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@ Introduction to small x physics and CGC

@ Two particle correlations within eikonal approxmiation
@ Two particle correlations beyond eikonal approximation
@ Discussion
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High energy scattering in QCD
High energy scattering in QCD
e hY

"hard” scattering

"soft” scattering
— large momentum exchange — small momentum exchange
— weakly coupled — strongly coupled
— perturbative — non-perturbative
DIS in QCD :

Three Lorentz invariant quantities :
electron
quark

proton

@ ¢ = —@? = virtuality of the incoming photon
_ @ _
Q x=5355=

longitudinal momentum fraction carried by the parton
Q s~ 2P - Q = energy of the colliding v — p system

increasing the energy (s = Q?/x) of the system:
Bjorken limit fixed x, @* — co

Regge-Gribov limit fixed Q2, x — 0
o density of partons decreases.
@ system becomes more dilute!

o density of partons increases.
@ evolution is given by DGLAP.

@ system becomes dense!
@ causes saturation !
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Bjorken limit and DGLAP evolution

In the Bjorken limit: description given by (QCD-improved) parton model

proton =~ set of independent free partons (assumed to be dilute).

~-p X-section (collinear factorization):

@ Y [ Eeru (D ad@)i (- @)

i=qr,Gr.g B

CroLi (% as(Qz)) = perturbatively calculable coefficient function

f; (z, Q?) = Parton Distribution Function (PDF): The number density of partons of type i in the
proton seen with transverse resolution 1/Q?, carrying a momentum fraction z.

In the infinite momentum frame:

o transverse size of the photon ~ 1/Q (very small probe).

= Q is the resolution scale!
@ can scatter off a quark with the size of ~ 1/Q.

- with increasing Q?:
@ more substructure resolved by the probe,

, o target effectively contains more partons,
o HOWEVER, density of partons decreases!!

DGLAP evolution: d . o (@) [tdz (X X
gt @ =28 Mo (2,0) + Pecslali (£.0) |
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Regge-Gribov limit: decreasing x at fixed Q?

[ Balitsky, Fadin, Kuraev, Lipatov - 1977, 1978 |
First approach: BFKL equation - evolution wrt rapidity Y = In(1/x)

3;(Y>q)_ach/ 2 P 14
oy 2 ] e " s et 9

@ ¢k
©(Y.q) = unintegrated gluon density — | xfy(x, Q) = / ?ga(x, k)
0

At very high energies BFKL equation has two major problems:

o Froissart Bound : ot/ < %Yz

o X-section calculated by the solution of BFKL equation : g% ~ e€

o to solve this problem information from the infrared scale of QCD needed.
@ violation of unitarity

Y

o scattering probability grows without a bound, exceeding unity at rapidities of order Y ~ 1 In(1/as)

as
o this problem can be addressed by taking into account gluon saturation effects.

-+ decreasing x at fixed Q? (rapidity evolution):

@ Nb. of partons increase due to splitting
@ Transverse scale doesn’t change
@ Mother and daughter partons have the same size

= density of partons increases and causes Saturation.
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Color Glass Condensate (CGC) - |

High energy scattering in QCD:

o Regge-Gribov limit : x — 0

o at small x — saturation!

o Qs = saturation scale
= a5 X (gluon density per unit area)

@ o Qs is a measure of the strength of the gluon
interaction processes that may occur when

the gluon density becomes large.

o 0> Naco ~ EBREEHRIRE
A mQ?

bon

[ McLerran, Venugopalan - hep-ph/9309289 / hep-ph/9311205]
In the saturation regime the prescription of scattering process: Color Glass Condensate (CGC)

CGC description of a process: "effective degrees of freedom” with respect to a cut off A*

o fast partons : kT > AT — described by color sources: J/(x) = 6" p(x~, x1)
o slow partons: k™ < AT — described by color fields A*(x)

interaction between fast and slow partons: [ d*xJ/(x)A,(x)

Tolga Altinoluk (NCBJ) Particle correlations from initial state

6/30



Color Glass Condensate (CGC) - Il

Within the CGC framework:

>

expectation value of an observable O = (0) = / [Dp] W(p] Olp]
W/p] = distribution function for the color sources p.

[ Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner, 1997-2002 |

Rapidity (Y) evolution of the distribution function is governed by the JIMWLK evolution equation:

0
Oy Wylpl = —Hamwrk {p‘ %] Wy [p]

interaction between the projectile and the target:

each parton picks up a Wilson line during the interaction with the target:

Ur(x) = Pyexp {ig{/d)ﬁr Tf’zA;(x*,x)]

dipole operator appears in the observable:

dr(x,y) = DLR” [UR(X)U%E(Y)}

Dr = the color dimension of the representation.
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Nonlinear evolution of the dipole operator

JIMWLK equation for the dipole operator

X asNg x —y)?
ol _ o [ ara LI {tatx) - tetx e v) |

Dipole scattering probability: d(x,y) =1 — N(x,y)

(d(x,z)d(z,y)) = simultaneous scattering of both dipoles off the target.

[Balitsky - 1996, Kovchegov -1999 |

Assumption: The areas of the target on which the dipoles are uncorrelated:

‘ (d(x,z)d(z,y)) = (d(x,2)) (d(z,y)) ‘ = ‘.HMWLK equation = BK equation

possible applications in the gluon saturation regime:

o dilute-dilute scattering : No saturation effects / BFKL formalism
o can be applied to: v* —~*, DIS on p, pp at moderate energies

o dilute-dense scattering : saturated target / CGC formalism
o can be applied to: DIS on A, pA collisions, forward particle production in pp.

® dense-dense scattering: saturated projectile and target / non-linear dynamics of Yang-Mills fields
o can be applied to: pp at very high energies, heavy ion collisions.

saturation sensitive observables in pA collisions:

* forward particle/jet production * two particle correlations
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Two particle correlations

Motivation: Ridge structure [ATLAS Collaboration - arXiv:1609.06213]

ATLAS  pp 05<p}°<5GeV  ATLAS pp 0.5p3"<5 GeV/
15=13 TeV, 64 nb” 18=13 TeV, 64 nb” NE120

e correlations between particles over large intervals atas 05<piP5GeV  ATLAS pp 05495 Gev
of rapidity peaking at zero and  relative azimuthal 02 TeV, 170mb fsozTeV. 170007

angle.
\

e observed first at RHIC in Au-Au collisions.

Clanae)

NS
\ \ W
S\ \\‘\\ )
\\‘\\\ \\\\\*'.‘,”'w

e observed at LHC for high multiplicity pp and pA
collisions.

ATLAS  p:Pb
{Sa=5.02 TeV, 28 b

Clanae)

Tolga Altinoluk (NCBJ) Particle correlations from initial state 9/30



Correlations within the CGC framework

Ridge in HICs < collective flow due to strong final state interactions
(good description of the data in the framework of relativistic viscous hydrodynamics)

Ridge in small size systems: similar reasoning looks tenuous but hydro describes the data very well.

Can it be initial state effect?

idea:
Several mechanisms have been suggested to explain the ridge correlations in the CGC framework:

(i) Local anisotropy of the target fields — rotational symmetry is broken.
[Kovner, Lublinsky - arXiv:1012.3398 / arXiv:1109.0347 / arXiv:1211.1928 |

Q!
particles correlated in the incoming w.f.
‘M transverse separation < 1/Qs
scatter through the same domain.

initial state correlations — final state correlations

E

Numerical studies based on local anisotropy of the target:
[Dumitru, Skokov - arXiv:1411.6030] / [Dumitru, McLerran, Skokov - arXiv:1410.4844]
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Correlations within the CGC framework -1l

(ii) Glasma graph approach to two gluon production:

[Dumitru, Gelis, McLerran, Venugopalan - arXiv:0804.3858|

umitru, usling, elis, Jalillan-Marian, appi, venugopalan - arAiv: J.0490
Dumi Dusli Gelis, Jalilian-Mari Lappi, Vi pal: Xiv:1009.5295
(k2 — g2),

(kr=aq) (k=) (k2 — q2)

a2 qn an a2

What is the physics behind the glasma graph approximation?
+ Glasma graph calculation contains two physical effects:
@ Bose enhancement of the gluons in projectile/target wave function
[TA, Armesto, Beuf, Kovner, Lublinsky - arXiv:1503.07126]
olgep x {5(2) (k= @) = (ke — @2)] + 3@ [(k1 — q1) + (k2 — qz)]}
olge, T {5(2>(q1 —q2) + 6@ (qu + q2)}
o Hanbury-Brown-Twiss (HBT) correlations between gluons far separated in rapidity.
olusT {5(2)(’(1 — ka) + 83k + kz)}
[TA, Armesto, Beuf, Kovner, Lublinsky - arXiv:1509.03223]
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Correlations within the CGC framework -IlI

Two particle correlations beyond the glasma graph approach: 2 gluon production in pA collisions
[TA, Armesto, Wertepny - arXiv:1804.02910] — k -factorized approach

[TA, Armesto, Kovner, Lublinsky - arXiv:1805.07739] — Glasma graph approach .

scattering on a dense target — dipole and quadrupole operators. Factorization assumption:

1
NZ-1

(Qxysz, V)T = d(xy)d(z,v) +d(x, v)d(z,y) + d(x;z)d(y, v)

(D(x,y)D(z, V)T = d(xy)d(z,v) + d(x,v)d(y,2) +d(x, 2)d(v,y)]

1
w21yt
double inclusive X-section:

do 1 1 1
PR I — — k —k —_—
hts * |, {0 ot gt gk 0o k(g

symmetry under (ko — —kz) : "accidental symmetry of the CGC”

Ip o< @ (0) — uncorrelated contribution.

hoc { 5@k — 1) = (o — @2)] + 0@k — ko) }

BE. proj. HBT
o< { @0P(e1 — ) + 0P [(k — @1) ~ (ke — )] }
BE. target BE. proj.
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Tools to study the ridge correlations: azimuthal harmonics

Convenient way to study the two particle correlations: Fourier decomposition into harmonics in A¢

dN
d2k1d171d2k2d172

oo
= N(ki, ko, D) = ao(k1, k2) + Y an(ky, k2) cos(nArg)
n=1

[T. Lappi, B. Schenke, S. Schlichting, R. Venugopalan - arXiv: 1509.03499]
Spectrum is defined as

o
N(ky, ko, Do) = ao(ki, k2) |1+ Y 2Vaa(k1, ko) cos(nAg)
n=1

where .
an(k, k) Jo N(k, ke, Ag) cos(ng) dAg

2Voa(ki, ko) = = 7
stk k) =20 %) T N(kr, ke, A0) dBg

e set ky = p’“ and ky = pr. Then, the azimuthal harmonics are defined as

ref

Voa(pr, PF')

VnA(Pr‘Ffw p!Ff)

Vn(PT) =

challenge: accidental symmetry in CGC = vanishing odd harmonics!
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Breaking the accidental symmetry in the CGC

(i) density corrections to the projectile:
[Kovner, Lublinsky, Skokov - arXiv:1612.07790] / [Kovchegov, Skokov - arXiv:1802.08166]

S T el X

dnevenedd(k ) 1 (dN(kL)[ . L] dN(-k,)

2\ d2kdy 2kdy

iy =3 [pp,p,]) = non-vanishing odd harmonics.

numerical studies and comparison with data:

[Mace, Skokov, Tribedy, Venugopalan - arXiv:1805.09342 / arXiv:1807.00825 / arXiv:1901.10506]

(ii) subeikonal corrections due to finite width of the target:
[Agostini, TA, Armesto - arXiv:1902.04830 / arXiv:1907.03668]

relax the eikonal approximation by considering a finite width target to compute two particle correlations
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Eikonal dilute-dense scattering

For central production (glasma graph approximation) both the target and the projectile are boosted
from their rest frame to the center of mass frame:

Boosting the target:

_ o o A7 > Al > AT in a generic gauge
Ve Ag (”/tX )Tax) . .
@ in the light-cone gauge:
ML) > 8 LA (x5 x) Al (x) = 646 (x+) A7 (%)
target is localized at x* = 0
A (W’z xt, X x ) independent of x~

Boosting the projectile :

%p./;(% pr’,X) o S>> Ui U
o slow x* dependence due to Lorentz time dilation
JE(x) o< 34+ 5(x)p?(x)

o _ projectile is localized at x~ =0
(;. VX, x)

J(x) = < yp I (%, Yox 7, x)
Ji

a
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Subeikonal corrections in the CGC

Eikonal approximation amounts dropping the energy suppressed terms!
For realistic values of energy one should go beyond eikonal approximation.

[TA, Armesto, Beuf, Martinez, Salgado - arXiv:1404.2219]
[TA, Armesto, Beuf, Moscoso - arXiv:1505.01400]

Finite-width-target corrections in single inclusive gluon production in pA collisions:

* dense target is defined by A¥(x) and eikonal approximation amounts to:

Q AL(x) =5 A (x) @ other components of the target background field .45 (x)
Q@ AL(x) = AL (xT,x) @ dynamics of the target : x~ dependence of A5(x)
Q Ab(x) x &(x) © Finite width LT of the target along x

[AF =5 6(x ) A (x) > A =5 A (x" %)

FAACOL I N S
BL]—%"""WW“ ke The target — A*(x) = 0"~ A5 (xT,x)

The projectile — j4(x) oc 6"+5(x™) p?(x — B)
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Noneikonal single inclusive production

The single inclusive gluon cross section for pA:

e gt = [ 40 3 ((seor),),

Aphys.
gluon production amplitude
For a finite-width target: M3(k, B) Q:E (x; y) = scalar background propagator

g;ji’(g; X) satisfies the scalar Green's eq. whose solution can be written formally as a path integral

G2t (x:y) = O(x* —y*) /

2(y+)=y Peet) e {g /yf dzt 2(z* )} Uab(”,y*v [2(z+)]>

with the Wilson line
ot ab
Z/{ab(x+,y+, [z(z*)}) = Pi exp{ig/ dzt T A" (z*,z(z*))}
y+
following the Brownian trajectory z(z™").

AIM: Perform an eikonal expansion of g;’? (x:y)-
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Expanding the background propagator

(i) discretize the background propagator.

(ii) Perturbative expansion around free classical path:

eikonal limit : 5= > Q2 in the problem
— large k™ limit (classical free path!)

= perturbative expansion around the free classical path:
2, =25 +u, with 28 =y + n(x=y)

(iii) Expansion around the initial transverse position:

The first expansion is performed for fixed initial and final
positions.

In the large k™ limit , the result has to be re-expanded since
2%(z*) — y is small at each step.

Tolga Altinoluk (NCBJ) Particle correlations from initial state 18/30



Background scalar propagator at NNE accuracy

After all:
[ ax e it siy) = 00 —yt) €T Uy )

xT=y™)[ i i
+ (,(73)['( U (xFyty) + 5“[1.0](X+yy+VY)}

ab
)2 - P _ 1 _
+% {k'kfl/{[égl(x ytiy) + Ek M[U](X‘ oy - le[z.o](X‘ Y ;y)} }

e U(xT,yT,y) = standard Wilson lines that appears only at the eikonal level as expected.

UKy T y) =Py eI et T A ()

° L{[(Y_g](xﬂy*,y) = decorated Wilson lines that only appears beyond eikonal accuracy.

@ The subscripts
o « stands for the order of the expansion around the classical path.

o (3 stands for the order of the expansion around the initial transverse position.
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Structure of the decorated Wilson lines

U,

with

Tolga Altinoluk (NCBJ)

U B’ U
Upyx ——o—,
z P y
2ij 5 j
Z’{Enlz x U B 12 " unB u B U
P yt ozt 2 2z y+
u B U . UB U B U . U B UB UB U
P Y & P 2y A - S R A

Bi(z*,y)
Bi(z*,y)
B'(z*,y)

igT -9, A~ (z",y),
igT - Oyiayin(ZJr, y),
igT - 3yi0yj(9yl./47 (Z+, y),
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Dilute target limit and the modified Lipatov vertex

[ T.A., Dumitru - arXiv:1512.00279]
go from pA — pp:

o dilute limit of the target:
expand the standard & decorated Wilson lines to first order in the background field.

o Standard Wilson line: Usp(x) ~ 1+ igT5, [+ g e A (xT, q)

e the first decorated Wilson line:

; u B’ u
Upp,y + + +
=D
1 1
xt +

i zt—yt _
Ut = [ det S figTs0,A7 ()
Jy

e the second decorated Wilson line:

ij u B9 U uB u B U
. M[U.z] o +
ot o+ l gt ot P ﬂ P yt

1 1 O[(A7)?]
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Dilute target limit and the modified Lipatov vertex

[ T.A., Dumitru - arXiv:1512.00279]

o summing up all the NEik and NNEik terms in the dilute target limit, one gets

(k=) K[ K o 1R LY
M‘X[(qu)Z*kZ iz 3\ o™

e O(1) term — eikonal Lipatov vertex.

k—q

Li(k.q) : i _ (k- ‘7)[ _ ﬁ

ﬁ
=

~

=~

Q

=
|

q

o we get NEik and NNEik corrections to the Lipatov vertex.

o the form suggests exponentiation. However, we do not know the corrections beyond NNEik accuracy!
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Dilute target limit and the modified Lipatov vertex

[Agostini, TA, Armesto - arXiv:1902.04830 / arXiv:1907.03668]

e calculate the diagrams by keeping the phase ek x" which is taken to be 1 in the eikonal limit.

The total amplitude reads

. " d’q it A (= N amia
'(MA+MB+MC)O</WL(KG’)6‘ 1AL (k7 q)e” T

with Li(k, q) is the standard Lipatov vertex

L"(k,q) = :7 2

and the non-eikonal Lipatov vertex being

: k—q) KT 4t
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Dilute target limit and the modified Lipatov vertex

Double inclusive cross section with Non-Eik Lipatov vertex [k = (k*,k )]

T o</ {[f(k q1, k q)+g'\"3(k ky i L) gk, g, k q)]+(k — —k )}
> 41, K2, G2 s Ky o 1, q1, K2, G2 LY K;

d?kidn1d?kang | giue na 1AL "2 2 12 2 2

all non-eikonal effects are encoded in

_ _ 2
gé\‘E(kak{;ﬁ):{ 22,)L+ sin Wl ;k2)L+]}

(ky — k

In the double inclusive production X-section:

e certain terms are accompanied by Qg’E(kf, ky i LT)

e and their mirror images given by (k, — —kj) are accompanied by GYF(k; , —k;'; LT).
o GYE(ki, Ky ; L) is not symmetric under (k, — —kp)!!

In certain kinematics the behavior of G3¥(k; , k; ; L*) differs completely from GNP(k;, —k;y ; LT):

e in the region where ki ~ k, we get

Gk kg L) > Y (k,—ks s L)
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X-section

e This asymmetry created by the non-eikonal effects immediately reminds the asymmetry between the
forward and backward peaks of the ridge structure observed in two particle production.

A*=0.5 fm, n3==2 and k;=1 GeV

A'=0.5 fm, n1=12-2, ky=1 GeV and k,=1.2 GeV

004 0.0120fT
0.92 g oon1s ~— Non-Eikonal
¢ 0.90 i: 00110 Eikonal
§ 088 B 00105
0.86 A0 H
084 Ag=rr E 0.0100
082 0.0095
00 05 10 15 20 25 30 00 05 15 20 25 30
P [GeV] L9

X-section is completely symmetric with respect to A¢ = /2 in the eikonal case, while an asymetric
behavior is seen for the non-eikonal case.

o The difference between the peaks at A¢ =0 and at
A¢ = 7 is a sign of generating non-zero odd harmonics.

- e =0—=>An=mn & ky =1 GeV and kp = 1.2 GeV.
( [Vem=s0Gev] ~7 20

2p=n e With increasing energy the difference between the peaks gets
smaller — non-eikonal corrections gets smaller.

ethe asymmetry exists in an interval of roughly two units of
rapidity.
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odd-harmonics from the non-eikonal corrections?

Vsww =20 GeV; N =0

ormalized multiplicity

o The difference between the peaks is max for An =0 (max. v3 as well).
e The difference between the peaks vanishes after two units of rapidity.
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odd-harmonics from the non-eikonal corrections?

non-eikonal corrections do generate non-zero odd harmonics!

0175 VSun =20 GeV VSwn =60 GeV' VSww =200 GeV
0as0p 1703 HBT * 1 =
ek . I et
_ 0100 i -
oo Vet Ji NG, ko, A0) cos(nAg) dAG
@ na (ks k2) = JT N(ky, ko, Ad) dDA
0.000 0 1,72,
o1s0p1=10 * i ( f)
2 : : H Voa(pr, PT
owof vn(pr) = 2 ELEL L

ref ref )

S o0 Voa(pE, P
0.050
uozs’An' A.\ e [t =6 fm in the rest frame and we scale it with

the v factor for different energies.

. fn=15 L
o i . i o 7 = 0.4 GeV and pp = 0.2 GeV (these are the
0100 values that maximize v3).
T oo o =1 & plef =1 GeV.
0.050
0.000
o 1 2 0 1 2 o 1 2 3
pricev) priGev] pr(Gevl

Non-eikonal effects alone can not explain the odd-harmonics HOWEVER there is a contribution
originating from these effects for certain kinematic region.
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Azimuthal harmonics from non-eikonal production

A side remark:

even harmonics do not depend on Lt but odd harmonics do.

Tolga Altinoluk (NCBJ)

Vp/Vn(1.5 fm)

14
12
10

N B O

P —— V2 VSww =20 GeV;n=1.5
[ === v3
Va4
b o
0 1 2 3 4 5 6
L* [fm]
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Summary / Remarks / Discussions

"y ~V/Sw/@mun) & LY =L/(w?2) &  eikonal parameter : (pr LT e7")

o At LHC energies /Syy > 2 TeV = 7 ~ 1000 = L+ ~ 1072 GeV !

o LHC small pr (0-3 GeV): (i) vanishing odd harmonics
(i) GNF — 1 = Non-eikonal expressions — eikonal ones.

o LHC high pr (3-10 GeV): Does G5'® — 1? = Non-eikonal terms might be still important.

o At RHIC energies v/Syn < 200 GeV = v < 100 = LT > 0.3 GeV?!

o RHIC small pr (0-3 GeV): (i) difference between the peaks
(ii) non-vanishing odd harmonics

e RHIC high pr (3-10 GeV): (i) no difference between the peaks.

(i) G2 (ky s kg, L) = Gy (ky s —hy s LT)
(iii) vanishing odd harmonics
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Summary / Remarks / Discussions

o With the change of the azimuthal angle from A¢ =0 to A¢ = m the magnitude of the
non-eikonal parameter is changing — breaks the accidental symmetry of the CGC and generates
non-zero odd harmonics.

@ Other corrections to the eikonal limit may carry a similar effect:

o including the transverse component of the background field will bring k™ dependence.
[in preparation - TA, Beuf, Tymowska]

o the dynamics of the target: x~ dependence of the target field 77

o Non-eikonal effects alone can not explain the odd-harmonics HOWEVER there is a contribution
originating from these effects for certain kinematic region.
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Bose enhancement in a nutshell (1)

Consider a state with fixed occupation numbers of N species of bosons at different

momenta:
. T n'(p)

with a finite volume V' and periodic boundary conditions so that momenta are
discrete. (i =1,2,---,N)

The mean particle density :

n= (1PN (S (P} = 3 ()

The 2-particle correlator:
inxespace = | p(x,y) = ({n(p)}]al’ (x)aV(y)a' () () [{n(p)}) |

in pspace = | D(p.k) = ({n(p)}]a""(p)aT (q)a' (1) (m) {n(p)})]

= D(p, k) = 6(p—1)3(q — m) 32, n'(p) X2; W (q) + 6(p — m)d(q — 1) 32, n'(p)n(q)
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Bose enhancement in a nutshell (2)

Using these results, the 2-particle correlator in coordinate space:

2

elP(x=y) ,,i(p)

D(x,y) = n® + 2’: ‘/ (3;5)3

the Bose enhancement term
in momentum space:

—_——l
D(p, k) = {Z n;(p)} k)| o= )3 (eI

i -

J

@ It vanishes when the points are far away!

o It gives O(1/N) enhancement when the points coincide!

The O(1/N) suppression is due to the fact the second term contains a single sum
over the species index!

The physics: Only bosons of the same species are correlated with each other.
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Noneikonal single inclusive gluon production

Single inclusive gluon production in pA collisions (eikonal accuracy):

i [, DA AE ) (70 (U UL - U,

o projectile averaging: in x-space — (p?(x)p?(y))p = 62212(x, y)
in p-space — (p?(k)p"(p))p = 6°°p2(k, p) = 53"T<%> Fl(k+p)R]

T — transverse momentum dependent distribution of the color charge densities
F — soft form factor which is peaked when its argument vanihes

Single inclusive gluon production in pp collisions (eikonal accuracy):

o dilute target limit — Uap(x) ~ 1+ igTg, [y e AZ (x*, q)

do
d2kdn

x / Lk, qu) L'(k, a2) 12 [k — q1. k — 2] <AZ(><1+, @Az (% qz)>
dilute X% q1qe T

e go from eikonal to non-eikonal: L'(k,q) — Lip(k, q;xT)

k= (k*, k)
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Noneikonal single inclusive gluon production

target averaging:
e Adopt a modified expression for the correlator of two target fields:

Since the target has finite longitudinal length, the target fields can be located at two different longitudinal
positions. We consider a generalization of the MV model in which the two color fields are located at
different longitudinal positions.

1

SO0 — I =i 1) 2020 a1 — )la(a)?

(A (4 a)Az (67, @2)) 7 = 6%n(x")

e AT = color correlation length in the target (A" < LT)
o n(xT) = 1-d target density along longitudinal direction
(n(x™) = ng for 0 < x* < L™ and 0 elsewhere)

e a(q) = functional form of the potential in p-space

It is Yukawa type — |a(q)|? = > with 1 is Debye screening mass.

s
(®+1%)

In the limit \* — 0 together with a constant potential |a(q)|? and constant 1-d target density, the
correlator goes to standard MV model one.
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Noneikonal single inclusive gluon production

When we plug this back in the X-section we get

NE At

do

4 i (g —x)
Pk doen T

) ) 1 : "
2 2 _ _ ! ! - 2
h /q\a(q)\ w[k = q,q = k| L'(k, q)L' (k. q) no 53 /0 # /x;w

dilute

e The NE Lipatov vertex is incorporated in the phase.
e The f-function in the correlator provides the integration limits.
e The 1-d target density is taken to be constant for 0 < xfr <Lt

e integration over xfr gives a factor of (ngL™) which corresponds to number of scattering centers in
inside the finite length L*. Since in the dilute target limit we only take into account a single scattering
in the amplitude and c.c. amplitude, this factor can be set to 1.
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Noneikonal single inclusive gluon production

After all said and done:

G ix) [ 12k - 0.0 - KLk QL (k. @)fala)]”

do NE
d?kdn

dilute

the function that encodes the non-eikonal effects

GNE(k—; A1) = ﬁsin(k"/\*')

in the eikonal limit:

GPk—AT) =1

lim
(k=A*)—=0
n=2 3-0.5 fn
100 1.00
095 095 /_/
8 0.90 E: 050
& § — p,=1GeV
085 A*=0.6 fm pu=d GeV
A*=0.8 fm 0.85 p.=2.5GeV
080F — A*=1fm
0.80
0.0 05 10 15 20 25 10 15 20 25 30 35 40
p. [GeV] n
(Ne =3, ur = 0.2 GeV, p2(k, q) = 6 (k + q) with a projectile size S = 4GeV72.)
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Double inclusive gluon production and glasma graphs

Same procedure can be adopted to calculate the double inclusive gluon production.

The double inclusive gluon production X-section for dilute-dense scattering:

do /
5, X
d2 kl d7]1 d2 k2 2 Z1Z0X1X0Z122)1 )2

</)x1p><2pylpyz> <[UZI - Xllalc[U;l - in]Cbl[Uzz - sz]EZd[U;Q - Uyrg]dbz>7_

elila—2)tik(2=2) Al — 2)Al(Z — ) A (0 — 2)4 (22 — 1)

e projectile averaging: pair wise Wick contraction:

(o) e = (pan) ooty ) p + oyt ) p(0rgi) p + (P )2 p(P20Y ) b

e projectile averaging: use the same two color charge correlator:
in x-space = (p?(x)p?(y))p = 671%(x, )

in p-space — (p*(K)o®(p))p = 3%81i3(k, p) = 6% T (%52 F[(k + p)R]
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Double inclusive gluon production and glasma graphs

o dilute target limit — Uap(x) = 1+ igTg, [, e AZ(x*, q)
e go from eikonal to non-eikonal: L(k,q) — Lxg(k, q; xT)

e target averaging: pair wise Wick contraction

(A5 0" @A, (0 a2)AC (7 @Ay (5 aa)) L = (A7 (7 @A () (A2 05 as)Ag 0 e))
+(A3 06" AT 06 a0)) (AZ06 a)A; (@) + (AT 07, @Az (o aa)) (A5 (0 q2)Ag (. au))

e target averaging: use the same two field correlator:

L o(M = xi — x5 1) 2m)26@ (a1 — @2)la(an) P

(A2 G an)Az 0 ) = 6 ) oy

The dilute limit with non-eikonal corrections:

do NE

d2k1 d7]1d2k2'r]2

" S, — 5, — 1
o [ Tatan) Pl PO A G 3D+ e [+ 1]}
q192 c

dilute
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Glasma graphs / two particle correlations

In our set up:

e k1 — g1 and ka — g2: momenta of the two gluons in the projectile.

e ki and ky: momenta of the two gluons in the final state.

e g1 and g»: momenta transferred from the target to the projectile during the interaction.

In such a set up:

o (forward/backward) Bose enhancement of the gluons in the projectile = F[|(k1 — q1) F (k2 — 42)|R]
o (forward/backward) HBT correlations of the final state gluons = F|[|k1 F k2|R]

o (forward/backward) Bose enhancement of the gluons in the target = F[|q1 F q2|R]
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Glasma graphs / two particle correlations

identification of the terms:
5= (HZ [k — q1, 91 — K Li(qul)Li(klsCh)] [/1,2 (k2 — a2, 02 — ko Lj(kz,qz)/—j(kz‘qz)]

e Square of the single inclusive production / uncorrelated production.

/2(12 = {UW\‘ (ky ko L) Pk — qu g2 — k] 12 [ke — G2, g1 — ko]

X Lk, @)L (1, @2) U ko, o) (ks 1)+ (o = —ko)
o k= (kt k)
e 12[ki — q1,q2 — k1] o< F[|q1 — q2| R] = Bose enhancement of the target gluons.

e A new function appears that accounts for non-eikonal effects

. KT — ks
GYB(k ki L ):{(kf_i;)ﬁsin[( — 2)L+]}

2

e in the eikonal limit:
lim G3F(ky ki LT) =1
Ljﬂogz (ki ks )
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Glasma graphs / two particle correlations

identification of the terms:

/1(12 = {”2 [ki — q1. 2 — ko] 1P [ko — 2. g1 — ki) L(ka, 1)L (k. q1) U (Ko, q2) L (Ko, G2)
o 1 R
+ G (kg L) [#Z[kl —qu,q1 — ko) 1P [ke — @2, @2 — ka] + 5;12 [k — a1 ke — q2] 12 [q2 — ki, g1 — ko] )

x L(ky, qu)L (ki, @2) U (ko q1) L (K, Q2)} + (ky = —ky)

o 12[k1 — q1,q2 — k2] o F[|(k1 — q1) — (k2 — q2)|R] = Bose enhancement of the projectile gluons
(forward peak).

. uz [Iq —q1,q1 — kz} x F[\kl - kQ‘R} = HBT correlations of the produced gluons.

. ;zz[kl —qr. ke — q2] F[\(kl —q1)+ (ko — qg)\R} = Bose enhancement of the projectile gluons
(backward peak).
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The nature of GXE(k; , ky; LT)

In the double inclusive production X-section:

e certain terms are accompanied by GNP (k;, ky i L)

e and their mirror images given by (k, — —k,) are accompanied by GY*(k; , —k; ; L™).

o k= = K2/2k*

o GYE(ki, ky; L) is not symmetric under (k, — —ko)!!

In certain kinematics the behavior of g;li(k;. ky s L™) differs completely from g}§'13(k;, —ky  LT):

e in the region where k;” ~ k, we get

9Bk ki L) > Y (k ki L)
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Dilute limit ikonal double inclusive X-section

e This asymmetry created by the non-eikonal effects immediately reminds the asymmetry between the
forward and backward peaks of the ridge structure observed in two particle production.

A'=0.5 fm, n1=1;=2 and ky=1 GeV 2A7=8.5 fm, 11=1,-2, ky=1 GeV and k,=1.2 GeV

0.94

00120
0.92 g oot1s ~— Non-Eikonal
s
0 0.90 £ o010 Eikonal
S E
2 088
N B 00105
0.86 = A=0. 5
Ag=rr £ 0.0100
084 s 2
0.82 T S S S S 0.0095
00 05 10 15 20 25 30 00 05 10 15 20 25 30
P [GeV] i)
e[t =6fmand N, =3
o u7 =02 GeV

o translational invariance: p2(k,q) = 6@ (k + g) with a projectile size S| = 4GeV 2.

o regulate the denominators that give rise to infrared divergencies by substituting the corresponding
squared transverse momenta /> — /2 + up where we have used the numerical value pp = 0.2 GeV.

X-section is completely symmetric with respect to A¢ = /2 in the eikonal case, while an asymetric
behavior is seen for the non-eikonal case.

Tolga Altinoluk (NCBJ) Particle correlations from initial state 44/30



