}|\mathbf{0}|\psi_{\rm ref}
angle\frac{\mathrm{d}\varphi}{2\pi}=rac{\langle\psi_{\rm L}|\mathbf{0}|\psi_{\rm L}
angle}{2}+rac{\langle\psi_{\rm R}|\mathbf{0}|\psi_{\rm R}
angle}{2}$$

Next steps

Finite temperature

Thermalization/ETH

Tensor networks

- Schwinger model can still teach us some physics
- Direct observation of quantum properties of string breaking
- Suggests enhanced correlations at low/mid rapidities in jet production

"Real-time non-perturbative dynamics of jet production in Schwinger model: quantum entanglement and vacuum modification" with D. Frenklakh, K. Ikeda, D. Kharzeev, V. Korepin, S. Shi, K. Yu, arXiv:2301.11991

"Entropy Suppression through Quantum Interference in Electric Pulses" with G. Dunne, D. Kharzeev, arXiv:2211.13347

Motivation

Question: Effect of quantum interferences on entanglement?

Set-up

Pair creation in strong electric fields (Schwinger effect)

- Oreation of entangled pair of particles
 Typical 2-levels system

Mechanism: Similar to string breaking.

 $E \cdot L \approx 2m \rightarrow$ energetically favorable to create particles

n_k: Probability to create particle with momentum *k*

Left/right entanglement [AF, Kharzeev, 2021] :

$$S = -\int \frac{dk}{2\pi} \left[(1 - n_k) \log (1 - n_k) + n_k \log (n_k) \right]$$
$$\mathcal{N} = -\int \frac{dk}{2\pi} n_k$$
Gibbs entropy!

Interferences

Interferences

Interferences

Entanglement suppression

Entanglement suppression

Summary # 2

- Interference effects can suppress entropy production
- Potential applications to sensing/hardware?

Thank you!

Trailer #1: entanglement spectrum

Entanglement spectrum: $\{p_i\}$, e-values of ρ_A

$$S_{\text{Rényi},\alpha} \equiv \frac{\ln \operatorname{tr}(\rho_A^{\alpha})}{1-\alpha} \qquad \qquad \mathcal{E} \equiv \frac{1-\operatorname{tr}\rho_A^2}{1-1/D} = \frac{1-\sum_{i=1}^D p_i^2}{1-1/D} \,.$$

Trailer #1: entanglement spectrum

Trailer #1: entanglement spectrum

Boundary effects

Trailer #2: TN

